Math 676, Homework 12: due Dec 2

- (1) For each prime p > 2, show that $16 = c^8$ for some $c \in \mathbb{Q}_p$.
- (2) Show that both $(x^2-2)(x^2-17)(x^2-34)$ and $(x^3-37)(x^2+3)$ have roots in \mathbb{Q}_p for every p, but have no roots in \mathbb{Q} . *Massive extra credit:* Show that for each prime p the equation $3x^4 + 4y^4 - 19z^4 = 0$ has solutions with $x, y, z \in \mathbb{Q}_p$ which are not all zero, but no such solutions with $x, y, z \in \mathbb{Q}$.
- (3) Let K be a field which is complete with respect to a non-archimedean absolute value $|\cdot|$, let a_0, a_1, \ldots be a sequence of elements of K, and define

$$R := \frac{1}{\limsup_n |a_n|^{1/n}}$$

which is an element of $[0, +\infty]$. Show that $D := \{x \in K : \sum_{n=0}^{\infty} a_n x^n \text{ converges} \}$ satisfies:

- (1) If R = 0 then $D = \{0\}$.
- (2) If $R = \infty$ then D = K.
- (3) If $0 < R < \infty$ and $\lim_{n \to \infty} |a_n| R^n = 0$ then $D = \{x \in K : |x| \le R\}$.
- (4) If $0 < R < \infty$ and $|a_n| R^n \not\to 0$ then $D = \{x \in K \colon |x| < R\}$.
- (4) If p is an odd prime, $t \in \mathbb{Z}_p$, and $x \in p\mathbb{Z}_p$, show that the binomial series

$$G(t,x) := \sum_{n=0}^{\infty} \binom{t}{n} x^n$$

converges. If t = u/v with $u, v \in \mathbb{Z}$ and v > 0 and $p \nmid v$, then show that $G(\frac{u}{v}, x)^v = (1+x)^u$. Show in particular that if p = 7, t = 1/2 and x = 7/9 then the series converges to 4/3 in \mathbb{R} and to a 7-adic number $\alpha \neq 4/3$ in \mathbb{Q}_7 .

(5) (a) Determine the set of elements in \mathbb{Q}_p for which the power series

$$\log_p(x) := \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x-1)^n}{n}$$

converges.

(b) Determine the set of elements in \mathbb{Q}_p for which the power series

$$\exp_p(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

converges.

(c) If $a \in \mathbb{Q}_p$ is small enough, show that $\exp_p(\log_p(a)) = a$. How close is "close enough"?