Math 494, Homework 6: due Mar 11 (after the midterm)
(1) Let K be a field, and let x be transcendental over K. If $f(X) \in K(X)$ has degree $n>0$ then show that the field extension $K(x) / K(f(x))$ has degree n.
(2) (a) Let L and M be subfields of a field N, and let F be a subfield of $L \cap M$. Show that if the degrees $[L: F]$ and $[M: F]$ are integers which are relatively prime to one another, then $[L M: F]=[L: F] \cdot[M: F]$. (b) Let K be a field, and let $f(X)$ and $g(X)$ be nonconstant polynomials in $K[X]$ whose degrees are relatively prime to one another. Show that $f(X)-g(Y)$ is irreducible in $K[X, Y]$.
(3) Problems 2.2, 2.3, 3.5, 3.8, 3.9, 4.2 from chapter 15 of Artin.
(4) If x is transcendental over the field K then show that every field L such that $K \varsubsetneqq L \subseteq K(x)$ has the form $L=K(f(x))$ for some nonconstant $f(X) \in K(X)$.
(Note: this problem is hard, and a complete solution will earn massive extra credit. I will posted hints for this problem on Piazza.)

