(1) If R is a (commutative) ring and $f(x) \in R[x]$, then an n-cycle of f in R is defined to be an n-tuple $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ of pairwise distinct elements of R such that $f\left(c_{i}\right)=c_{i+1}$ for $1 \leq i \leq n$ (where we define $c_{n+1}:=$ c_{1}). Let $\mathcal{C Y C}(R)$ be the set of cycle lengths of polynomials over R (so $\mathcal{C} \mathcal{Y C}(R)=\{n$: there exists $f \in R[x]$ with an n-cycle in $R\}$). Show that $\mathcal{C Y C}(\mathbf{Z})=\{1,2\}$.
(2) Show that if R is an integral domain (i.e., a commutative ring in which $a b=0$ implies $0 \in\{a, b\})$ and p is a prime number, then $p \in \mathcal{C Y C}(R)$ if and only if there exist units $u_{1}, u_{2}, \ldots, u_{p-1} \in R^{*}$ such that $u_{i}-u_{j} \in R^{*}$ whenever $0<i<j<p$. Deduce that if p, q are prime numbers with $p<q$, and $q \in \mathcal{C Y C}(R)$, then $p \in \mathcal{C Y C}(R)$.
(3) Let E be the set of entire functions on the complex plane, which by definition is the set of functions defined by a single power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ in $\mathbf{C}[[x]]$ which converges whenever $x \in \mathbf{C}$. It is easy to verify that E^{*} consists of all elements of E which do not take value 0 anywhere on C. It can also be shown (via logarithms) that $E^{*}=\left\{e^{f}: f \in E\right\}$. In $1887(!!)$, Borel showed that if $f_{1}, \ldots, f_{n} \in E^{*}$ satisfy $f_{1}+\cdots+f_{n}=0$, but no nonempty proper subset of the f_{i} 's sums to zero, then all the f_{i} 's are constant multiples of one another (i.e., $f_{i} / f_{j} \in \mathbf{C}^{*}$ for all i, j). Assuming this, deduce that if $f, g \in E^{*}$ satisfy $H(f, g)=0$ for some nonzero $H(x, y) \in \mathbb{C}[x, y]$, then $f^{m}=c \cdot g^{n}$ for some $c \in \mathbb{C}^{*}$ and some integers m, n which are not both zero.
(4) Problems 1.3, 1.5, 1.6, 1.7, 1.9 from chapter 11 of Artin.

