(1) For $n \in \mathbb{N}$, define $\phi(n)$ to be the cardinality of $(\mathbb{Z} / n \mathbb{Z})^{*}$, i.e., the number of integers k with $1 \leq k \leq n$ for which $\operatorname{gcd}(k, n)=1$. For each prime power q and each positive integer d dividing $q-1$, express the number of order- d elements of \mathbb{F}_{q}^{*} as a value of ϕ. Deduce from this a positive lower bound on the number of monic irreducible degree- n polynomials in $\mathbb{F}_{q}[x]$ (express the lower bound in terms of a value of ϕ).
(2) Let q be a prime power with $q \equiv 1(\bmod 4)$, and let $f(X)$ and $g(X)$ be distinct monic irreducible polynomials in $\mathbb{F}_{q}[X]$. Show that the image of $f(X)$ in $\mathbb{F}_{q}[X] /(g(X))$ is a square if and only if the image of $g(X)$ in $\mathbb{F}_{q}[X] /(f(X))$ is a square. (I will post hints on piazza.)
(3) Let N / K be a Galois extension, and let L be a field with $K \subseteq L \subseteq N$. Let H be the set of all elements $h \in \operatorname{Gal}(N / K)$ such that $h(L)=L$. Show that H is the normalizer of $\operatorname{Gal}(N / L)$ in $\operatorname{Gal}(N / K)$.
Note that the condition $h(L)=L$ says h preserves L as a set, which is a different assertion than saying that h fixes every element of L. That is, it says h fixes L setwise but not necessarily pointwise.
(4) Determine all n for which a regular n-gon can be constructed using straightedge and compass.
(5) Fill in the missing details in the following sketch of a proof that \mathbb{C} is algebraically closed. Note that the only non-algebraic ingredient is the intermediate value theorem on \mathbb{R}.
Let M / \mathbb{C} be any finite extension, and let N be the normal closure of M / \mathbb{R}. Show (easily) that N / \mathbb{R} is Galois. Let H be a Sylow 2 -subgroup of $G:=\operatorname{Gal}(N / \mathbb{R})$, and put $L:=N^{H}$. Show that $[L: \mathbb{R}]$ is odd. Then use the intermediate value theorem to show that $[L: \mathbb{R}]$ cannot be greater than 1. Conclude that $G=H$, so that $[N: \mathbb{R}]$ is a power of 2 . Now N / \mathbb{C} is Galois with Galois group being a 2 -group. Deduce that if $N \neq \mathbb{C}$ then there is a field K with $\mathbb{C}<K \leq N$ and $[K: \mathbb{C}]=2$. Then obtain a contradiction by showing directly that there is no degree-2 extension K / \mathbb{C}.
(6) Problems 7.1, 7.2, 7.3, 7.6 from chapter 16 of Artin (in 7.1, assume that $a, b, a b$ are all nonsquares in F, and that F does not have characteristic 2).

