(1) Solve $x^{3}-y^{2}=2$ in integers x, y.
(You may assume that $\mathbb{Z}[\sqrt{-2}]$ is a unique factorization domain, which follows from the fact that this ring is Euclidean.)
(2) Show that $\mathbb{Z}[\sqrt{-13}]$ and $\mathbb{Z}[\sqrt{10}]$ are not unique factorization domains.
(3) Let $d \neq 1$ be an integer which is not divisible by the square of any prime. Show that the ring of all algebraic integers in $\mathbb{Q}(\sqrt{d})$ is

$$
\begin{array}{cl}
\mathbb{Z}[\sqrt{d}] & \text { if } d \equiv 2,3 \quad(\bmod 4) \\
\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] & \text { if } d \equiv 1 \quad(\bmod 4)
\end{array}
$$

Determine the ring of all algebraic integers in $\mathbb{Q}(\sqrt[3]{2})$.
(4) Let $R=\mathbb{Z}[\sqrt{-5}]$, and write $\alpha:=1+\sqrt{-5}$ and $\bar{\alpha}:=1-\sqrt{-5}$. Show that $6=2 \cdot 3=\alpha \cdot \bar{\alpha}$ are two inequivalent factorizations into irreducible elements of R. Then write the ideals (2), (3), (α), ($\bar{\alpha}$) of R as products of prime ideals, and show that the two resulting prime factorizations of the ideal (6) induced from the factorizations $6=2 \cdot 3=\alpha \cdot \bar{\alpha}$ are identical. (Hint: one way to show that an ideal I of R is prime is by showing that R / I is an integral domain.)

