Math 494, Homework 7: due Mar 18
(1) Let α be the unique positive real number such that $\alpha^{4}=7$. Determine which of these extensions are normal: $\mathbb{Q}\left(i \alpha^{2}\right) / \mathbb{Q}, \mathbb{Q}(\alpha+i \alpha) / \mathbb{Q}\left(i \alpha^{2}\right)$, $\mathbb{Q}(\alpha+i \alpha) / \mathbb{Q}$.
(2) Give a nice description of the splitting field of each of the following polynomials over \mathbb{Q}, and in particular determine the degree of the splitting field (as a field extension of \mathbb{Q}): $x^{2}-2, x^{2}-1, x^{3}-2,\left(x^{3}-2\right)\left(x^{2}-2\right)$, $x^{2}+x+1, x^{6}+x^{3}+1 x^{5}-7$.
(3) For each finite field L, determine the sizes of all subfields of L (in terms of the size of L). Which extensions of finite fields L / K are normal?
(4) Determine the automorphism group of each finite field (meaning: explicitly name the automorphisms, and also name a well-understood group which is isomorphic to this automorphism group).
(5) Problem 5.2 from chapter 15 of Artin.
(6) Problems 3.1, 3.3, and 4.1 from chapter 16 of Artin.

