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The Multivariate Gaussian Distribution

One particularly important example of a probability distribution over
random vectors X is called the multivariate Gaussian or multivariate
normal distribution. A random vector X € R is said to have a
multivariate normal (or Gaussian) distribution with mean € R? and
covariance matrix ¥ € 8% (where S refers to the space of symmetric
positive definite d x d matrices)
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We write this as X ~ N(u, ). In this section, we describe multivariate

Gaussians and some of their basic properties.
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Relationship to univariate Gaussians
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2 is a quadratic function. Similarly,
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The covariance matrix

Proposition: For any random vector X with mean p and covariance

matrix X,

S=E[(X-p)X -p)']=E[XXT] - "
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The diagonal covariance matrix case
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Isocontours

Another way to understand a multivariate Gaussian conceptually is to
understand the shape of its isocontours. For a function f: R? — R, an
isocontour is a set of the form

{zeR?: f(z) =c}.

for some ¢ € R”
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Linear transformation
Theorem: Let X ~ N(p, %) for some € R? and ¥ € S% . Then,

there exists a matrix B € R%*? such that if we define Z = B~1(X — p),
then Z ~ N(0,1)
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Closure properties

A fancy feature of the multivariate Gaussian distribution is the following

set of closure properties:

» The sum of independent Gaussian random variables is Gaussian.
» The marginal of a joint Gaussian distribution is Gaussian.

» The conditional of a joint Gaussian distribution is Gaussian.

Theorem 5.3.: Suppose that y ~ N(i, %) and z ~ N (p/, %) are
independent Gaussian distributed random variables, where 1, 1/’ € R?
and X,Y' € Sle_. Then, their sum is also Gaussian:

y+z~N(p+p 2+,
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Closure properties

(] )

where x4 € R",zp € R4, and the dimensions of the mean vectors and

Suppose that

YaA XaB
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covariance matrix subblocks are chosen to match x4 and z 3.

Theorem: Then, the marginal densities,

p(ra) =/ p(za,zp;pu,X)drg
:EBGRd

p(xB) =/ p(xa,xp;p, X)dra
zAER™
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Closure properties

are Gaussian:
za~N (1a,Xa4)

zp ~N (1B, XBB) -
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Closure properties

Theorem: The conditional densities

p(xa,zp;p, %)
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are also Gaussian:

zalap ~N (ua+2apE5E (5 — pB), 244 — 2apX5p554)
wp|xa~N(np+Epa¥ys (ta —pa), See — Xpa¥XiyYan)
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