(1) Determine all irreducible degree-1 polynomials in $(\mathbb{Z} / n \mathbb{Z})[x]$ for as many positive integers n as you can.
(2) Problems 3.3-3.8 and 3.10 from chapter 11 of Artin.

Extra credit: Let K be a field, and let $f(x), g(x), h(x)$ be nonzero polynomials in $K[x]$ such that $f+g=h$ and $\operatorname{gcd}(f, g)=1$ and $f^{\prime}(x) \neq 0$ (cf. problem 3.5). Show that

$$
\max (\{\operatorname{deg}(f), \operatorname{deg}(g), \operatorname{deg}(h)\}) \leq \operatorname{deg}(N)-1
$$

where $N(x)$ is the product of the distinct monic irreducible polynomials in $K[x]$ which divide $f g h$.

