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1 Introduction

We will be assuming introductory knowledge about translation surfaces and Veech groups (see for example
[MT02]). Consider the regular 2k-gon in the plane with one side parallel to the x-axis. We glue parallel sides
together to make a translation surface, which we call the regular 2k-gon. For the odd case, we consider two
copies of a regular (2k + 1)-gon one of which is rotated by π radians with respect to the other (once again let
a side by parallel to the x-axis). Glueing parallel sides by translation, we get a translation surface we call the
double (2k + 1)-gon (see Figure 1). In the paper [Vee89], Veech computed the Veech groups of the regular
2k-gon and double (2k + 1)-gon and found that they are lattices in SL(2,Z). However, Veech’s original paper
is difficult to read, so this article summarizes Veech’s proof in modern language. The article [MT02, Section
5.1] covers much of the proof for the regular 8-gon. The paper [Hoo13] computes a different Veech group
using similar techniques.

Definition 1. Let p, q, r be integers greater than 1. The triangle group ∆(p, q, r) is the group generated
by reflections over the sides of a geodesic triangle (in S2,R2, or H2) with angles π/p, π/q, π/r. We may also
let p or q be ∞, which represents a triangle with angle 0. The group ∆+(p, q, r) < ∆(p, q, r) is the index 2
subgroup of orientation preserving isometries.

When p, q, r are chosen to have a triangle in H, ∆+(p, q, r) and ∆(p, q, r) are subgroups in PSL(2,R).
As an abuse of notation, we will use the same notation to refer to the preimages of these groups under the
quotient map SL(2,R)→ PSL(2,R).

Theorem 2. The Veech group of the regular 2k-gon, for k ≥ 4, is ∆+(k,∞,∞) and the Veech group of the
double (2k + 1)-gon, for k ≥ 2, is ∆+(2, 2k + 1,∞).

Figure 1: The double (2k + 1)-gon. Sides with the same label are glued by translation.
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Figure 2: Cylinder directions

2 Proof

Proposition 3. Consider the regular 2k-gon and the cylinder directions shown in Figure 2. In each of these
directions, either one cylinder has modulus tan π

2k and all other cylinders have moduli 1
2 tan π

2k or all cylinders
have moduli 1

2 tan π
2k . For a double (2k + 1)-gon, the cylinders in the horizontal direction all have modulus

1
2 tan π

2k .

Proof. First we consider the left set of cylinders in Figure 2. This case further breaks up until 2 cases; we will

only do the case for k = 2l. Label points B1, . . . , Bl as in the Figure 3. Angle ∠AOBj = (2j−1)π
2k . We label

the cylinders Cj from 1 to l from top to the middle. Let Cj have height hj and circumference wj . Normalize
the 2k-gon so that segment OBj has length 1. Then

hj = cos
(2j − 1)π

2k
− cos

(2j + 1)π

2k

wj = 2 sin
(2j − 1)π

2k
+ 2 sin

(2j + 1)π

2k

for j < l. For the case j = l, wl does not have the above factor of 2. We have the following trig identities

cosα− cosβ = −2 sin
α+ β

2
sin

α− β
2

sinα+ sinβ = 2 sin
α+ β

2
cos

α− β
2

.

Thus, the moduli

mj =
hj
wj

=
1

2

sin π
2k

cos π
2k

=
1

2
tan

π

2k

When, j = l, the factor of 1/2 disappears.

Now we consider the right set of cylinders in Figure 2. The heights and widths are

hj = cos
(2j − 2)π

2k
− cos

2jπ

2k

wj = 2 sin
(2j − 2)π

2k
+ 2 sin

2jπ

2k
,

and the argument goes the same way. We leave as an exercise to the reader the remaining cases.

Let (Xn, ωn) denote the regular n-gon for n even and the double n-gon for n odd. Let Γn be the Veech
group of (Xn, ωn). We first show that Γn contains a copy of the relevant triangle group listed in Theorem 2.

Let rθ ∈ SL(2,R) be the matrix

(
cos θ − sin θ
sin θ cos θ

)
.
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Figure 3: Heights and circumferences of the cylinders are calculated using trigonometry.

Figure 4: The figure is drawn for n = 8. Although the Poincare disk model is drawn, the points are labeled
with the values of the corresponding points in the upper half plane model.

Corollary 4. The matrices tn =

(
1 2 cot πn
0 1

)
∈ SL(2,R) and r−1π/ntnrπ/n are elements of Γn.

Proof. Let C1, . . . , Cl be the horizontal cylinders and mi be the modulus of Ci. By Proposition 3, 2 cotπ/n
is an integer multiple of 1/mi for every horizontal cylinder for n both even and odd, so tn ∈ Γn (see [Wri15,
Proposition 3.4] for more details). For r−1π/ntnrπ/n, we use the same argument after rotating the picture by

π/n.

For even n, the regular n-gon has r 2π
n

in Γn. For odd n, the double n-gon has the smaller rotation rπ
n
∈ Γn

since it is the derivative of the affine homeomorphism that swaps the two polygons and rotates each by π
n .

Thus, tn and r−1π/ntnrπ/n are conjugate in Γn for odd n, but we will show later that they are not conjugate

for even n. We first consider the group generated by rπ
n
, tn.

Proposition 5. The group Tn :=< rπ
n
, tn > is isomorphic to the triangle group ∆+(2, n,∞). When n is

even, the group Sn :=< r 2π
n
, tn, rπn tnr

−1
π
n
> is isomorphic to the triangle group ∆+(n/2,∞,∞).

Proof. We first try to construct a fundamental domain for Tn\ SL(2,R). We would like to caution the reader
here as one normally thinks of a hyperbolic surface as a quotient of PSL(2,R). In this case, Tn contains − Id,
so Tn\ SL(2,R) ∼= (Tn/{± Id})\PSL(2,R).

In the upper half plane model, label A0 := − cotπ/n and A1 := cotπ/n (see Figure 4 left). Then rπ/n
takes A0 to ∞ and ∞ to A1. Note that rπ/n corresponds to a 2π/n rotation. Let Lj be the geodesic
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connecting Aj and ∞ for j = 0, 1 and let Bj be the point on Lj closest to i. The rotation rπ/n takes B0 to

B1 and fixes i, so it must take the segments iB0 to iB1. In addition, tn takes A0 to A1 and fixes ∞. Thus,
it takes B0 to B1, so it takes the segment ∞B0 to ∞B1. Thus, by Poincare’s Theorem on fundamental
polygons (see [Bea95, Theorem 9.8.4]), the quadrilateral bounded by i, B0,∞, B1 is a fundamental domain
for the group Tn. This fundamental domain comes from unfolding a triangle with angles (π2 ,

π
n , 0), so it is

isomorphic to the group ∆+(2, n,∞).
We require n to be even for the second half of the proposition, so {± Id} is a subgroup of Sn and we

can consider Sn\ SL(2,R). The argument for Sn is similar to the proof above. We will refer to the labeling
scheme in Figure 4 right. The rotation r 2π

n
takes iB0 to iB2. The matrix tn takes B0∞ to B1∞. The matrix

rπ
n
tnr
−1
π
n

takes B1A1 to B2A1. Thus, by Poincare’s theorem, the polygon with vertices i, B0,∞, A1, B2 is the

fundamental domain of Sn\SL(2,R), which can be rearrange to form two copies of a triangle with angles
( 2π
n ,∞,∞).

It is clear that Tn < Γn for n odd and Sn < Γn for all n, in particular for n even. We now show that
these inclusions are actually isomorphisms.

Proposition 6. Let n ≥ 8 be even. The Veech group Γn has two conjugacy classes of parabolic elements
represented by tn and t′n := r−1π

n
tnrπn .

Proof. Assume by contradiction a conjugacy tn = a−1t′na existed. An affine transformation φ with derivative
a must map all of cylinders fixed by tn to the cylinders fixed by t′n. For k = 2l + 1, tn and t′n fix different
numbers of cylinders. φ must also scale the moduli of the cylinders by a constant factor. However for k = 2l,
t′n fixes cylinders with all the same moduli while tn fixes one cylinder with a different modulus from the rest.
Thus, tn and t′n are not conjugate.

The remainder of proof of Theorem 2 deviates from [Vee89] and follows that in [Hoo13].

Proof of Theorem 2. By Proposition 5, we have that Tn < Γn for n odd. Recall the Gauss-Bonnet formula
for a hyperbolic surface X with orbifold points with angles θ1, . . . , θj is

area(X) = 2π(p+ 2g − 2) +

j∑
i=1

(2π − θi)

∆+(2, n,∞)\ SL(2,R) is genus 0 with 1 cusp and two orbifold points of angles π and π
n , so its area is

n−1
n π. There is a covering map ∆+(2, n,∞)\ SL(2,R) → Γn\ SL(2,R) of finite degree. Γn\ SL(2,R) must

still be genus 0 with 1 cusp. It must have positive area, so there must be at least two orbifold points.
One orbifold point must have cone angle at most π

n , so the area of Γn\ SL(2,R) is at least n−1
n π. Thus,

Γn = Tn = ∆+(2, n,∞).
By Proposition 5, Sn < Γn for n even. The genus of Sn\ SL(2,R) is 0, there are 2 cusps and one cone

singularity of area 2π
n , so Gauss-Bonnet gives an area of 2n−2

n π. By Proposition 6, Γn\ SL(2,R) also has
genus 0 and 2 cusps. There also must be at least one orbifold point with angle at most 2π

n . Thus, the area of
Γn\SL(2,R) is at least 2n−2

n π, so Γn = Sn = ∆+(n/2,∞,∞).
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