(1) An algebraic variety in \mathbb{C}^{n} is the set of common zeroes in \mathbb{C}^{n} of some set of polynomials in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Let Σ_{n} be the set of all algebraic varieties in \mathbb{C}^{n}. Show that
(1) Σ_{n} contains both \emptyset and \mathbb{C}^{n}
(2) If $A, B \in \Sigma_{n}$ then $A \cup B \in \Sigma_{n}$
(3) If $\left(A_{\lambda}\right)_{\lambda \in \Lambda}$ is any family of elements of Σ_{n} then $\cap_{\lambda \in \Lambda} A_{\lambda}$ is in Σ_{n}.
(2) Let R be a (commutative) ring and let S be the set of all maximal ideals of R. For each subset T of R, let $V(T)$ be the set of all maximal ideals of R which contain T. Show that
(1) If I is the ideal generated by T then $V(T)=V(I)$.
(2) $V(0)=S$ and $V(1)=\emptyset$.
(3) If $\left(T_{\lambda}\right)_{\lambda \in \Lambda}$ is any family of subsets of R then

$$
V\left(\cup_{\lambda \in \Lambda} T_{\lambda}\right)=\cap_{\lambda \in \Lambda} V\left(T_{\lambda}\right)
$$

(4) For any ideals I, J of R we have $V(I \cap J)=V(I J)=V(I) \cup V(J)$.

Remark: For those of you who have seen the notion of an abstract topological space, note that problem (1) says that the algebraic varieties in \mathbb{C}^{n} satisfy the axioms for being the closed sets in a topological space, which gives a novel topological structure to \mathbb{C}^{n}. Likewise, problem (2) says that the sets $V(T)$ are the closed sets in a topological space, which yields a topological structure on the set of maximal ideals of R.
(3) Let X be an algebraic variety in \mathbb{C}^{n}, and let $I(X)$ be the set of all polynomials $f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ which vanish at all elements of X. Show that $I(X)$ is an ideal. The quotient ring $C(X):=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I(X)$ is called the "coordinate ring" of X. Let Y be an algebraic variety in \mathbb{C}^{m} with coordinate ring $C(Y)$. A polynomial mapping is a function $\phi: X \rightarrow Y$ which is given by an m-tuple of n-variable polynomials. Exhibit a bijection between the set of such polynomial mappings $X \rightarrow Y$ and the set of ring homomorphisms $C(Y) \rightarrow C(X)$ which act as the identity on \mathbb{C}.
(3) Problems 4.3, 7.1, 8.1, 8.2 from chapter 11 of Artin.

