Math 494, Homework 8: due Mar 25
(1) Determine all primitive elements for the extension $\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}$. (This means: name all $\gamma$ such that $\mathbb{Q}(\gamma)=\mathbb{Q}(\sqrt{2}, \sqrt{3}))$.
(2) A field $K$ is called perfect if every finite extension $L / K$ is separable. Show that $K$ is perfect if and only if one of these holds:
(1) $K$ has characteristic 0 , or
(2) $K$ has characteristic $p$ with $p>0$, and also every element of $K$ has a $p$-th root in $K$.
(3) Let $p$ be prime, let $L:=\mathbb{F}_{p}(X, Y)$ be the field of rational functions in two variables, and put $K:=\mathbb{F}_{p}\left(X^{p}, Y^{p}\right)$. It was shown in piazza that $L \neq K(z)$ for any $z \in L$ ("A splitting field which is not the splitting field of an irreducible polynomial"). Determine $[L: K]$, and exhibit infinitely many distinct fields $F$ such that $K \subset F \subset L$ (don't just cite problem 4 for this, instead you should name the fields $F$ here).
(4) Let $L / K$ be a finite-degree field extension, where $K$ is infinite. Show that $L$ can be written as $K(\alpha)$ for some $\alpha \in L$ if and only if there exist only finitely many fields $F$ with $K \subset F \subset L$. (I will post hints for this on piazza.)
(5) Let $n$ be a positive integer and put $\zeta:=e^{2 \pi i / n}$, so that $\zeta$ is a primitive $n$-th root of unity in $\mathbb{C}$. Show that $\Phi_{n}(X):=\prod_{i}\left(X-\zeta^{i}\right)$ is in $\mathbb{Q}[X]$, where the product runs over all $i \in \mathbb{Z}$ such that $\operatorname{gcd}(i, n)=1$ and $1 \leq$ $i \leq n$. Under the assumption that $\Phi_{n}(X)$ is irreducible in $\mathbb{Q}[X]$, name all automorphisms of $\mathbb{Q}(\zeta)$, and name a familiar group which is isomorphic to the group of all such automorphisms.
(6) In the notation of the above problem, fill in the following sketch of a proof that $\Phi_{n}(X)$ is irreducible in $\mathbb{Q}[X]$ : first show that $X^{n}-1=\prod_{d \mid n} \Phi_{d}(X)$ (where the product is over all positive integers $d$ which divide $n$ ), and deduce that $\Phi_{n}(X) \in \mathbb{Z}[X]$. Let $\zeta$ be any primitive $n$-th root of unity in $\mathbb{C}$, and let $f(X)$ be the minimal polynomial of $\zeta$ over $\mathbb{Q}$. For any prime $p$ which doesn't divide $n$, let $f_{p}(X)$ be the minimal polynomial of $\zeta^{p}$ over $\mathbb{Q}$. We want to show that $f(X)=f_{p}(X)$. Show that both $f(X)$ and $f_{p}(X)$ are in $\mathbb{Z}[X]$, and that if $f(X) \neq f_{p}(X)$ then $f(X) \cdot f_{p}(X)$ divides $X^{n}-1$ in $\mathbb{Z}[X]$. Then show that this yields an impossible situation when we reduce mod $p$. Thus the set of roots of $f(X)$ is preserved by $p$-th powering, and hence by $m$-th powering for any $m$ coprime to $n$. Conclude that $f(X)=\Phi_{n}(X)$, so that $\Phi_{n}(X)$ is irreducible in $\mathbb{Q}[X]$.

