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Definition of probability space

▶ Sample space Ω: The set of all the outcomes of a random

experiment.

▶ Event space F : A set whose elements A ∈ F (called events) are

subsets of Ω (i.e., A ⊆ Ω).

▶ Probability measure: A function P : F → R that satisfies the

following properties:

– Non-negativity: P (A) ≥ 0, for all A ∈ F
– Completeness: P (Ω) = 1

– Countable Additivity: If A1, A2, . . . are disjoint events (i.e.,

Ai ∩Aj = ∅ whenever i ̸= j ), then

P

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai)
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Properties of probability

▶ If A ⊆ B =⇒ P (A) ≤ P (B).

▶ P (A ∩B) ≤ min(P (A), P (B))

▶ P (Ac) ≜ P (Ω\A) = 1− P (A)

▶ P (A ∪B) ≤ P (A) + P (B) This property is known as the union

bound.

▶ If A1, . . . , Ak are a set of disjoint events such that
⋃k

i=1 Ai = Ω,

then
∑k

i=1 P (Ak) = 1. This property is known as the Law of Total

Probability.
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Conditional probability and independence

▶ Conditional probability:

P (A | B) ≜
P (A ∩B)

P (B)

▶ Independence: Two events are called independent if and only if

P (A ∩B) = P (A) ∗ P (B)

▶ Mutually Independence: In general we say that A1, . . . , Ak are

mutually independent if for any subset S ⊆ {1, 2, . . . , k}, we have

P

(⋂
i∈S

Ai

)
=
∏
i∈S

P (Ai)

Elements of Probability 5



Law of total probability and Bayes’ theorem

▶ Law of total probability: Theorem. Suppose A1, . . . , An are

disjoint events, and event B satisfies B ⊆
⋃n

i=1 Ai, then

P (B) =

n∑
i=1

P (Ai)P (B | Ai)

▶ Bayes’ theorem: Theorem. Suppose A1, . . . , An are disjoint

events, and event B satisfies B ⊂
⋃n

i=1 Ai. Then if P (B) > 0, it is

the case that

P (Aj | B) =
P (Aj)P (B | Aj)∑n
i=1 P (Ai)P (B | Ai)

.
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Definition and examples

▶ Random variable: a random variable X is a function

X : Ω −→ R

Such that for all ”nice” subsets A ⊆ R we have

{ω ∈ Ω|X(ω) ∈ A} ∈ F

In words, we can calculate the probability that the random variable

X is on the subset A.
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Definition and examples

▶ Ex 1. Consider an experiment in which we flip 10. coins, and we

want to know the number of coins that come up heads

we might have ω0 = ⟨H,H, T,H, T,H,H, T, T, T ⟩ ∈ Ω

In our experiment above, suppose that X(ω) is the number of heads

which occur in the sequence of tosses ω. Then X(ω0) = 5. Note

that X(ω0) can take only a finite (Countable) number of values

0,1,...,10, so it is known as a discrete random variable. Here, the

probability of the set associated with a random variable X taking on

some specific value k is:

P (X = k) := P ({ω : X(ω) = k})
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Definition and examples

▶ Ex 2. Suppose that X(ω) is a random variable indicating the

amount of time it takes for a radioactive particle to decay. In this

case, X(ω) takes on a infinite (Uncountable) number of possible

values, so it is called a continuous random variable. In this case

we are interested in the probability of intervals of time.

P (a ≤ X ≤ b) := P ({ω : a ≤ X(ω) ≤ b})
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Cumulative distribution functions

A cumulative distribution function (CDF) is a function FX : R → [0, 1]

which specifies a probability measure as,

FX(x) ≜ P (X ≤ x).

By using this function one can calculate the probability of any event in

F . 3 Figure 1 shows a sample CDF function. A CDF function satisfies

the following properties.

▶ 0 ≤ FX(x) ≤ 1

▶ limx→−∞ FX(x) = 0.

▶ limx→∞ FX(x) = 1.

▶ x ≤ y =⇒ FX(x) ≤ FX(y).
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Cumulative distribution functions
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Probability mass functions

If X is a discrete random variable, we can define the Probability mass

function pX : Ω → R:

pX(x) ≜ P (X = x)

A PMF function satisfies the following properties.

▶ 0 ≤ pX(x) ≤ 1.

▶
∑

x∈Val(X) pX(x) = 1.

▶
∑

x∈A pX(x) = P (X ∈ A).
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Probability density functions

For some continuous random variables, the cumulative distribution

function FX(x) is differentiable everywhere. In these cases, we define the

Probability Density Function (PDF) as the derivative of the CDF, i.e.,

fX(x) ≜
dFX(x)

dx

We can interpret fX(x) as P (x ≤ X ≤ x+∆x) ≈ fX(x)∆x

A PDF function satisfies the following properties.

▶ fX(x) ≥ 0.

▶
∫∞
−∞ fX(x) = 1.

▶
∫
x∈A

fX(x)dx = P (X ∈ A).
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Expectation

Suppose that g : R −→ R is an arbitrary function. We define the

expectation or expected value of g(X) as

▶ discrete random variable

E[g(X)] ≜
∑

x∈Val(X)

g(x)pX(x)

▶ continuous random variable

E[g(X)] ≜
∫ ∞

−∞
g(x)fX(x)dx
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Expectation

Expectation satisfies the following properties:

▶ E[a] = a for any constant a ∈ R.

▶ E[af(X)] = aE[f(X)] for any constant a ∈ R.

▶ E[f(X) + g(X)] = E[f(X)] + E[g(X)]. This property is known as

the linearity of expectation.

▶ E[1{X∈A}] = P (X ∈ A).

Random Variables 16



Variance

The variance of a random variable X is a measure of how concentrated

the distribution of a random variable X is around its mean. Formally, the

variance of a random variable X is defined as

Var[X] ≜ E
[
(X − E(X))2

]
We note the following properties of the variance.

▶ Var[a] = 0 for any constant a ∈ R.

▶ Var[af(X)] = a2 Var[f(X)] for any constant a ∈ R.
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Some common distributions

▶ Bernoulli

▶ Binomial

▶ Geometric

▶ Poisson

▶ Uniform

▶ Exponential

▶ Normal
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