(1) Let $A$ be a principal ideal domain with field of fractions $K$, let $B$ be a Dedekind domain containing $A$ such that $B$ is a finitely-generated $A$ module, and assume that the field of fractions $L$ of $B$ is a finite extension of $K$. Show that $B$ is a free $A$-module of rank $[L: K]$, and also that for any nonzero prime ideal $\mathfrak{p}$ of $A$ the set $B / \mathfrak{p} B$ has dimension $n$ as a vector space over $A / \mathfrak{p}$.
(2) Let $A_{1} \subset A_{2} \subset A_{3}$ be Dedekind domains, let $\mathfrak{p}_{3}$ be a nonzero prime ideal of $A_{3}$, and put $\mathfrak{p}_{i}:=A_{i} \cap \mathfrak{p}_{3}$. Show that $e\left(\mathfrak{p}_{3} / \mathfrak{p}_{1}\right)=e\left(\mathfrak{p}_{3} / \mathfrak{p}_{2}\right) \cdot e\left(\mathfrak{p}_{2} / \mathfrak{p}_{1}\right)$ and $f\left(\mathfrak{p}_{3} / \mathfrak{p}_{1}\right)=f\left(\mathfrak{p}_{3} / \mathfrak{p}_{2}\right) \cdot f\left(\mathfrak{p}_{2} / \mathfrak{p}_{1}\right)$.
(3) Let $L / K$ be a Galois extension of number fields, let $\mathfrak{q}$ be a nonzero prime ideal of $\mathcal{O}_{L}$, and let $\mathfrak{p}:=\mathfrak{q} \cap \mathcal{O}_{K}$. Show that $L^{D_{\mathfrak{q} / \mathfrak{p}}}$ is the largest field $L^{\prime}$ between $K$ and $L$ for which the prime $\mathfrak{p}^{\prime}:=\mathfrak{q} \cap \mathcal{O}_{L^{\prime}}$ satisfies $e\left(\mathfrak{p}^{\prime} / \mathfrak{p}\right)=$ $1=f\left(\mathfrak{p}^{\prime} / \mathfrak{p}\right)$. Give a similar characterization of $L^{I_{q / \mathfrak{p}}}$.
(4) Let $L_{1}$ and $L_{2}$ be finite extensions of a number field $K$, and let $\mathfrak{p}$ be a nonzero prime ideal of $\mathcal{O}_{K}$. Show that $\mathfrak{p}$ is unramified in both $L_{1}$ and $L_{2}$ if and only if $\mathfrak{p}$ is unramified in the compositum $L_{1} L_{2}$. Also show that $\mathfrak{p}$ splits completely in both $L_{1}$ and $L_{2}$ if and only if $\mathfrak{p}$ splits completely in the compositum $L_{1} L_{2}$.
(5) Find a prime number $p$ and quadratic extensions $K$ and $L$ of $\mathbb{Q}$ demonstrating each of the following:
(a) $p$ can be totally ramified in both $K$ and $L$ without being totally ramified in $K L$.
(b) $K$ and $L$ can each contain unique primes lying over $p$ while $K L$ does not.
(c) $p$ can be inert in $K$ and $L$ without being inert in $K L$.
(d) The residue degrees of $p$ in $K$ and $L$ can be 1 without being 1 in $K L$.
(6) Let $L / K$ be an extension of number fields, let $M$ be the Galois closure of $L / K$, and let $G:=\operatorname{Gal}(M / K)$ and $H:=\operatorname{Gal}(M / L)$ be the Galois groups. For each nonzero prime ideal $P$ of $\mathcal{O}_{K}$, let $R$ be a prime ideal of $\mathcal{O}_{M}$ lying over $P$, and let $D$ and $I$ be the decomposition and inertia groups of $R / P$. Show that there is a bijection between the set of prime ideals of $\mathcal{O}_{L}$ lying over $P$ and the set of $D$-orbits on the set of left cosets $G / H$, where the orbit corresponding to an ideal $Q$ is the union of $f(Q / P)$ disjoint $I$-orbits, each of which has length $e(Q / P)$.

