Math 494, Homework 1: due Jan 28

- (1) If R is a (commutative) ring and $f(x) \in R[x]$, then an n-cycle of f in R is defined to be an n-tuple (c_1, c_2, \ldots, c_n) of pairwise distinct elements of R such that $f(c_i) = c_{i+1}$ for $1 \leq i \leq n$ (where we define $c_{n+1} := c_1$). Let $\mathcal{CVC}(R)$ be the set of cycle lengths of polynomials over R (so $\mathcal{CVC}(R) = \{n: \text{ there exists } f \in R[x] \text{ with an n-cycle in } R\}$). Show that $\mathcal{CVC}(\mathbf{Z}) = \{1, 2\}$.
- (2) Show that if R is an integral domain (i.e., a commutative ring in which ab = 0 implies $0 \in \{a, b\}$) and p is a prime number, then $p \in C\mathcal{YC}(R)$ if and only if there exist units $u_1, u_2, \ldots, u_{p-1} \in R^*$ such that $u_i u_j \in R^*$ whenever 0 < i < j < p. Deduce that if p, q are prime numbers with p < q, and $q \in C\mathcal{YC}(R)$, then $p \in C\mathcal{YC}(R)$.
- (3) Let E be the set of entire functions on the complex plane, which by definition is the set of functions defined by a single power series $\sum_{n=0}^{\infty} a_n x^n$ in $\mathbb{C}[[x]]$ which converges whenever $x \in \mathbb{C}$. It is easy to verify that E^* consists of all elements of E which do not take value 0 anywhere on \mathbb{C} . It can also be shown (via logarithms) that $E^* = \{e^f : f \in E\}$. In 1887(!!), Borel showed that if $f_1, \ldots, f_n \in E^*$ satisfy $f_1 + \cdots + f_n = 0$, but no nonempty proper subset of the f_i 's sums to zero, then all the f_i 's are constant multiples of one another (i.e., $f_i/f_j \in \mathbb{C}^*$ for all i, j). Assuming this, deduce that if $f, g \in E^*$ satisfy H(f, g) = 0 for some nonzero $H(x, y) \in \mathbb{C}[x, y]$, then $f^m = c \cdot g^n$ for some $c \in \mathbb{C}^*$ and some integers m, n which are not both zero.
- (4) Problems 1.3, 1.5, 1.6, 1.7, 1.9 from chapter 11 of Artin.