- (1) An algebraic variety in \mathbb{C}^n is the set of common zeroes in \mathbb{C}^n of some set of polynomials in $\mathbb{C}[x_1, ..., x_n]$. Let Σ_n be the set of all algebraic varieties in \mathbb{C}^n . Show that
 - (1) Σ_n contains both \emptyset and \mathbb{C}^n
 - (2) If $A, B \in \Sigma_n$ then $A \cup B \in \Sigma_n$
 - (3) If $(A_{\lambda})_{\lambda \in \Lambda}$ is any family of elements of Σ_n then $\cap_{\lambda \in \Lambda} A_{\lambda}$ is in Σ_n .
- (2) Let R be a (commutative) ring and let S be the set of all maximal ideals of R. For each subset T of R, let V(T) be the set of all maximal ideals of R which contain T. Show that
 - (1) If I is the ideal generated by T then V(T) = V(I).
 - (2) V(0) = S and $V(1) = \emptyset$.
 - (3) If $(T_{\lambda})_{\lambda \in \Lambda}$ is any family of subsets of R then

$$V(\bigcup_{\lambda\in\Lambda}T_{\lambda})=\cap_{\lambda\in\Lambda}V(T_{\lambda}).$$

(4) For any ideals I, J of R we have $V(I \cap J) = V(IJ) = V(I) \cup V(J)$.

Remark: For those of you who have seen the notion of an abstract topological space, note that problem (1) says that the algebraic varieties in \mathbb{C}^n satisfy the axioms for being the closed sets in a topological space, which gives a novel topological structure to \mathbb{C}^n . Likewise, problem (2) says that the sets V(T) are the closed sets in a topological space, which yields a topological structure on the set of maximal ideals of R.

- (3) Let X be an algebraic variety in \mathbb{C}^n , and let I(X) be the set of all polynomials $f(x_1, \ldots, x_n) \in \mathbb{C}[x_1, \ldots, x_n]$ which vanish at all elements of X. Show that I(X) is an ideal. The quotient ring $C(X) := \mathbb{C}[x_1, \ldots, x_n]/I(X)$ is called the "coordinate ring" of X. Let Y be an algebraic variety in \mathbb{C}^m with coordinate ring C(Y). A polynomial mapping is a function $\phi: X \to Y$ which is given by an m-tuple of n-variable polynomials. Exhibit a bijection between the set of such polynomial mappings $X \to Y$ and the set of ring homomorphisms $C(Y) \to C(X)$ which act as the identity on \mathbb{C} .
- (3) Problems 4.3, 7.1, 8.1, 8.2 from chapter 11 of Artin.