Matching of velocity threshold for vehicle fuel saving driving control strategy

LI Jing, ZHAO Ding, ZHU Lin, LIU Jun-jie
(State Key Laboratory of Automobile Dynamic Simulation, Jilin University, Changchun 130022, China)

Abstract: A new type of electronic controlled sliding clutch which is friction free at disconnection mode was designed. and for the vehicle accelerating-sliding driving mode a fuel saving control strategy based on adjusting the economical velocity threshold by the connecting-disconnecting action was proposed. The off-line simulation was performed with the MATLAB simulation platform to analyze the effect of the velocity threshold on the fuel consumption. The road tests were done to complete the matching of velocity thresholds. The results show that the developed electronic sliding clutch and its control strategy are characterized by significant fuel saving effect.

Key words: vehicle engineering; driving control strategy; fuel saving; sliding clutch

1 节油驾驶控制策略

自行车或摩托车滑行离合器典型结构如图 1 所示[1-2]。滑行过程中, 外圈 3 旋转速度大于内圈 1 (即超越), 则与内圈同步的棘爪或滚珠 2 与外圈 4 产生摩擦力, 使车辆滑行距离减小而油耗增大。采用图 2 所示的电控滑行离合器实现加速-减速的驱动方式。
滑行切换控制。电机驱动拨叉推动可控滑动套简右移，使棘爪与棘轮分离，实现链轮与车轮动力分离（滑行）；反之，可控滑动套筒左移，实现动力结合（加速）。

图 2 电控滑行离合器结构
Fig. 2 Structure of electronically-controlled sliding clutch

1.1 电控滑行离合器工作原理

滑行离合器实现了加速-滑行节油操作模式。如图 3 所示，驾驶员通过显示器观测车速，当滑行过程中逐渐降低的车速接近其加速工况激发门限时，启动发动机，原本小于车速的链速快速增加，当车速与链速之差在预设范围内时，ECU 发出指令，使离合器实现无冲击结合，从而车辆进入加速工况；与结合过程类似，当车速（始终等于链速）加速到其滑行工况激发门限时，ECU 发出离合器分离指令。图 4 为加速或滑行工况激发门限示意图。

图 3 滑行离合器电控系统原理
Fig. 3 Principle of electronically-controlled system for sliding clutch

1.2 节油驾驶控制策略

驾驶员应根据直道或弯道、弯道半径、上下坡及其坡度等多种路况信息综合确定加速或滑行工况的激发门限。

选择上海国际赛车场赛道为试验场地，试验温度为 15.5 ℃，车辆在赛道上行驶 4 圈，总计 12,096 km 后计算油耗。图 5 为赛道示意图，主要路段地形如下：START-起点，START→1-直道且缓上坡，1→2-弯道且缓下坡，2→3-平直道，3-半径 12 m 弯道，4-半径 30 m 弯道，4→5-半径 90 m 弯道且缓下坡，5→6-直道且缓下坡，6→7 平直道，7→8-半径 12 m 弯道，8→9-弯道，9→1-上坡-平路-上坡-坡顶。

图 5 上海国际赛场赛道
Fig. 5 Shanghai international circuit

分析图 5 可知，赛道主要包括 5 种情况：①急弯，如 3,4 及 7→8；②缓弯，如 4→5,8→9；③平直线，如 2→3,6→7；④地势为缓下坡（坡度≤2.5%）；⑤地势为缓上坡（坡度≤2.5%）。

根据赛道特征确定如表 1 所示的典型路段的节油驾驶控制策略。

实际驾驶以表 1 为基础，根据赛道路段情况进行合理组合，同时微调速度门限。例如，图
表1 典型路段的节油驾驶控制策略

<table>
<thead>
<tr>
<th>路段</th>
<th>控制</th>
<th>驾驶模式</th>
<th>速度门限</th>
<th>驾驶策略</th>
</tr>
</thead>
<tbody>
<tr>
<td>直行</td>
<td>1</td>
<td>加速→滑行</td>
<td>(13→12)→25</td>
<td>直行</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>滑行</td>
<td>46→28</td>
<td>直行</td>
</tr>
<tr>
<td>半径12 m</td>
<td>1</td>
<td>滑行</td>
<td>25→15</td>
<td>外道切</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>滑行</td>
<td>28→19</td>
<td>内道切</td>
</tr>
<tr>
<td>半径90 m</td>
<td>1</td>
<td>加速→滑行</td>
<td>(13→12)→22</td>
<td>外道切</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>滑行</td>
<td>43→25</td>
<td>内道侧</td>
</tr>
<tr>
<td>土坡→平路</td>
<td>1</td>
<td>滑行→加速</td>
<td>(30→(20→35))</td>
<td>土坡滑行</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>滑行</td>
<td>46→15</td>
<td>平路加速</td>
</tr>
</tbody>
</table>

2 仿真试验与分析

2.1 平直路车速激发门限匹配仿真

建立如图6所示的单自由度的节油车加速-滑行油耗仿真计算模型。仿真假设：平直道路、无风、滑行时发动机转速为零，各参数在仿真过程中无波动。仿真主要参数为：整车质量为90 kg，空气阻力系数为0.25，道路滚动阻力系数为0.015，传动系传动比为7.51，发动机型号为HONDA SDH125-2，车速激发门限匹配效果如图7所示。

图7中平直道路速度最经济区耗油变化平缓，曲速范围较宽，对应的 为12~19 km/h， 为45~52 km/h。

2.2 车速激发门限匹配

以仿真为基础，在体育场跑道上试验匹配车
的匹配，获得最低油耗。同时，固定 v_i 时，v_i 大约在 13 km/h 时油耗最低（如图 9 所示）。

2.3 车场赛道油耗试验

以上述仿真和体育场跑道试验为基础，并根据两种赛道的不同之处，针对上海国际赛车场赛道制定了节油驾驶控制策略。两种策略均采用弯道卷曲内、外圈加速以及下坡利用重力势能的驾驶控制策略，但速度门限选取及由此决定的赛道速度门限调整、加速工况起点及加油机次数等有区别，从而导致油耗差异，如表 2 所示，驾驶方式参照表 1。

表 2 两种驾驶控制策略油耗对比

<table>
<thead>
<tr>
<th>策略</th>
<th>全程速度门限 (km/h)</th>
<th>加油</th>
<th>平均单次燃油消耗量</th>
<th>每升汽油行驶里程 (km/h-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>START，1，</td>
<td>13</td>
<td>16</td>
<td>46</td>
<td>22</td>
</tr>
<tr>
<td>(9→1) 之间</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>START，2，</td>
<td>16</td>
<td>46</td>
<td>22</td>
<td>1.13</td>
</tr>
</tbody>
</table>

3 结束语

在提出基于速度门限匹配的节油驾驶控制策略，通过仿真和试验完成了控制策略及其门限匹配的研究。试验结果表明，根据车辆特性、道路状况以及环境温度等因素，应用节油驾驶控制策略并合理匹配速度门限（如合理选择冲坡起点速度及入弯速度）可获得明显的节油效果。

参考文献：

