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ABSTRACT
Recent exploration into the unique security challenges of
cloud computing have shown that when virtual machines
belonging to different customers share the same physical
machine, new forms of cross-VM covert channel communica-
tion arise. In this paper, we explore one of these threats, L2
cache covert channels, and demonstrate the limits of these
this threat by providing a quantification of the channel bit
rates and an assessment of its ability to do harm. Through
progressively refining models of cross-VM covert channels
from the derived maximums, to implementable channels in
the lab, and finally in Amazon EC2 itself we show how a
variety of factors impact our ability to create effective chan-
nels. While we demonstrate a covert channel with consider-
ably higher bit rate than previously reported, we assess that
even at such improved rates, the harm of data exfiltration
from these channels is still limited to the sharing of small, if
important, secrets such as private keys.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—In-
vasive software (e.g., viruses, worms, Trojan horses)

General Terms
Experimentation, Measurement, Security

Keywords
covert channel, bit rate

1. INTRODUCTION
Major public cloud service providers such as Amazon (EC2)

[4] and Rackspace [30] have realized a vision of cloud com-
puting that provides “the illusion of infinite computing re-
sources available on demand” and “the elimination of an up-
front commitment” [5]. The economic value of this paradigm
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is clear: the cloud computing market place will grow sub-
stantially by generating revenues of $68.3 billion in 2010
and reaching $148.8 billion by 2014, from $58.6 billion in
2009 [18]. While compelling, the cloud computing paradigm
still faces several daunting challenges, most notably, assur-
ing the security and availability of the services it provides.

Recently, attention has been drawn to the security of cloud
computing with a particular focus on determining what is
novel (e.g., covert and side channels, longer trust chains,
other cloud customers could be subverters, etc.), and what
is not (e.g., phishing, data loss, botnets, etc.) [11]. Of these,
the implicit mutual trust between cloud customers has re-
ceived perhaps the most consideration. As the cloud hard-
ware is shared, potentially between different customers, the
opportunity of building new covert channels unique to the
cloud computing environment arises. Given the economic
impact of cloud computing, it is not surprising that re-
searchers have already proved the feasibility of this type of
threat [27,31].

Perhaps the most notable of these demonstrations is the
seminal work of Ristenpart et al. [31] in which the authors
demonstrate a cross-VM covert channel is possible in Ama-
zon’s EC2. This two step attack first requires the attacker
to place his own VM on the same physical machine as the
target VM. Once the malicious VM and its target VM are
co-located, the second step is to extract confidential infor-
mation from the target VM by abusing the shared hardware.
Using a technique for encoding information into the access
latencies of a shared L2 cache [29], Ristenpart et al. [31]
showed that confidential information can be leaked from the
target VM to the malicious VM.

Such demonstrations are interesting not because public
clouds, such as Amazon’s EC2, place restrictions on infor-
mation flow (they do not), but rather because it is easy to
envision cloud environments in which information flow con-
trols (IFCs) are important. For example, the recent rapid
expansion of cloud-based projects from such sensitive agen-
cies as Defense Information Systems Agency (DISA) and
Department of Energy (DOE) [12] underscore the need to
investigate novel data ex-filtration techniques and defenses.
Further, what is compelling about these demonstrations is
not that they represent the best way to exfiltrate informa-
tion (for example, one could build a network-based covert
channel [9], or encode data in responses to public queries),
but rather that such a channel is unique to the cloud com-
puting environment.

This idea has become so ingrained the cloud security cul-
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ture, that Ristenpart et al. [31] is often cited, and covert
channels in particular noted, as one of core challenges in
cloud computing security. For example, in examining new
opportunities for unique cloud computing security research,
Chen et el. [11] suggest that: “Side channels and covert
channels pose another fundamental threat ... While not a
panacea (e.g., it takes very few bits to steal a password),
a helpful analysis could include when appropriate a quan-
tification of channel bit rates, coupled with an assessment
of the bit rate required to do harm.” Others too have re-
flected on cloud security and noted: “another issue to con-
sider in isolating processing on the same physical machine is
whether an attacker can use covert channels to leak sensitive
information...at present, no covert channels are known to be
effective in cloud systems.” [23].

Our goal in this paper is to expand the scope of this pio-
neering work into the novel threats facing the cloud comput-
ing environment by directly addressing the need for quantifi-
cation of the bit rates of L2 cache, cross-vm covert channels
and assessment of their ability to do harm. We note that
such an analysis was never a specific goal of Ristenpart et
al., but rather they show, importantly, that “Covert chan-
nels provide evidence that exploitable side channels may ex-
ist” [31]. In an effort to quantify the reasonable limits of
these channels, we begin with idealized models of the chan-
nel behavior, refining that model as practical aspects of such
channels, most notably the configuration of resource shar-
ing in EC2, mandate changes. As a result we are able to
not only verify the previous experimental results, but also
provide an in-depth analysis of the mechanisms involved and
their effects. Given that“no attempts were made at optimiz-
ing the bandwidth of the covert channel” [31], it is perhaps
unsurprising that the previously proposed covert channels
provided a bit rate of 0.2 bps, a mere fraction above the gov-
ernment minimum standard of 0.1 bps [1]. However, through
our detailed analysis, we arrive at a low error rate, covert
channel with considerably higher bandwidth than those pre-
viously reported. With respect to our assessment of the
ability to do harm, we still find such bit rates limited to the
exfiltrations of small secrets such as passwords and keys.

2. BACKGROUND

2.1 The Xen Hypervisor
The Xen hypervisor is an open source virtualization solu-

tion for various platforms including x86, x86 64, IA64, and
ARM [7]. It supports a virtualization technique called par-
avirtualization, in addition to full virtualization. Compared
to full virtualization, paravirtualization does not need any
hardware support so that it can be used on legacy hardware,
while still providing acceptable performance. On the other
hand, paravirtualization requires modification to the ker-
nel of guest operating systems to directly interact with the
underlying hypervisor via hypercalls, which are analogous
to syscalls in the operating system. The Xen hypervisor
only provides functionality such as resource protection and
scheduling, and the hypercall interface. Each guest operat-
ing system running on top of Xen is called a domain. Virtual
machine management and device drivers are delegated to a
special privileged domain called dom0. Other non-privileged
domains known as domU can only access devices indirectly
via dom0.

Each Xen domain can be allocated with one or more vir-

tual CPUs (VCPUs). The scheduling of VCPUs on physical
CPUs is handled by Xen’s credit scheduler [34]. By default,
the credit scheduler allocates each VCPU certain credits
worth 30ms of CPU time so that each VCPU can occupy
a physical CPU core up to 30ms before being de-scheduled.
The scheduler ticks every 10ms to charge the current VCPU
for the physical CPU time it used. If that VCPU has no
credit left, it will be de-scheduled and assigned a priority
called under, which means before the next credit allocation
it is only allowed to run when no other VCPU has credits
left. The VCPUs with credits left have a higher priority
called over so that they will be favored when the scheduler
wants to pick the next VCPU to run.

2.2 Amazon Elastic Compute Cloud
Amazon Elastic Compute Cloud (EC2) [4] is a public

cloud service with an infrastructure-as-a-service model. It
allows developers to rent virtual machine instances from its
data center in a pay-as-you-go manner. EC2 uses a cus-
tomized version of Xen to support the service. We are not
aware of the exact algorithm used to schedule VCPUs in
EC2, the credit scheduler comes as a default in Xen is thus
assumed in the following discussion. The types of instances
available include micro, small, large, and extra large, and
each has different capabilities for CPU, memory and I/O.
Among all the instance types, a small instance is allocated
a single VCPU with a fixed 40% cap. In addition, multiple
small instances share a single physical machine. Thus, small
EC2 instances are used in our experiments to evaluate L2
cache-based covert channels.

2.3 Cache-Based Covert Channels
Ristenpart et al. first introduced the concept of cross-vm

covert channels [31]. Their basic idea is to construct certain
patterns of contention on the hardware resources shared by
two co-located VMs and use the contention patterns to en-
code information. For example, to send a single bit via a
shared hard disk, attackers may let both the sender and the
receiver VMs operate on large files concurrently for a specific
period of time. During that time, the sender can choose to
read files or do nothing to represent bit one or zero. At the
same time, the receiver can distinguish the two by timing
its own disk operations to decode the information.

Based on the above idea, Ristenpart et al. implemented
three proof-of-concept covert channels on EC2: a 0.006bps
channel using memory bus contention, and 0.0005bps chan-
nel using hard disk contention, and a 0.2bps channel using
L2 cache contention [31].

While the number of possible channels is open-ended, we
have opted to focus on L2 cache covert channels as described
in prior work [31] for a variety of reasons: (i) it arguably has
the highest potential bit rate as the time needed to make a
contention measurement with modern L2 cache is on the
scale of milliseconds, but the reported rate in prior work
was very small, (ii) prior work only discussed such chan-
nels in brief and did not provide an in-depth analysis of
the mechanisms involved and their effects, both qualitative
and quantitative, in various settings, (iii) reproducing these
results bolsters confidence in previous experimental results
and allows for an exploration of changes to EC2 allocation
and placement strategies since the initial work.

In particular, the L2 cache-based information encoding
scheme proposed by Ristenpart et al. can be summarized as
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Figure 1: An illustration of a covert channel us-
ing L2 cache to encode information. For each bit,
the sender evicts half of the cache lines from the
L2 cache saturated previously by the receiver (solid
lines). The receiver then decodes the information
by measuring the difference of timing in accessing
different subsets of the cache (dashed lines).

follows [31]: All the cache lines are divided into two subsets
(a and b). To send a bit, the sender evicts the receiver’s
cache content from the cache lines correspond to one sub-
set and leave the other untouched by accessing the memory
addresses mapped to the chosen cache lines. Then, the re-
ceiver can decode the information by comparing the timing
in accessing the two subsets separately, and if subset a takes
significantly longer to read than subset b, it is bit one; oth-
erwise it is bit zero. This process is illustrated by Figure 1.

3. ASSESSMENT OF THE BIT RATE RE-
QUIRED TO DO HARM

Obviously, a covert channel with the bit rate of 0.2bps
cannot be leveraged to exfiltrate large data records. For ex-
ample, let’s look at the numbers from the Digital Forensics
Association. From 2005 to 2009, the number of lost records
in data breaches ranged from 1 to 130,000,000 with an av-
erage of 387,926 [16]. While the report did not indicate the
size of a lost record, we can explore the variety of record
types to understand the practical impact of the channel bit
rate. For example, assume that each record contains the
information from the first track of a credit card magnetic
strip [33] (i.e., name, number, dates, etc.). If we use a 32-
bit encoding scheme (while more effective encoding schemes
may exist, we simply choose the easy to implement UTF-
32), the size of a single record is 2,528 bits. It would take
3.51 hours to leak this piece of information with a 0.2bps
covert channel. Transferring all the information contained
in a average data breach would take more than a century at

0.2bps bit rate. If the records leaked are medical data, each
single record may contain 1,024,000 bits [8]. In this case,
even leaking a single record would take the 0.2bps channel
as long as 1422.22 hours.

Therefore, covert channels with this scale of bit rate may
only be useful in leaking small cryptographic secrets. For
example, the 2048-bit private key owned by the author con-
tains 1,743 bytes. It will take about 20 hours to leak this
key with the 0.2 bps L2 cache covert channel. However, if
using a channel with the maximum bit rate 262.47bps, as
described in § 4, leaking the same private would only take
about 53 seconds. It should be noted that these are simply
illustrations and one does not always need to leak an entire
secret key to compromise it [14]. Often very few bits suffice
to reconstruct a cryptographic secret and in such cases even
low bandwidth covert channels are important.

Given the 1000x difference between the bit rate achieved
in existing work on EC2 [31] and the maximum bit rate we
calculated, we find ourselves compelled to ask:

“What is the maximum achievable bit rate in
practice over cross-VM covert channels? What
factors influence the bit rate achievable in cross-
VM covert channels?”

4. NAIVE QUANTIFICATION OF CHANNEL
BIT RATES

Before discussing the design and implementation of the
L2 cache covert channels, we present a back-of-the-envelope
calculation for its maximum bit rate. The numbers used for
the discussion in this section are derived with the following
L2 cache specifications:

• L2 cache size: 6MB

• L2 cache line size: 64B

• L2 cache associativity: 24-way

In addition, we use 7 nanoseconds as the time to fetch
from the L2 cache, and 100 nanoseconds as the time to
fetch from main memory [15]. With these numbers, esti-
mating the time to transmit a symbol on the covert channel
is straightforward. The number of bits that can be encoded
into a symbol is an open question and depending on the CPU
design, it may range from one to log(# of cache lines). In
order to compare with existing work [31], we assume that
each symbol contains one bit of information. Thus, we can
use the same information encoding scheme described in the
background section.

In the ideal case, the minimum time to send a bit us-
ing L2 cache is the sender’s write time (Tw) plus the re-
ceiver’s read time (Tr). Thus, the maximum bit rate would
be 1/(Tw+Tr). And this ideal case can be summarized using
Protocol 1(P1). While this initial protocol is very simple,
it will evolve as the channel environment becomes more and
more complicated.

Now we just need to estimate Tw and Tr to calculate the
maximum bit rate. However, considering the fact that L2
cache is usually shared by both code and data, these two
numbers become difficult to compute. In addition, modern
CPU features such as prefetching will further complicate
this task. However, we ignore these complications for the
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Protocol 1 (P1)

1: The sender and receiver both allocate a buffer with the
same size as the L2 cache. Then the receiver accesses its
own buffer to fulfill the cache lines (one time initializa-
tion).

2: Repeat Step 3 and 4 sequentially for each bit.
3: The sender accesses subset a (or b) to send bit one (or

zero) (Tw).
4: The receiver accesses subset a and b separately to decode

the information (Tr).

moment, and assume Tw and Tr can be naively estimated as
follows:

Tw = 6MB/64B/2 ∗ 100ns ≈ 5ms

Tr = 6MB/64B/2 ∗ (100ns + 7ns)

≈ 5ms + 0.34ms = 5.34ms

Here the cache size is divided by the cache line size be-
cause, in order to fill up a cache line, it only needs to be
accessed once by any byte within it. As a result, the maxi-
mum bit rate using the L2 cache in this idealized case would
be

1bit/(5ms + 5.34ms) ≈ 96.71bps

If more realistic numbers are desired, the complications
discussed above must be put back into the calculation. To
solve this problem, instead of looking into the hardware de-
sign manual to refine the estimation, we simply implement
the basic operations of Step 3 & 4 in P1 on our laboratory
machines, which has the same L2 cache configuration and
2.83GHz clock speed, and then profile Tw and Tr by exe-
cuting these operations. The results of profiling for Tw and
Tr are 1.47ms and 2.34ms respectively. Therefore, the max-
imum bit rate of L2 cache covert channel on our laboratory
machines would be

1bit/(1.47ms + 2.34ms) ≈ 262.47bps

5. ACHIEVABLE BIT RATES IN THE LAB-
ORATORY

The channel bit rate estimated with protocol P1 is unre-
alistic and, in particular, the idealized model overlooks the
following factors:

• The operations of the sender and the receiver cannot
be synchronized perfectly.

• There is other overhead associated with the channel
program, such as process creation and destruction, that
reduces the channel bit rate.

Specifically, the sender and receiver, as two separate VMs,
have no method to synchronize perfectly in a way that the re-
ceiver’s read can follow immediately after the sender’s write.
To solve this problem, Ristenpart et al. used a busy loop at
the receiver’s side to wait for the sender until the receiver
perceives a large jump on its CPU counter [31]. Clearly, this
solution implies two requirements: a) the two VMs share the
same core at least for the next bit (R1), b) their VCPUs are
pinned to the shared core (R2), otherwise the receiver would
not be able to notice the timing of the sender’s operations.
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Figure 2: The error rate for the covert channel built
in laboratory environment drops as the sleep time
increases. When the sleep time is larger than or
equal to 6ms, the error rate becomes stable.

Now we derive a new Protocol 2 (P2) that is applicable in
a laboratory environment.

Protocol 2 (P2)

1: One time initialization. Same as P1
2: Repeat Step 3 and 4 sequentially for each bit.
3: The sender accesses subset a (or b) to send bit one (or

zero) (Tw). Then it goes to sleep for Ts.
4: The receiver busy loops until CPU counter jumps by at

least Nj . Then it accesses subset a and b separately to
decode the information (Tr).

For the second problem, the other overhead can only be
estimated by actually running the covert channel on lab ma-
chines. To implement this new protocol and estimate its
potential bit rate, we just need to determine the value of
Ts and Nj . The minimum value required for Ts should be
large enough to allow the receiver to finish its operation, i.e.,
Ts ≥ Tr = 2.34ms. Consider the variability of Tr, we conser-
vatively choose Ts = 3ms as the minimum sleep time. In ad-
dition, Nj should be large enough to cover the cycles needed
to for the sender to finish its cache operation. Given a CPU
with 2.83GHz clock speed, Nj ≥ 1.47 ∗ 2830000 = 4160100.
Consequently, a practical bit rate that is possible to be real-
ized in a laboratory environment that satisfies requirements
R1 and R2 would be:

1bit/(1.47ms + 3ms) ≈ 223.71bps

The difference between 223.71bps and the theoretic max-
imum 262.47bps can be considered as the synchronization
overhead in practice. We implement this channel using pro-
tocol P2 on our lab machines by transmitting a 64-byte
text 100 times. Using the above parameters, a bit rate of
215.11bps is obtained with an error of 5.12% on average.
The extra loss in bit rate is due to the overhead of non-
cache-related code, such as process creation/destroy, and the
code that coverts the source of information into raw bits for
the sender.

In order to reduce the error rate for the channel, we can
increase the value of Ts because the uncertainties generated
by the process/VM scheduling algorithms and other envi-
ronmental factors may cause the channel out-of-sync occa-
sionally. Figure 2 depicts the relationship between sender
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sleep time and channel error rate. As we increase Ts, the
resulting error rate drops. When the sleep time is larger
than or equal to 6ms, the error rate becomes stable. As
expected, when the sleep time Ts of the sender approaches
its minimal, out-of-sync errors are more likely to happen.
On the other hand, the impact of sleep time to the channel
error rate diminishes when Ts become just large enough to
tolerate the variability of Tr.

Before we close the discussion about channel bit rate in
the laboratory environment, there is still one difference to
be noted between P2 and the protocol proposed by Risten-
part et al.: the receiver also sleeps briefly every iteration in
their version [31]. According to Ristenpart et al., the ratio-
nale behind the sleep is for the receiver “to build up credit
with Xen’s Scheduler” [31] because its busy loop may eat up
scheduling credit quickly so that the receiver is less likely to
be scheduled on time when there is a third VM (or more)
sharing the same core. To give a complete picture, we define
this version as Protocol 3 (P3).

Protocol 3 (P3)

1: One time initialization. Same as P1
2: Repeat Step 3 and 4 sequentially for each bit.
3: The sender accesses subset a (or b) to send bit one (or

zero) (Tw). Then it goes to sleep for Tws.
4: The receiver sleeps for Trs, after which it busy loops until

its CPU counter jumps by at least Nj . Then it accesses
subset a and b separately to decode the information (Tr).

In our previous effort in building this covert channel, we
started with this version of the protocol. And in the same
laboratory environment, we only obtained a bit rate of around
30bps when Tws = 10ms(or 20ms), Trs = 3ms (both choices
of Tws produce a similar maximum bit rate), while the ex-
pected bit rate should be close to:

1bit/(1.47ms + 10ms) ≈ 87.18bps

1bit/(1.47ms + 20ms) ≈ 46.58bps

based on the above analysis. To explain this huge difference,
we first look at the time to transfer one bit for 30bps case:
1s/30bps ≈ 33.3ms. Not surprisingly, this value is close to
the maximum time slice that Xen’s credit scheduler allows
a virtual CPU to occupy a physical CPU [34]. Thus, the
explanation for the anomaly is that when both the sender
and receiver are put into sleep for each bit, the receiver
always wakes up first to start its busy loop, during which
the sender comes back to be runnable. If at this moment
the sender preempts the receiver to running immediately,
everything can stay as expected. However, in reality, the
receiver may have accumulated enough credit that gives the
receiver an equal priority (over) as the sender. Therefore,
the sender may not be able to preempt the receiver, but has
to be blocked for another 30ms in the worst case. While this
scenario does not happen every iteration, it indeed happens
frequently enough to reduce channel bit rate to be around
30bps despite the value of Tws being 10ms or 20ms. And this
phenomenon persists with protocol P3 until Tws > 30ms,
which effectively reduces the expected bit rate to be≤ 30bps.
Consequently, in practice we suggest not to use protocol P3
unless a workload can justify its usage with improved error
rate.
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6. ACHIEVABLE BIT RATES ON EC2
According to the above analysis and experiment results,

the difference in bit rate between the derived maximum and
the one reported in previous work [31] is more than three
orders of magnitude. Given that we have not intentionally
optimized our code either, we speculate that the following
factors may contribute to this huge gap:

• Hardware specification

• Workloads in other VMs on the same physical host

• Hypervisor configuration, i.e., scheduling policies

• Design of the protocol

In this section, we analyze those factors in order and verify
our speculation by implementing the L2 cache covert channel
on EC2.

Hardware Specification. The small EC2 instances we use
have the same L2 cache specification as our lab machines.
However, the CPUs on our lab machines have a higher clock
speed of 2.83GHz than that of 2.66GHz on the EC2 instances
we use. Even if considering that the CPUs on EC2 may
be one or two generations older, the impact of hardware
specification on channel bit rate still should not be more
than 10%. Moreover, one may notice that EC2 uses 40%
CPU cap on small instances, which effectively reduces the
clock speed by 60%. We discuss this problem in more detail
when it comes to the hypervisor configuration.

Workloads. Given the design of the protocols P1 to P3
that the sender does not verify if the receiver has received
the current bit and whether the received bit is correct, work-
loads on other VMs sharing the same hardware would only
increase the error rate of the channel. Meanwhile, if the
VMs with the workloads also share the same core as the
covert channel VMs, then they will reduce the channel bit
rate because they steal CPU cycles from the covert channel.

To support this argument, we introduce a third VM on
our lab machines to share the same core with the other two
VMs used for evaluating P2. On the third VM, we deploy a
web application called RUBiS, which is an eBay-like online
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auction application that is used extensively as a benchmark
in the research community [10, 28]. In the default workload
of RUBiS, it has a parameter called “number of clients per
node”that controls the number of concurrent users accessing
the application. We vary this parameter and run a covert
channel in parallel on the other two VMs using P2 with
10ms sleep time. The result of error rate and bit rate are
plotted in Figure 3. As the figure suggests, the error rate
increases slowly as the number of concurrent users grows. At
the same time, because more concurrent users means more
cycles needed to process their requests, the channel bit rates
also slowly decreases. However, compared to the original
bit rate 85.86bps without third-party workload, the biggest
drop in bit rate is no more than 6%. Thus, we speculate that
the impact of workloads themselves to the covert channels
on EC2 is very limited.

Hypervisor Configuration. Suppose the Xen hypervisor
on EC2 has the same credit scheduler with identical param-
eters as the standard Xen scheduler, when protocol P3 is
applied, the bit rate can be reduced by an order of magni-
tude. In addition, if we examine the CPU usage in small
instances on EC2, a 40% cap should be noticed. And this
cap may effectively reduce the channel bit rate by at least
60% over an extended period of time. Up to this point,
the raw bit rate should have been reduced to about 10bps.
Furthermore, the VCPUs used by EC2’s small instances are
not pinned to any specific physical cores. Using the CPUID
instruction, which does not seem to be virtualized on EC2,
small instances suggest four cores on a single physical ma-
chine, and VCPUs constantly migrate to different physical
cores on the scale of milliseconds to thousands of millisec-
onds. It means at any moment, two VMs co-located on the
same physical machine may not be able to communicate via
the L2 cache simply because they are not running on the
right cores. This policy together with the 40% cap violate
both R1 and R2, which are required to ensure the high bit
rate for the laboratory experiments. And they significantly
affect the design of the protocol to be used on EC2.

Protocol Design. Ristenpart et al. use multiple samples
for a single bit to compensate the negative impact of core
migration [31]. Thus, the resulting bit rate depends on the
number of samples taken per bit, given protocol P3. To con-
tinue the above rough estimation, it is reasonable to obtain
a bit rate of 0.2bps should we use 50 samples per bit.

To sum up, the major factors that may significantly affect
the channel bit rate on EC2 include Xen’s scheduling algo-
rithm, 40% CPU cap, non-pinned VCPUs (core migration),
all of which are environmental factors, and the design of the
communication protocol, which is an artifact of the environ-
mental factors. In the follow subsection, we describe our
experiments as concrete examples to explain how does the
environmental factors reduce the channel bit rate by at least
2 orders of magnitude in practice on EC2 with our refined
protocol.

6.1 EC2 Co-location Revisited
Ristenpart et al.’s work explored the relationship between

EC2’s instance placement and its network configuration and
designed a method to co-locate the attacker’s VM to its vic-
tim with a probability better than a brute-force approach [31].
In our case, we care about the maximum achievable chan-

nel bit rate on EC2, so only two VMs both controlled by
an attack need to be co-located, And it is a much easier
task than to co-locate with a targeted victim VM. In this
subsection, we start with the experience learned from the
existing work [31], then share our new or revised experience
for achieving and verifying VM co-location in the case the
Amazon has changed its polices and algorithms in response
to that paper.

To begin with, because it is believed that VMs belong to
the same account will never be placed on the same physical
machine on EC2 [31], we start with two accounts, each of
which allows 20 concurrently running VMs by default. Be-
cause of the “parallel placement locality” [31], which says
VMs launched simultaneously at the same availability zone
(which roughly corresponds to a data center) are more likely
to be co-located, we launch 20 small instances for each ac-
count roughly at the same time. Then, the first hop IP
(internal to EC2) of each VM’s outbound route is checked.
And if any pair from the two accounts share the same first
hop, they are believed to be co-located [31] on the same
physical machine.

Based on our recent experiments on the east region of
EC2, two observations worth a discussion. First of all, for
different accounts, the availability zones with the same name
(e.g., us-east-1b) may not refer to the the same physical in-
frastructure. In other words, the mapping between the name
of availability zones and their physical locations is different
from account to account. Fortunately, the actual mapping
seems to be fixed once an account is created, and the map-
ping can be extracted by combining the information pro-
vided by several standard EC2 commands [21]. Because we
are not the first to discover this phenomenon or the match-
ing technique, and this technique is also out of the scope
of this paper, we encourage curious readers to read the re-
ferred blog post [21]. In addition, while for each trial we
roughly get 5 VM pairs with the same first hop out of the
20 by 20 candidates, not all of them can be confirmed to be
co-located by running the L2 covert channel to be described
later in this section. Meanwhile, we find that the pairs of
VMs that allow covert channel communication have a much
lower round trip time (RTT) if we do a tcptraceroute against
the VMs within the same pair than that for the pairs failing
our covert channel (0.06ms vs. 0.2ms).

Interestingly enough, among all the confirmed co-located
VM pairs, we find one pair that belong to the same account.
This pair was created when EC2 was experiencing a major
outage on its east region [17], and it never happened again
after the outage was fixed. Therefore, we speculate that
during the outage when not all the physical machines were
usable, EC2 tried to fulfill as many custom requests at the
cost of a reduced guarantee of fault tolerance.

6.2 L2 Cache-Based Covert Channel On EC2
Once the VM co-location is verified, we run our own ver-

sion of the L2 cache-based covert channel on EC2 to explore
its potential bit rate. As discussed above, all three protocols
(P1 to P3) do not work well on EC2 due to the environmen-
tal factors related to the hypervisor configuration. As a re-
sponse to these environmental factors, we present a refined
protocol to explore and explain the practical bound on the
bit rate of the L2 cache-based covert channel on EC2.

Recall that for protocol P1 to P3, a busy loop at the re-
ceiver’s side is used for synchronization. However, given the
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40% CPU cap alone, this method is guaranteed to lose in-
formation because blind spots will appear in the receiver’s
lifetime when the receiver VM is preempted by the hyper-
visor, and these blind spots can be large enough (60% of
CPU time, hence on the scale of tens of milliseconds given
the 10ms ticks of Xen’s credit scheduler) to allow other VMs
(or the sender itself) to overwrite the cache content before
the receiver decodes any useful information. To solve this
problem, we eliminate the synchronization mechanism en-
tirely and simply busy loop with the cache operations at
both sides of the channel. Here we define a valid measure-
ment of cache contention as one side of the channel captures
the time difference in accessing the cache subsets after the
other side evicts certain cache lines. Then an invalid mea-
surement would be that one side of the channel accesses the
cache before the other side touches it, i.e., no time difference
would be perceived. Consequently, the design of P1 to P3
implies that all the measurements taken during the channel
lifetime are valid.

This design decision is made based on the fact that while
when a valid measurement of cache contention will happen
is unpredictable, once it happens the verification of the mea-
surement is very accurate because the cache interference in-
troduced by other processes or VMs are assumed to be uni-
formly distributed so that the difference between the time it
takes to access the evicted cache subset and the non-evicted
one remains noticeable (1.47 vs. 0.87ms in practice) on the
scale of milliseconds.

However, this brute-force strategy leaves an obvious ques-
tion: given that there is no guarantee for a valid measure-
ment of cache contention to happen, even if you can take
valid measurements once in a while, how do you verify whether
the current bit has been transferred and when the sender
and receiver should synchronously move on to the next bit.
Even worse, the core migration on EC2 can make the cache
contention between two given co-located VMs never happen
in the worst case. Thus, the short answer to this question
is that there can be no guarantee because we are trying to
send information reliably on a unreliable channel, which is
a problem similar to the TCP handshake protocol [22]. In
fact, the protocols (P1 to P3) we have discussed so far are
all one-way protocols, which means the receiver has no way
to acknowledge the sender for the transmission, but it is not
a problem when both sides can synchronize each other with
the busy loop. Fortunately, if a valid measurement of cache
contention happens to the receiver, it should have evicted
the sender’s content from the cache. As a result, the next
time the sender takes a measurement, it will also have a
chance to take a valid measurement. That means we can
use a similar method to timing the cache operations at the
sender’s side as a pseudo-acknowledgement of the transmis-
sion. However, it suffers from the same problem that it has
no guarantee to happen. To break this deadlock, similar
to the scheme used by Ristenpart et al. [31], we simply re-
peat this procedure multiple times for each individual bit
for transmission to increase the possibility of success. The
above description is summarized as Protocol 4 (P4).

Before we move to the bit rate analysis with this protocol,
the rationale behind Step 4 & 6 and the use of Tws & Trs

should be explained first. Because contention measurements
are now repeated multiple times for each bit, depending on
the choice of Nw and Nr, either the sender or the receiver
may get stuck in Step 3 and 5 respectively due to unexpected

Protocol 4 (P4)

1: One time initialization. Same as P1
2: Repeat Step 3-4 and 5-6 concurrently for each bit.
3: The sender accesses subset a (or b) to send bit one (or

zero) (Tw). Repeat this process until obtains Nw valid
measurements. After each measurement, despite valid
or not, the sender sleeps for Tws.

4: The sender accesses the cache subset opposite to the
one used in Step 3. Repeat this process until an invalid
measurement happens.

5: The receiver accesses subset a and b separately (Tr) to
decode the information. Repeat this process until ob-
tained Nr valid measurement. After each measurement,
despite valid or not, the receiver sleeps for Trs.

6: The receiver accesses the same subset used in Step 5.
Repeat this process until an invalid measurement hap-
pens.

core migrations. As a result, Step 4 and 6 are used to check if
the measurement loops used by the other side of the channel
for the current bit have finished. For example, if Step 6
succeeds for the receiver, it means the sender is also likely
to be working on Step 4, which implies they both can move
on to the next bit. Again, there is still no guarantee that
the success of Step 4 and 6 indicates that the sender and the
receive have been synchronized for the next bit since core
migration at that point can lead to the same perception,
their presence increases the chance of being synchronized
while their overhead on the bit rate is limited as the number
of samples taken per bit increases. In addition, the sleep
time of Tws & Trs are used to avoid repeating too fast to
miss the opportunity of cache measurements, and 1ms will
suffice. Please note that because for protocol P4 the sender
and the receiver have a similar busy loop and also share the
same sleep time, the sender’s over-blocked problem caused
by Xen’s scheduler no long exists.

We implement P4 on EC2 with two co-located VMs found
by the method described in the last subsection. To analyze
the potential bit rate, we first profile the performance of
basic cache operations to obtain Tw and Tr as follows:{

Tw1 = 2.67ms, Tr1 = 3.73ms if contention happens
Tw0 = 1.10ms, Tr0 = 2.09ms otherwise

Please note that the profiling result does not follow exactly
the theory. For example, in the case of no contention hap-
pens, Tr0 should be two times of Tw0. This slight miss match
is just an artifact of a profiling based method itself, which is
the best we can do on the black box system like EC2, and its
impact to the analysis result should be limited. Meanwhile,
the numbers may vary on a small scale if profiled with a
different pair of co-located VMs.

In our implementation, the receiver is used to constantly
monitor the cache content because while there is no guar-
antee on successful bit transmission, once it succeeds the
chance for the receiver to get flipped bit is almost zero. And
because the operations of the sender’s and receiver’s are al-
ways concurrent, we use the sender’s side to analyze the
channel bit rate in the following discussion.

In an ideal case, core migration never happens during the
transmission so that every measurement will be valid. This
overly optimistic assumption results in the following estima-
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Figure 5: The bit rate distribution for the covert
channel running on EC2 using protocol P4

tion of the ideal channel bit rate on EC2:

bitrate = 0.4 ∗ 1bit/(Nw ∗ (Tw1 + Tws) + Tw0)

Again in the best case where we choose Nw = 1, the max-
imum bit rate would be

0.4 ∗ 1bit/(2.67ms + 1ms + 1.10ms) ≈ 83.86bps

However, this estimation is clearly unrealistic. Because it
implies Nr = 1, but Tw1 6= Tr1 means Nw and Nr cannot
take the same value. Instead, using Nw : Nr ≈ Tr1 : Tw1 ≈
3 : 2 would be appropriate.

Intuitively, a small value of Nw tends to result in a high
error rate because the sender and the receiver are more likely
to be out-of-sync in this case. Figure 4 demonstrates the
relationship between the error rates and the number samples
(Nw : Nr) with corresponding bit rate. While small values
does give a higher error rate, once Nw ≥ 9, the error rate
becomes stable.

Mean Median Max Min
Bit Rate 3.20bps 3.75bps 10.46bps 1.27bps

Error Rate 9.28% 8.59% 28.13% 0%

Table 1: Basic statistics of the channel bit rate and
error rate on EC2.
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channel running on EC2 using protocol P4

As result, we choose Nw = 9, Nr = 6 for further experi-
ments. Figure 5 and Figure 6 shows the distribution of the
bit rate and error rate for this pair of parameters. And Ta-
ble 1 shows some basic statistics about these two metrics.
The impact of the environment factors to these metrics is
discussed in the following paragraphs.

First of all, given Nw = 9, if every cache measurement is
valid, the expected channel bit rate would be

0.4 ∗ 1bit/(9 ∗ (2.67ms + 1ms) + 1.10ms) ≈ 11.72bps

Considering other overhead associated with the covert chan-
nel program, the maximum bit rate 10.46bps that we obtain
through experiment is very close to this expected number.
Obviously, there two components that reduce the expected
bit rate from 83.86bps to 11.72bps: the 40% CPU cap, which
effectively reduce the bit rate by 60% if the channel runs
for an extended period of time, and the repeated sampling,
which is designed to deal with core migration and other un-
certainties in VM scheduling.

Even worse, for the same reason, not every cache measure-
ment can be valid. Thus, we need to obtain the average per-
centage of time that the sender spends on valid cache mea-
surements among all the measurements that have been made
during the transmission period. This number should be en-
vironment dependent and it can be only obtained through
profiling. With the trials conducted on the same EC2 in-
stances, we divide the cache measurements into three cate-
gory using the timing of each measurement: valid measure-
ments, invalid measurements, and measurements made when
VM gets preempted. While the first two categories are self-
evident, the last one contains the measurements that take
more then 3ms to make, so that they are believed to be
taken when corresponding VM is preempted by the hyper-
visor. The percentage of each category is listed as follows: 10.5% Valid cache measurements

39.7% Invalid cache measurements
6.5% Measurements made when VM preempted

As we can see, only 10.5% of the transmission time is actu-
ally spent on valid cache measurements. It explains why the
experiments shows a bit rate of 3.20bps on average. These
three categories make up 56.7% of the transmission time.
The rest of it is in fact the 1ms sleep time after each mea-
surement. As discussed before, this sleep time is used to
avoid polling too fast for both sides. Its removal would sig-
nificantly increase the error rate. On the other hand, reduce
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the sleep time for each iteration would not improve the chan-
nel bit rate in a meaningful way because this large amount of
sleep time is caused by the large percentage of invalid cache
measurements, which in turn is caused by the uncertainties
in VM scheduling such as core migration.

To understand why valid cache measurements only consist
10.5% of the transmission time, we profile the frequency of
core migrations during our experiments. Please note that
because to some extend a core migration is triggered by the
execution of instructions, the profiling process itself would
impact the profiled frequency. In addition, the profiling is
conducted along side the covert channel communication, its
resolution is therefore constrained by the polling frequency
of the target channel. Consequently, the results should not
be viewed as a characterization of the scheduling properties
for the underlying scheduler, but just a concrete example to
illustrate the impact of environment factors to the channel
bit rate. Figure 7 shows the distribution of the time between
core migrations. As we can see, almost 50% time a VCPU
stays on the same core for no more than 10ms. This frequent
migration will cause a large number invalid cache measure-
ments. Meanwhile, about 25% of time, a VCPU stays on
the same core for more than 100ms, which gives the channel
plenty of time to make valid measurements. This perception
also explains why the channel bit rate in Figure 5 shows a
bimodal distribution.

7. DISCUSSION AND FUTURE WORK
§ 5 and § 6 together explain details about the maximum

achievable bit rate in practice over L2 cache-based cross-
VM covert channels in different environments with different
constraints. Although the maximum bit rate we achieve on
EC2 is over an order of magnitude faster then previously
reported [31], the channel’s capability to exfiltrate useful
information is still limited, and it is only practical to leak
cryptographic secrets. In future work we plan to explore
threat models in which the leaking of these small secrets
could lead to larger scale breaches.

In addition, we plan expand the work on EC2 to other
comparable cloud service providers, such as Rackspace [30].
The goal then will be to explore the difference of environ-
ment factors for different providers and study their impact
to the covert channel bit rate and error rate. For example,

if a cloud provider does not put CPU cap on VCPUs but
still allows core migration, can we significantly improve the
channel bit rate? Based on these observations and measure-
ments, we may further suggest industry best practice for
containing covert channels.

Moreover, we plan to explore the natural open question
of stronger L2 cache side channels attacks in virtualized en-
vironments.

8. RELATED WORK
In 1973, Lampson [26] discussed a classification of the

ways in which information can be transferred between pro-
grams (i.e., legitimate, storage, and covert channels) and de-
fined covert channels as “those not intended for information
transfer at all, such as the service program’s effect on the
system load.” Two classes of covert channels have emerged,
those based on storage and those based on timing. In stor-
age attacks, existing fields, memory locations, etc, are used
to (secretly) encode information. For example, unused fields
in network protocols can be used to convey information in
a unintended way [2,3, 20].

Timing-based covert channels are more sophisticated be-
cause the information is encoded by varying the timing of
events in a system. Thus, the receiver of a timing-based
covert channel must understand the original encoding scheme
in order to obtain the actual information. For example,
covert channels constructed using the time intervals between
network packets fall into this category. Cabuk et al. de-
signed such a covert channel using IP packets and proposed
two statistical methods to look for the timing irregularity in
the traffic as a detection mechanism [9]. In addition, Gian-
vecchio et al. designed an entropy-based solution to improve
the detection accuracy [19].

Side channel attacks, however, exploit unintended system
artifacts to learn about activities that are supposed to be
secret. As such they are “in fact a covert channel with-
out conspiracy or consent.” [32] Leveraging cache-based side
channels to extract cryptographic keys has been studied ex-
tensively [25, 29]. To mitigate the threat, researchers pro-
pose to inhibit the sources of timing channels. For exam-
ple, Askarov et al. recently demonstrated that side channels
could be mitigated to some extend by regulating all the tim-
ing events in the system [6]. In addition, Coppens et al. pro-
posed to use a special compiler backend to eliminate timing
behaviors [13]. Other solutions include totally disallowing
the sharing of hardware in public clouds [24].

The subject of this paper, cross-VM covert channels, are
a type of timing based attack. Ristenpart et al. [31] have
proven its feasibility in a real cloud environment with an
attack using shared L2 cache. As a follow up, Okamura
et al. designed and evaluated an new attack that uses the
load of a shared CPU to encode information [27]. On the
other hand, Zhang et al. monitor the patterns of L2 cache
usage within a guest domain to build a classifier of the usage
patterns to check if there are other VMs sharing the same
physical machine [35]. The main distinction of this work
over the above mentioned work is a thorough examination
of the factors that impact the bit rate of the L2 cache-based
cross-VM covert channel in both a laboratory environment
and a real world environment. It should be noted that side-
channel attacks also make up a part of the threat posed by
VM co-location, as discussed in Ristenpart et al. [31], but
are beyond the scope of this work.
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9. CONCLUSION
In this paper, we provide a quantification of the bit rates

of a L2 cache-based channel and an assessment of its abil-
ity to do harm. We expand the scope of the pioneering
work for this threat [31] by progressively refining models of
cross-VM covert channels from the derived maximums, to
implementable channels in the lab, and finally in Amazon
EC2 itself. We show how a variety of factors impact our
ability to create effective channels. While a covert channel
with considerably larger bit rate than previously reported is
demonstrated, we assess that even at such improved rates,
the harm of data exfiltration from these channels is still lim-
ited to the sharing of small, if important, secrets such as
private keys.
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