Veech group of regular n-gon

Christopher Zhang

December 15, 2020

1 Introduction

We will be assuming introductory knowledge about translation surfaces and Veech groups (see for example [MT02]). Consider the regular $2 k$-gon in the plane with one side parallel to the x-axis. We glue parallel sides together to make a translation surface, which we call the regular $2 k$-gon. For the odd case, we consider two copies of a regular $(2 k+1)$-gon one of which is rotated by π radians with respect to the other (once again let a side by parallel to the x-axis). Glueing parallel sides by translation, we get a translation surface we call the double $(2 k+1)$-gon (see Figure 1). In the paper [Vee89], Veech computed the Veech groups of the regular $2 k$-gon and double $(2 k+1)$-gon and found that they are lattices in $\operatorname{SL}(2, \mathbb{Z})$. However, Veech's original paper is difficult to read, so this article summarizes Veech's proof in modern language. The article [MT02, Section 5.1] covers much of the proof for the regular 8 -gon. The paper [Hoo13] computes a different Veech group using similar techniques.

Definition 1. Let p, q, r be integers greater than 1. The triangle group $\Delta(p, q, r)$ is the group generated by reflections over the sides of a geodesic triangle (in S^{2}, \mathbb{R}^{2}, or \mathbb{H}^{2}) with angles $\pi / p, \pi / q, \pi / r$. We may also let p or q be ∞, which represents a triangle with angle 0 . The group $\Delta^{+}(p, q, r)<\Delta(p, q, r)$ is the index 2 subgroup of orientation preserving isometries.

When p, q, r are chosen to have a triangle in $\mathbb{H}, \Delta^{+}(p, q, r)$ and $\Delta(p, q, r)$ are subgroups in $\operatorname{PSL}(2, \mathbb{R})$. As an abuse of notation, we will use the same notation to refer to the preimages of these groups under the quotient map $\operatorname{SL}(2, \mathbb{R}) \rightarrow \operatorname{PSL}(2, \mathbb{R})$.

Theorem 2. The Veech group of the regular $2 k$-gon, for $k \geq 4$, is $\Delta^{+}(k, \infty, \infty)$ and the Veech group of the double $(2 k+1)$-gon, for $k \geq 2$, is $\Delta^{+}(2,2 k+1, \infty)$.

Figure 1: The double $(2 k+1)$-gon. Sides with the same label are glued by translation.

Figure 2: Cylinder directions

2 Proof

Proposition 3. Consider the regular $2 k$-gon and the cylinder directions shown in Figure 2. In each of these directions, either one cylinder has modulus $\tan \frac{\pi}{2 k}$ and all other cylinders have moduli $\frac{1}{2} \tan \frac{\pi}{2 k}$ or all cylinders have moduli $\frac{1}{2} \tan \frac{\pi}{2 k}$. For a double $(2 k+1)$-gon, the cylinders in the horizontal direction all have modulus $\frac{1}{2} \tan \frac{\pi}{2 k}$.

Proof. First we consider the left set of cylinders in Figure 2. This case further breaks up until 2 cases; we will only do the case for $k=2 l$. Label points B_{1}, \ldots, B_{l} as in the Figure 3. Angle $\angle A O B_{j}=\frac{(2 j-1) \pi}{2 k}$. We label the cylinders C_{j} from 1 to l from top to the middle. Let C_{j} have height h_{j} and circumference w_{j}. Normalize the $2 k$-gon so that segment $O B_{j}$ has length 1 . Then

$$
\begin{aligned}
& h_{j}=\cos \frac{(2 j-1) \pi}{2 k}-\cos \frac{(2 j+1) \pi}{2 k} \\
& w_{j}=2 \sin \frac{(2 j-1) \pi}{2 k}+2 \sin \frac{(2 j+1) \pi}{2 k}
\end{aligned}
$$

for $j<l$. For the case $j=l, w_{l}$ does not have the above factor of 2 . We have the following trig identities

$$
\begin{aligned}
\cos \alpha-\cos \beta & =-2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} \\
\sin \alpha+\sin \beta & =2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}
\end{aligned}
$$

Thus, the moduli

$$
m_{j}=\frac{h_{j}}{w_{j}}=\frac{1}{2} \frac{\sin \frac{\pi}{2 k}}{\cos \frac{\pi}{2 k}}=\frac{1}{2} \tan \frac{\pi}{2 k}
$$

When, $j=l$, the factor of $1 / 2$ disappears.
Now we consider the right set of cylinders in Figure 2. The heights and widths are

$$
\begin{aligned}
& h_{j}=\cos \frac{(2 j-2) \pi}{2 k}-\cos \frac{2 j \pi}{2 k} \\
& w_{j}=2 \sin \frac{(2 j-2) \pi}{2 k}+2 \sin \frac{2 j \pi}{2 k}
\end{aligned}
$$

and the argument goes the same way. We leave as an exercise to the reader the remaining cases.
Let $\left(X_{n}, \omega_{n}\right)$ denote the regular n-gon for n even and the double n-gon for n odd. Let Γ_{n} be the Veech group of $\left(X_{n}, \omega_{n}\right)$. We first show that Γ_{n} contains a copy of the relevant triangle group listed in Theorem 2 . Let $r_{\theta} \in \mathrm{SL}(2, \mathbb{R})$ be the matrix $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$.

Figure 3: Heights and circumferences of the cylinders are calculated using trigonometry.

Figure 4: The figure is drawn for $n=8$. Although the Poincare disk model is drawn, the points are labeled with the values of the corresponding points in the upper half plane model.

Corollary 4. The matrices $t_{n}=\left(\begin{array}{cc}1 & 2 \cot \frac{\pi}{n} \\ 0 & 1\end{array}\right) \in \operatorname{SL}(2, \mathbb{R})$ and $r_{\pi / n}^{-1} t_{n} r_{\pi / n}$ are elements of Γ_{n}.
Proof. Let C_{1}, \ldots, C_{l} be the horizontal cylinders and m_{i} be the modulus of C_{i}. By Proposition $3,2 \cot \pi / n$ is an integer multiple of $1 / m_{i}$ for every horizontal cylinder for n both even and odd, so $t_{n} \in \Gamma_{n}$ (see [Wri15, Proposition 3.4] for more details). For $r_{\pi / n}^{-1} t_{n} r_{\pi / n}$, we use the same argument after rotating the picture by π / n.

For even n, the regular n-gon has $r_{\frac{2 \pi}{n}}$ in Γ_{n}. For odd n, the double n-gon has the smaller rotation $r_{\frac{\pi}{n}} \in \Gamma_{n}$ since it is the derivative of the affine homeomorphism that swaps the two polygons and rotates each by $\frac{\pi}{n}$. Thus, t_{n} and $r_{\pi / n}^{-1} t_{n} r_{\pi / n}$ are conjugate in Γ_{n} for odd n, but we will show later that they are not conjugate for even n. We first consider the group generated by $r_{\frac{\pi}{n}}, t_{n}$.

Proposition 5. The group $T_{n}:=<r_{\frac{\pi}{n}}, t_{n}>$ is isomorphic to the triangle group $\Delta^{+}(2, n, \infty)$. When n is even, the group $S_{n}:=<r_{\frac{2 \pi}{n}}, t_{n}, r_{\frac{\pi}{n}} t_{n} r_{\frac{\pi}{n}}^{-1}>$ is isomorphic to the triangle group $\Delta^{+}(n / 2, \infty, \infty)$.

Proof. We first try to construct a fundamental domain for $T_{n} \backslash \mathrm{SL}(2, \mathbb{R})$. We would like to caution the reader here as one normally thinks of a hyperbolic surface as a quotient of $\operatorname{PSL}(2, \mathbb{R})$. In this case, T_{n} contains - Id, so $T_{n} \backslash \mathrm{SL}(2, \mathbb{R}) \cong\left(T_{n} /\{ \pm \mathrm{Id}\}\right) \backslash \operatorname{PSL}(2, \mathbb{R})$.

In the upper half plane model, label $A_{0}:=-\cot \pi / n$ and $A_{1}:=\cot \pi / n$ (see Figure 4 left). Then $r_{\pi / n}$ takes A_{0} to ∞ and ∞ to A_{1}. Note that $r_{\pi / n}$ corresponds to a $2 \pi / n$ rotation. Let L_{j} be the geodesic
connecting A_{j} and ∞ for $j=0,1$ and let B_{j} be the point on L_{j} closest to i. The rotation $r_{\pi / n}$ takes B_{0} to B_{1} and fixes i, so it must take the segments $\overline{\overline{i B_{0}}}$ to $\overline{\overline{i B_{1}}}$. In addition, t_{n} takes A_{0} to A_{1} and fixes ∞. Thus, it takes B_{0} to B_{1}, so it takes the segment $\overline{\infty B_{0}}$ to $\overline{\infty B_{1}}$. Thus, by Poincare's Theorem on fundamental polygons (see [Bea95, Theorem 9.8.4]), the quadrilateral bounded by i, B_{0}, ∞, B_{1} is a fundamental domain for the group T_{n}. This fundamental domain comes from unfolding a triangle with angles $\left(\frac{\pi}{2}, \frac{\pi}{n}, 0\right)$, so it is isomorphic to the group $\Delta^{+}(2, n, \infty)$.

We require n to be even for the second half of the proposition, so $\{ \pm \mathrm{Id}\}$ is a subgroup of S_{n} and we can consider $S_{n} \backslash \mathrm{SL}(2, \mathbb{R})$. The argument for S_{n} is similar to the proof above. We will refer to the labeling scheme in Figure 4 right. The rotation $r_{\frac{2 \pi}{n}}$ takes $\overline{i B_{0}}$ to $\overline{i B_{2}}$. The matrix t_{n} takes $\overline{B_{0} \infty}$ to $\overline{B_{1} \infty}$. The matrix $r_{\frac{\pi}{n}} t_{n} r_{\frac{\pi}{n}}^{-1}$ takes $\overline{B_{1} A_{1}}$ to $\overline{B_{2} A_{1}}$. Thus, by Poincare's theorem, the polygon with vertices $i, B_{0}, \infty, A_{1}, B_{2}$ is the fundamental domain of $S_{n} \backslash S L(2, \mathbb{R})$, which can be rearrange to form two copies of a triangle with angles $\left(\frac{2 \pi}{n}, \infty, \infty\right)$.

It is clear that $T_{n}<\Gamma_{n}$ for n odd and $S_{n}<\Gamma_{n}$ for all n, in particular for n even. We now show that these inclusions are actually isomorphisms.

Proposition 6. Let $n \geq 8$ be even. The Veech group Γ_{n} has two conjugacy classes of parabolic elements represented by t_{n} and $t_{n}^{\prime}:=r_{\frac{\pi}{n}}^{-1} t_{n} r_{\frac{\pi}{n}}$.
Proof. Assume by contradiction a conjugacy $t_{n}=a^{-1} t_{n}^{\prime} a$ existed. An affine transformation ϕ with derivative a must map all of cylinders fixed by t_{n} to the cylinders fixed by t_{n}^{\prime}. For $k=2 l+1, t_{n}$ and t_{n}^{\prime} fix different numbers of cylinders. ϕ must also scale the moduli of the cylinders by a constant factor. However for $k=2 l$, t_{n}^{\prime} fixes cylinders with all the same moduli while t_{n} fixes one cylinder with a different modulus from the rest. Thus, t_{n} and t_{n}^{\prime} are not conjugate.

The remainder of proof of Theorem 2 deviates from [Vee89] and follows that in [Hoo13].
Proof of Theorem 2. By Proposition 5, we have that $T_{n}<\Gamma_{n}$ for n odd. Recall the Gauss-Bonnet formula for a hyperbolic surface X with orbifold points with angles $\theta_{1}, \ldots, \theta_{j}$ is

$$
\operatorname{area}(X)=2 \pi(p+2 g-2)+\sum_{i=1}^{j}\left(2 \pi-\theta_{i}\right)
$$

$\Delta^{+}(2, n, \infty) \backslash \mathrm{SL}(2, \mathbb{R})$ is genus 0 with 1 cusp and two orbifold points of angles π and $\frac{\pi}{n}$, so its area is $\frac{n-1}{n} \pi$. There is a covering map $\Delta^{+}(2, n, \infty) \backslash \mathrm{SL}(2, \mathbb{R}) \rightarrow \Gamma_{n} \backslash \mathrm{SL}(2, \mathbb{R})$ of finite degree. $\Gamma_{n}^{n} \backslash \mathrm{SL}(2, \mathbb{R})$ must still be genus 0 with 1 cusp. It must have positive area, so there must be at least two orbifold points. One orbifold point must have cone angle at most $\frac{\pi}{n}$, so the area of $\Gamma_{n} \backslash \mathrm{SL}(2, \mathbb{R})$ is at least $\frac{n-1}{n} \pi$. Thus, $\Gamma_{n}=T_{n}=\Delta^{+}(2, n, \infty)$.

By Proposition $5, S_{n}<\Gamma_{n}$ for n even. The genus of $S_{n} \backslash \mathrm{SL}(2, \mathbb{R})$ is 0 , there are 2 cusps and one cone singularity of area $\frac{2 \pi}{n}$, so Gauss-Bonnet gives an area of $\frac{2 n-2}{n} \pi$. By Proposition $6, \Gamma_{n} \backslash \mathrm{SL}(2, \mathbb{R})$ also has genus 0 and 2 cusps. There also must be at least one orbifold point with angle at most $\frac{2 \pi}{n}$. Thus, the area of $\Gamma_{n} \backslash \mathrm{SL}(2, \mathbb{R})$ is at least $\frac{2 n-2}{n} \pi$, so $\Gamma_{n}=S_{n}=\Delta^{+}(n / 2, \infty, \infty)$.

References

[Bea95] Alan F. Beardon. The geometry of discrete groups, volume 91 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. Corrected reprint of the 1983 original.
[Hoo13] W. Patrick Hooper. Another Veech triangle. Proc. Amer. Math. Soc., 141(3):857-865, 2013.
[MT02] Howard Masur and Serge Tabachnikov. Rational billiards and flat structures. In Handbook of dynamical systems, Vol. 1A, pages 1015-1089. North-Holland, Amsterdam, 2002.
[Vee89] W. A. Veech. Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards. Invent. Math., 97(3):553-583, 1989.
[Wri15] Alex Wright. Translation surfaces and their orbit closures: an introduction for a broad audience. EMS Surv. Math. Sci., 2(1):63-108, 2015.

