Math 676, Homework 11: due Nov 18

- (1) Let A be a principal ideal domain with field of fractions K, let B be a Dedekind domain containing A such that B is a finitely-generated Amodule, and assume that the field of fractions L of B is a finite extension of K. Show that B is a free A-module of rank [L:K], and also that for any nonzero prime ideal \mathfrak{p} of A the set $B/\mathfrak{p}B$ has dimension n as a vector space over A/\mathfrak{p} .
- (2) Let $A_1 \subset A_2 \subset A_3$ be Dedekind domains, let \mathfrak{p}_3 be a nonzero prime ideal of A_3 , and put $\mathfrak{p}_i := A_i \cap \mathfrak{p}_3$. Show that $e(\mathfrak{p}_3/\mathfrak{p}_1) = e(\mathfrak{p}_3/\mathfrak{p}_2) \cdot e(\mathfrak{p}_2/\mathfrak{p}_1)$ and $f(\mathfrak{p}_3/\mathfrak{p}_1) = f(\mathfrak{p}_3/\mathfrak{p}_2) \cdot f(\mathfrak{p}_2/\mathfrak{p}_1)$.
- (3) Let L/K be a Galois extension of number fields, let \mathfrak{q} be a nonzero prime ideal of \mathcal{O}_L , and let $\mathfrak{p} := \mathfrak{q} \cap \mathcal{O}_K$. Show that $L^{D_{\mathfrak{q}/\mathfrak{p}}}$ is the largest field L'between K and L for which the prime $\mathfrak{p}' := \mathfrak{q} \cap \mathcal{O}_{L'}$ satisfies $e(\mathfrak{p}'/\mathfrak{p}) =$ $1 = f(\mathfrak{p}'/\mathfrak{p})$. Give a similar characterization of $L^{I_{\mathfrak{q}/\mathfrak{p}}}$.
- (4) Let L_1 and L_2 be finite extensions of a number field K, and let \mathfrak{p} be a nonzero prime ideal of \mathcal{O}_K . Show that \mathfrak{p} is unramified in both L_1 and L_2 if and only if \mathfrak{p} is unramified in the compositum L_1L_2 . Also show that \mathfrak{p} splits completely in both L_1 and L_2 if and only if \mathfrak{p} splits completely in the compositum L_1L_2 .
- (5) Find a prime number p and quadratic extensions K and L of \mathbb{Q} demonstrating each of the following:
 - (a) p can be totally ramified in both K and L without being totally ramified in KL.
 - (b) K and L can each contain unique primes lying over p while KL does not.
 - (c) p can be inert in K and L without being inert in KL.
 - (d) The residue degrees of p in K and L can be 1 without being 1 in KL.
- (6) Let L/K be an extension of number fields, let M be the Galois closure of L/K, and let $G := \operatorname{Gal}(M/K)$ and $H := \operatorname{Gal}(M/L)$ be the Galois groups. For each nonzero prime ideal P of \mathcal{O}_K , let R be a prime ideal of \mathcal{O}_M lying over P, and let D and I be the decomposition and inertia groups of R/P. Show that there is a bijection between the set of prime ideals of \mathcal{O}_L lying over P and the set of D-orbits on the set of left cosets G/H, where the orbit corresponding to an ideal Q is the union of f(Q/P) disjoint I-orbits, each of which has length e(Q/P).