(1) We can write every positive integer n in exactly one way as $2^{a} \cdot \prod_{j=1}^{r} p_{j}^{e_{j}}$. $\prod_{\ell=1}^{s} q_{\ell}^{f_{\ell}}$ where $a, r, s \in \mathbb{N}_{0}$, the p_{j}^{\prime} 's are primes congruent to $1 \bmod 4$ with $p_{1}<p_{2}<\cdots<p_{r}$, and the q_{ℓ} 's are primes congruent to $3 \bmod 4$ with $q_{1}<q_{2}<\cdots<q_{s}$. For each $n \in \mathbb{N}$, give a formula for the number of pairs (x, y) of nonnegative integers such that $x^{2}+y^{2}=n$ and $0 \leq x \leq y$.
Hint: The formula should only involve the values of a, the e_{j} 's, and the f_{ℓ} 's. Use unique factorization in $\mathbb{Z}[i]$. Also use the fact proved in class, that every prime number congruent to $3 \bmod 4$ is a prime in $\mathbb{Z}[i]$, and every prime number p which is not congruent to $3 \bmod 4$ can be written as $p=a^{2}+b^{2}$ with $a, b \in \mathbb{N}$, in which case $a+b i$ and $a-b i$ are primes in $\mathbb{Z}[i]$. Moreover, every prime in $\mathbb{Z}[i]$ is a unit times one of the primes named in the previous sentence. Also use that if $x \in \mathbb{Z}[i]$ and \bar{x} is its complex conjugate then $N(x):=x \bar{x}$ is a nonnegative integer such that $N(x)=0$ precisely when $x=0$, and $N(x)=1$ precisely when x is a unit, and also $N(x y)=N(x) \cdot N(y)$. The last assertion follows from the analogous assertion about absolute values, or more directly from the easy-to-verify fact that $\overline{x y}=\bar{x} \cdot \bar{y}$.
(2) Describe the prime elements in $\mathbf{Z}[\sqrt{-2}]$, and then use this description to give a formula for the number of ways to express a positive integer n as $x^{2}+2 y^{2}$ with $x, y \in \mathbb{N}_{0}$. You may use without proof the fact that if p is an odd prime then -2 is a square in $(\mathbb{Z} / p \mathbb{Z})^{*}$ if and only if p is congruent to 1 or $3 \bmod 8$ (I will prove this fact in a piazza post).
(3) Check via computer that $f(x):=x^{4}+3 x^{2}+7 x+4$ is not irreducible in $\mathbb{F}_{p}[x]$ for any small prime p. But use the factorizations in $\mathbb{F}_{p}[x]$ to show that $f(x)$ is irreducible in $\mathbb{Z}[x]$. (You don't need to write anything about the first sentence, but I encourage you to familiarize yourself with this type of computer usage; for the benefit of those of you who aren't already expert programmers, I'll make a piazza post showing how to use Magma to factor polynomials in $\mathbb{F}_{p}[x]$, but if you prefer to use a different computer package then feel free to do so.)
(4) Problems 3.6, 4.4, 4.10(a,e,j,k), 5.1, 5.3 from chapter 12 of Artin.

