Math 494, Homework 11: due Thursday April 15
(1) Let K be a field, and $\operatorname{let} f(X) \in K[X]$ be a degree- n polynomial which has n distinct roots $\alpha_{1}, \ldots, \alpha_{n}$ in its splitting field. Show that $\operatorname{Gal}(f, K)$, when viewed as a group of permutations of $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$, has orbit sizes equal to the degrees of the irreducible factors of $f(X)$ in $K[X]$. In particular, $f(X)$ is irreducible in $K[X]$ if and only if $\operatorname{Gal}(f, K)$ is a transitive subgroup of S_{n}. In case $K=\mathbb{F}_{q}$, show that $\operatorname{Gal}\left(f, \mathbb{F}_{q}\right)$ is generated by an element of S_{n} whose cycle lengths (including 1-cycles) equal the degrees of the irreducible factors of $f(X)$ in $\mathbb{F}_{q}[X]$.
(2) Let K be a field whose characteristic is not 2 , and let $f(X) \in K[X]$ have degree $n>0$ and have n distinct roots $\alpha_{1}, \ldots, \alpha_{n}$ in its splitting field. Show that $\operatorname{Gal}(f, K)$ is a subgroup of A_{n} if and only if $\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}$ is a square in K. Express this quantity $\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}$ in terms of the coefficients of $f(X)$ in case $\operatorname{deg}(f)=2$, and in case $f(X)=X^{3}+a X+b$.
(3) Let x_{1}, \ldots, x_{n} be independent transcendentals over a field K, and write $\prod_{i=1}^{n}\left(X-x_{i}\right)=X^{n}-e_{1} X^{n-1}+e_{2} X^{n-2}-\cdots+(-1)^{n} e_{n}$. Show that $K\left(x_{1}, \ldots, x_{n}\right) / K\left(e_{1}, \ldots, e_{n}\right)$ is Galois with Galois group S_{n}. In case the characteristic of K is not 2, name an element $\Delta \in K\left(x_{1}, \ldots, x_{n}\right)$ so that $K\left(x_{1}, \ldots, x_{n}\right)^{A_{n}}=K\left(e_{1}, \ldots, e_{n}, \Delta\right)$.

