(1) For each prime $p>2$, show that $16=c^{8}$ for some $c \in \mathbb{Q}_{p}$.
(2) Show that both $\left(x^{2}-2\right)\left(x^{2}-17\right)\left(x^{2}-34\right)$ and $\left(x^{3}-37\right)\left(x^{2}+3\right)$ have roots in \mathbb{Q}_{p} for every p, but have no roots in \mathbb{Q}.
Massive extra credit: Show that for each prime p the equation $3 x^{4}+4 y^{4}-$ $19 z^{4}=0$ has solutions with $x, y, z \in \mathbb{Q}_{p}$ which are not all zero, but no such solutions with $x, y, z \in \mathbb{Q}$.
(3) Let K be a field which is complete with respect to a non-archimedean absolute value $|\cdot|$, let a_{0}, a_{1}, \ldots be a sequence of elements of K, and define

$$
R:=\frac{1}{\lim \sup _{n}\left|a_{n}\right|^{1 / n}}
$$

which is an element of $[0,+\infty]$. Show that $D:=\left\{x \in K: \sum_{n=0}^{\infty} a_{n} x^{n}\right.$ converges $\}$ satisfies:
(1) If $R=0$ then $D=\{0\}$.
(2) If $R=\infty$ then $D=K$.
(3) If $0<R<\infty$ and $\lim _{n}\left|a_{n}\right| R^{n}=0$ then $D=\{x \in K:|x| \leq R\}$.
(4) If $0<R<\infty$ and $\left|a_{n}\right| R^{n} \nrightarrow 0$ then $D=\{x \in K:|x|<R\}$.
(4) If p is an odd prime, $t \in \mathbb{Z}_{p}$, and $x \in p \mathbb{Z}_{p}$, show that the binomial series

$$
G(t, x):=\sum_{n=0}^{\infty}\binom{t}{n} x^{n}
$$

converges. If $t=u / v$ with $u, v \in \mathbb{Z}$ and $v>0$ and $p \nmid v$, then show that $G\left(\frac{u}{v}, x\right)^{v}=(1+x)^{u}$. Show in particular that if $p=7, t=1 / 2$ and $x=7 / 9$ then the series converges to $4 / 3$ in \mathbb{R} and to a 7 -adic number $\alpha \neq 4 / 3$ in \mathbb{Q}_{7}.
(5) (a) Determine the set of elements in \mathbb{Q}_{p} for which the power series

$$
\log _{p}(x):=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(x-1)^{n}}{n}
$$

converges.
(b) Determine the set of elements in \mathbb{Q}_{p} for which the power series

$$
\exp _{p}(x):=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

converges.
(c) If $a \in \mathbb{Q}_{p}$ is small enough, show that $\exp _{p}\left(\log _{p}(a)\right)=a$. How close is "close enough"?

