Veech group of regular n-gon

Christopher Zhang

December 15, 2020

1 Introduction

We will be assuming introductory knowledge about translation surfaces and Veech groups (see for example [MT02]). Consider the regular 2k-gon in the plane with one side parallel to the *x*-axis. We glue parallel sides together to make a translation surface, which we call the **regular** 2k-gon. For the odd case, we consider two copies of a regular (2k + 1)-gon one of which is rotated by π radians with respect to the other (once again let a side by parallel to the *x*-axis). Glueing parallel sides by translation, we get a translation surface we call the **double** (2k + 1)-gon (see Figure 1). In the paper [Vee89], Veech computed the Veech groups of the regular 2k-gon and double (2k + 1)-gon and found that they are lattices in $SL(2,\mathbb{Z})$. However, Veech's original paper is difficult to read, so this article summarizes Veech's proof in modern language. The article [MT02, Section 5.1] covers much of the proof for the regular 8-gon. The paper [Hoo13] computes a different Veech group using similar techniques.

Definition 1. Let p, q, r be integers greater than 1. The **triangle group** $\Delta(p, q, r)$ is the group generated by reflections over the sides of a geodesic triangle (in S^2, \mathbb{R}^2 , or \mathbb{H}^2) with angles $\pi/p, \pi/q, \pi/r$. We may also let p or q be ∞ , which represents a triangle with angle 0. The group $\Delta^+(p, q, r) < \Delta(p, q, r)$ is the index 2 subgroup of orientation preserving isometries.

When p, q, r are chosen to have a triangle in \mathbb{H} , $\Delta^+(p, q, r)$ and $\Delta(p, q, r)$ are subgroups in $\mathrm{PSL}(2, \mathbb{R})$. As an abuse of notation, we will use the same notation to refer to the preimages of these groups under the quotient map $\mathrm{SL}(2, \mathbb{R}) \to \mathrm{PSL}(2, \mathbb{R})$.

Theorem 2. The Veech group of the regular 2k-gon, for $k \ge 4$, is $\Delta^+(k, \infty, \infty)$ and the Veech group of the double (2k + 1)-gon, for $k \ge 2$, is $\Delta^+(2, 2k + 1, \infty)$.

Figure 1: The double (2k + 1)-gon. Sides with the same label are glued by translation.

Figure 2: Cylinder directions

2 Proof

Proposition 3. Consider the regular 2k-gon and the cylinder directions shown in Figure 2. In each of these directions, either one cylinder has modulus $\tan \frac{\pi}{2k}$ and all other cylinders have moduli $\frac{1}{2} \tan \frac{\pi}{2k}$ or all cylinders have moduli $\frac{1}{2} \tan \frac{\pi}{2k}$. For a double (2k + 1)-gon, the cylinders in the horizontal direction all have modulus $\frac{1}{2} \tan \frac{\pi}{2k}$.

Proof. First we consider the left set of cylinders in Figure 2. This case further breaks up until 2 cases; we will only do the case for k = 2l. Label points B_1, \ldots, B_l as in the Figure 3. Angle $\angle AOB_j = \frac{(2j-1)\pi}{2k}$. We label the cylinders C_j from 1 to l from top to the middle. Let C_j have height h_j and circumference w_j . Normalize the 2k-gon so that segment OB_j has length 1. Then

$$h_j = \cos \frac{(2j-1)\pi}{2k} - \cos \frac{(2j+1)\pi}{2k}$$
$$w_j = 2\sin \frac{(2j-1)\pi}{2k} + 2\sin \frac{(2j+1)\pi}{2k}$$

for j < l. For the case j = l, w_l does not have the above factor of 2. We have the following trig identities

$$\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$$
$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}.$$

Thus, the moduli

$$m_j = \frac{h_j}{w_j} = \frac{1}{2} \frac{\sin \frac{\pi}{2k}}{\cos \frac{\pi}{2k}} = \frac{1}{2} \tan \frac{\pi}{2k}$$

When, j = l, the factor of 1/2 disappears.

Now we consider the right set of cylinders in Figure 2. The heights and widths are

$$h_{j} = \cos \frac{(2j-2)\pi}{2k} - \cos \frac{2j\pi}{2k}$$
$$w_{j} = 2\sin \frac{(2j-2)\pi}{2k} + 2\sin \frac{2j\pi}{2k}$$

and the argument goes the same way. We leave as an exercise to the reader the remaining cases.

Let (X_n, ω_n) denote the regular *n*-gon for *n* even and the double *n*-gon for *n* odd. Let Γ_n be the Veech group of (X_n, ω_n) . We first show that Γ_n contains a copy of the relevant triangle group listed in Theorem 2. Let $r_{\theta} \in SL(2, \mathbb{R})$ be the matrix $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.

Figure 3: Heights and circumferences of the cylinders are calculated using trigonometry.

Figure 4: The figure is drawn for n = 8. Although the Poincare disk model is drawn, the points are labeled with the values of the corresponding points in the upper half plane model.

Corollary 4. The matrices
$$t_n = \begin{pmatrix} 1 & 2 \cot \frac{\pi}{n} \\ 0 & 1 \end{pmatrix} \in SL(2, \mathbb{R})$$
 and $r_{\pi/n}^{-1} t_n r_{\pi/n}$ are elements of Γ_n .

Proof. Let C_1, \ldots, C_l be the horizontal cylinders and m_i be the modulus of C_i . By Proposition 3, $2 \cot \pi/n$ is an integer multiple of $1/m_i$ for every horizontal cylinder for n both even and odd, so $t_n \in \Gamma_n$ (see [Wri15, Proposition 3.4] for more details). For $r_{\pi/n}^{-1} t_n r_{\pi/n}$, we use the same argument after rotating the picture by π/n .

For even *n*, the regular *n*-gon has $r_{\frac{2\pi}{n}}$ in Γ_n . For odd *n*, the double *n*-gon has the smaller rotation $r_{\frac{\pi}{n}} \in \Gamma_n$ since it is the derivative of the affine homeomorphism that swaps the two polygons and rotates each by $\frac{\pi}{n}$. Thus, t_n and $r_{\pi/n}^{-1} t_n r_{\pi/n}$ are conjugate in Γ_n for odd *n*, but we will show later that they are not conjugate for even *n*. We first consider the group generated by $r_{\frac{\pi}{n}}$, t_n .

Proposition 5. The group $T_n := \langle r_{\frac{\pi}{n}}, t_n \rangle$ is isomorphic to the triangle group $\Delta^+(2, n, \infty)$. When n is even, the group $S_n := \langle r_{\frac{2\pi}{n}}, t_n, r_{\frac{\pi}{n}} t_n r_{\frac{\pi}{n}}^{-1} \rangle$ is isomorphic to the triangle group $\Delta^+(n/2, \infty, \infty)$.

Proof. We first try to construct a fundamental domain for $T_n \setminus SL(2, \mathbb{R})$. We would like to caution the reader here as one normally thinks of a hyperbolic surface as a quotient of $PSL(2, \mathbb{R})$. In this case, T_n contains $- \operatorname{Id}$, so $T_n \setminus SL(2, \mathbb{R}) \cong (T_n / \{\pm \operatorname{Id}\}) \setminus PSL(2, \mathbb{R})$.

In the upper half plane model, label $A_0 := -\cot \pi/n$ and $A_1 := \cot \pi/n$ (see Figure 4 left). Then $r_{\pi/n}$ takes A_0 to ∞ and ∞ to A_1 . Note that $r_{\pi/n}$ corresponds to a $2\pi/n$ rotation. Let L_j be the geodesic

connecting A_j and ∞ for j = 0, 1 and let B_j be the point on L_j closest to *i*. The rotation $r_{\pi/n}$ takes B_0 to B_1 and fixes *i*, so it must take the segments $\overline{iB_0}$ to $\overline{iB_1}$. In addition, t_n takes A_0 to A_1 and fixes ∞ . Thus, it takes B_0 to B_1 , so it takes the segment $\overline{\infty B_0}$ to $\overline{\infty B_1}$. Thus, by Poincare's Theorem on fundamental polygons (see [Bea95, Theorem 9.8.4]), the quadrilateral bounded by i, B_0, ∞, B_1 is a fundamental domain for the group T_n . This fundamental domain comes from unfolding a triangle with angles $(\frac{\pi}{2}, \frac{\pi}{n}, 0)$, so it is isomorphic to the group $\Delta^+(2, n, \infty)$.

We require *n* to be even for the second half of the proposition, so $\{\pm \text{Id}\}$ is a subgroup of S_n and we can consider $S_n \setminus \text{SL}(2, \mathbb{R})$. The argument for S_n is similar to the proof above. We will refer to the labeling scheme in Figure 4 right. The rotation $r_{\frac{2\pi}{n}}$ takes $\overline{iB_0}$ to $\overline{iB_2}$. The matrix t_n takes $\overline{B_0\infty}$ to $\overline{B_1\infty}$. The matrix $r_{\frac{\pi}{n}}t_nr_{\frac{\pi}{n}}^{-1}$ takes $\overline{B_1A_1}$ to $\overline{B_2A_1}$. Thus, by Poincare's theorem, the polygon with vertices i, B_0, ∞, A_1, B_2 is the fundamental domain of $S_n \setminus SL(2, \mathbb{R})$, which can be rearrange to form two copies of a triangle with angles $(\frac{2\pi}{n}, \infty, \infty)$.

It is clear that $T_n < \Gamma_n$ for n odd and $S_n < \Gamma_n$ for all n, in particular for n even. We now show that these inclusions are actually isomorphisms.

Proposition 6. Let $n \ge 8$ be even. The Veech group Γ_n has two conjugacy classes of parabolic elements represented by t_n and $t'_n := r_{\frac{\pi}{n}}^{-1} t_n r_{\frac{\pi}{n}}^{\frac{\pi}{n}}$.

Proof. Assume by contradiction a conjugacy $t_n = a^{-1}t'_n a$ existed. An affine transformation ϕ with derivative a must map all of cylinders fixed by t_n to the cylinders fixed by t'_n . For k = 2l + 1, t_n and t'_n fix different numbers of cylinders. ϕ must also scale the moduli of the cylinders by a constant factor. However for k = 2l, t'_n fixes cylinders with all the same moduli while t_n fixes one cylinder with a different modulus from the rest. Thus, t_n and t'_n are not conjugate.

The remainder of proof of Theorem 2 deviates from [Vee89] and follows that in [Hoo13].

Proof of Theorem 2. By Proposition 5, we have that $T_n < \Gamma_n$ for n odd. Recall the Gauss-Bonnet formula for a hyperbolic surface X with orbifold points with angles $\theta_1, \ldots, \theta_j$ is

$$area(X) = 2\pi(p+2g-2) + \sum_{i=1}^{j} (2\pi - \theta_i)$$

 $\Delta^+(2, n, \infty) \setminus \mathrm{SL}(2, \mathbb{R})$ is genus 0 with 1 cusp and two orbifold points of angles π and $\frac{\pi}{n}$, so its area is $\frac{n-1}{n}\pi$. There is a covering map $\Delta^+(2, n, \infty) \setminus \mathrm{SL}(2, \mathbb{R}) \to \Gamma_n \setminus \mathrm{SL}(2, \mathbb{R})$ of finite degree. $\Gamma_n \setminus \mathrm{SL}(2, \mathbb{R})$ must still be genus 0 with 1 cusp. It must have positive area, so there must be at least two orbifold points. One orbifold point must have cone angle at most $\frac{\pi}{n}$, so the area of $\Gamma_n \setminus \mathrm{SL}(2, \mathbb{R})$ is at least $\frac{n-1}{n}\pi$. Thus, $\Gamma_n = T_n = \Delta^+(2, n, \infty)$.

By Proposition 5, $S_n < \Gamma_n$ for n even. The genus of $S_n \setminus SL(2, \mathbb{R})$ is 0, there are 2 cusps and one cone singularity of area $\frac{2\pi}{n}$, so Gauss-Bonnet gives an area of $\frac{2n-2}{n}\pi$. By Proposition 6, $\Gamma_n \setminus SL(2, \mathbb{R})$ also has genus 0 and 2 cusps. There also must be at least one orbifold point with angle at most $\frac{2\pi}{n}$. Thus, the area of $\Gamma_n \setminus SL(2, \mathbb{R})$ is at least $\frac{2n-2}{n}\pi$, so $\Gamma_n = S_n = \Delta^+(n/2, \infty, \infty)$.

References

- [Bea95] Alan F. Beardon. The geometry of discrete groups, volume 91 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. Corrected reprint of the 1983 original.
- [Hoo13] W. Patrick Hooper. Another Veech triangle. Proc. Amer. Math. Soc., 141(3):857–865, 2013.
- [MT02] Howard Masur and Serge Tabachnikov. Rational billiards and flat structures. In *Handbook of dynamical systems, Vol. 1A*, pages 1015–1089. North-Holland, Amsterdam, 2002.

- [Vee89] W. A. Veech. Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards. *Invent. Math.*, 97(3):553–583, 1989.
- [Wri15] Alex Wright. Translation surfaces and their orbit closures: an introduction for a broad audience. EMS Surv. Math. Sci., 2(1):63–108, 2015.