Math 494, Homework 10: due Thursday April 8
(1) Let L / K and M / K be finite-degree separable field extensions, and suppose that L / K and M / K are minimal in the sense that there are no fields strictly between L and K, and also there are no fields strictly between M and K. Show that if $[L M: K]<[L: K] \cdot[M: K]$ then the Galois closure of L / K equals the Galois closure of M / K.
(1.5) (This problem is optional, and is only for extra credit.)

Let L / K and M / K be finite-degree separable field extensions. Show that if $[L M: M]<[L: K]$ then there exist fields L_{1} and M_{1} such that all of these hold:

- $K \varsubsetneqq L_{1} \subseteq L$ and $K \varsubsetneqq M_{1} \subseteq M$
- $\left[L_{1} M_{1}: K\right]<\left[L_{1}: K\right] \cdot\left[M_{1}: K\right]$
- the Galois closure of L_{1} / K equals the Galois closure of M_{1} / K.
(2) Let L / K and M / K be separable extensions which both have degree n, where $n \neq 6$. Let N be the normal closure of L / K. Show that if $\operatorname{Gal}(N / K) \cong S_{n}$ then $[L M: M] \in\{1, n-1, n\}$.
Hint: You may use the fact that if $n \neq 6$ then any two index-n subgroups H, J of S_{n} are conjugate to one another, and there are no groups strictly between H and S_{n}. I have posted proofs of these facts in piazza.
(3) Let p be a prime which is not in $\{11,23\}$ and which cannot be written as $\left(q^{d}-1\right) /(q-1)$ with $d \geq 2$ and q a prime power. Let $f(X)$ be an irreducible degree- p polynomial in $K[X]$, for some field K, and let L / K be a separable extension of degree a power of p. Show that every irreducible factor of $f(X)$ in $L[X]$ has degree either p or a divisor of $p-1$.
Hint: use Theorem 5.5 from the notes, which is a consequence of the classification of finite simple groups. I can't imagine how one could solve this problem without relying on this classification. I will post on Piazza some examples for the excluded primes p, in which different degrees occur.
(4) Let N be a field and let G be a finite group of automorphisms of N. Writing $N^{G}:=\{n \in N: g(n)=n \forall g \in G\}$, show that N / N^{G} is Galois with Galois group G.

