Probability Theory Review

STATS 415: Data Mining and Machine Learning

University of Michigan

Fall 2022

Outline

Elements of Probability

Random Variables

Definition of probability space

- Sample space Ω : The set of all the outcomes of a random experiment.
- Event space \mathcal{F} : A set whose elements $A \in \mathcal{F}$ (called events) are subsets of Ω (i.e., $A \subseteq \Omega$).
- Probability measure: A function $P: \mathcal{F} \rightarrow \mathbf{R}$ that satisfies the following properties:
- Non-negativity: $P(A) \geq 0$, for all $A \in \mathcal{F}$
- Completeness: $P(\Omega)=1$
- Countable Additivity: If A_{1}, A_{2}, \ldots are disjoint events (i.e., $A_{i} \cap A_{j}=\emptyset$ whenever $i \neq j$), then

$$
P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)
$$

Properties of probability

- If $A \subseteq B \Longrightarrow P(A) \leq P(B)$.
- $P(A \cap B) \leq \min (P(A), P(B))$
- $P\left(A^{c}\right) \triangleq P(\Omega \backslash A)=1-P(A)$
- $P(A \cup B) \leq P(A)+P(B)$ This property is known as the union bound.
- If A_{1}, \ldots, A_{k} are a set of disjoint events such that $\bigcup_{i=1}^{k} A_{i}=\Omega$, then $\sum_{i=1}^{k} P\left(A_{k}\right)=1$. This property is known as the Law of Total Probability.

Conditional probability and independence

- Conditional probability:

$$
P(A \mid B) \triangleq \frac{P(A \cap B)}{P(B)}
$$

- Independence: Two events are called independent if and only if $P(A \cap B)=P(A) * P(B)$
- Mutually Independence: In general we say that A_{1}, \ldots, A_{k} are mutually independent if for any subset $S \subseteq\{1,2, \ldots, k\}$, we have

$$
P\left(\bigcap_{i \in S} A_{i}\right)=\prod_{i \in S} P\left(A_{i}\right)
$$

Law of total probability and Bayes' theorem

- Law of total probability: Theorem. Suppose A_{1}, \ldots, A_{n} are disjoint events, and event B satisfies $B \subseteq \bigcup_{i=1}^{n} A_{i}$, then

$$
P(B)=\sum_{i=1}^{n} P\left(A_{i}\right) P\left(B \mid A_{i}\right)
$$

- Bayes' theorem: Theorem. Suppose A_{1}, \ldots, A_{n} are disjoint events, and event B satisfies $B \subset \bigcup_{i=1}^{n} A_{i}$. Then if $P(B)>0$, it is the case that

$$
P\left(A_{j} \mid B\right)=\frac{P\left(A_{j}\right) P\left(B \mid A_{j}\right)}{\sum_{i=1}^{n} P\left(A_{i}\right) P\left(B \mid A_{i}\right)} .
$$

Outline

Elements of Probability

Random Variables

Definition and examples

- Random variable: a random variable X is a function

$$
X: \Omega \longrightarrow \mathbf{R}
$$

Such that for all " nice" subsets $A \subseteq \mathbf{R}$ we have

$$
\{\omega \in \Omega \mid X(\omega) \in A\} \in \mathcal{F}
$$

In words, we can calculate the probability that the random variable X is on the subset A.

Definition and examples

- Ex 1. Consider an experiment in which we flip 10. coins, and we want to know the number of coins that come up heads
we might have $\omega_{0}=\langle H, H, T, H, T, H, H, T, T, T\rangle \in \Omega$

In our experiment above, suppose that $X(\omega)$ is the number of heads which occur in the sequence of tosses ω. Then $X\left(\omega_{0}\right)=5$. Note that $X\left(\omega_{0}\right)$ can take only a finite (Countable) number of values $0,1, \ldots, 10$, so it is known as a discrete random variable. Here, the probability of the set associated with a random variable X taking on some specific value k is:

$$
P(X=k):=P(\{\omega: X(\omega)=k\})
$$

Definition and examples

- Ex 2. Suppose that $X(\omega)$ is a random variable indicating the amount of time it takes for a radioactive particle to decay. In this case, $X(\omega)$ takes on a infinite (Uncountable) number of possible values, so it is called a continuous random variable. In this case we are interested in the probability of intervals of time.

$$
P(a \leq X \leq b):=P(\{\omega: a \leq X(\omega) \leq b\})
$$

Cumulative distribution functions

A cumulative distribution function (CDF) is a function $F_{X}: \mathbf{R} \rightarrow[0,1]$ which specifies a probability measure as,

$$
F_{X}(x) \triangleq P(X \leq x) .
$$

By using this function one can calculate the probability of any event in \mathcal{F}. ${ }^{3}$ Figure 1 shows a sample CDF function. A CDF function satisfies the following properties.

- $0 \leq F_{X}(x) \leq 1$
$-\lim _{x \rightarrow-\infty} F_{X}(x)=0$.
$-\lim _{x \rightarrow \infty} F_{X}(x)=1$.
- $x \leq y \Longrightarrow F_{X}(x) \leq F_{X}(y)$.

Cumulative distribution functions

Probability mass functions

If X is a discrete random variable, we can define the Probability mass function $p_{X}: \Omega \rightarrow \mathbf{R}$:

$$
p_{X}(x) \triangleq P(X=x)
$$

A PMF function satisfies the following properties.

- $0 \leq p_{X}(x) \leq 1$.
- $\sum_{x \in \operatorname{Val}(X)} p_{X}(x)=1$.
- $\sum_{x \in A} p_{X}(x)=P(X \in A)$.

Probability density functions

For some continuous random variables, the cumulative distribution function $F_{X}(x)$ is differentiable everywhere. In these cases, we define the Probability Density Function (PDF) as the derivative of the CDF, i.e.,

$$
f_{X}(x) \triangleq \frac{d F_{X}(x)}{d x}
$$

We can interpret $f_{X}(x)$ as $P(x \leq X \leq x+\Delta x) \approx f_{X}(x) \Delta x$ A PDF function satisfies the following properties.

- $f_{X}(x) \geq 0$.
- $\int_{-\infty}^{\infty} f_{X}(x)=1$.
- $\int_{x \in A} f_{X}(x) d x=P(X \in A)$.

Expectation

Suppose that $g: \mathbf{R} \longrightarrow \mathbf{R}$ is an arbitrary function. We define the expectation or expected value of $g(X)$ as

- discrete random variable

$$
E[g(X)] \triangleq \sum_{x \in \operatorname{Val}(X)} g(x) p_{X}(x)
$$

- continuous random variable

$$
E[g(X)] \triangleq \int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

Expectation

Expectation satisfies the following properties:

- $E[a]=a$ for any constant $a \in \mathbf{R}$.
- $E[a f(X)]=a E[f(X)]$ for any constant $a \in \mathbf{R}$.
- $E[f(X)+g(X)]=E[f(X)]+E[g(X)]$. This property is known as the linearity of expectation.
- $E\left[1_{\{X \in A\}}\right]=P(X \in A)$.

Variance

The variance of a random variable X is a measure of how concentrated the distribution of a random variable X is around its mean. Formally, the variance of a random variable X is defined as

$$
\operatorname{Var}[X] \triangleq E\left[(X-E(X))^{2}\right]
$$

We note the following properties of the variance.

- $\operatorname{Var}[a]=0$ for any constant $a \in \mathbf{R}$.
- $\operatorname{Var}[a f(X)]=a^{2} \operatorname{Var}[f(X)]$ for any constant $a \in \mathbf{R}$.

Some common distributions

- Bernoulli
- Binomial
- Geometric
- Poisson
- Uniform
- Exponential
- Normal

