Probability Theory Review

STATS 415: Data Mining and Machine Learning

University of Michigan

Fall 2022

Outline

Elements of Probability

Random Variables

Elements of Probability

Definition of probability space

- Sample space Ω: The set of all the outcomes of a random experiment.
- Event space F : A set whose elements A ∈ F (called events) are subsets of Ω (i.e., A ⊆ Ω).
- ► Probability measure: A function P : F → R that satisfies the following properties:
 - Non-negativity: $P(A) \ge 0$, for all $A \in \mathcal{F}$
 - Completeness: $P(\Omega) = 1$
 - Countable Additivity: If A_1, A_2, \ldots are disjoint events (i.e.,

 $A_i \cap A_j = \emptyset$ whenever i
eq j), then

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P\left(A_i\right)$$

Elements of Probability

Properties of probability

- $\blacktriangleright \ \text{ If } A \subseteq B \implies P(A) \le P(B).$
- $\blacktriangleright P(A \cap B) \le \min(P(A), P(B))$
- $\blacktriangleright P(A^c) \triangleq P(\Omega \backslash A) = 1 P(A)$
- ▶ $P(A \cup B) \le P(A) + P(B)$ This property is known as the union bound.
- If A₁,..., A_k are a set of disjoint events such that ⋃^k_{i=1} A_i = Ω, then ∑^k_{i=1} P(A_k) = 1. This property is known as the Law of Total Probability.

Conditional probability and independence

Conditional probability:

$$P(A \mid B) \triangleq \frac{P(A \cap B)}{P(B)}$$

- ▶ Independence: Two events are called independent if and only if $P(A \cap B) = P(A) * P(B)$
- Mutually Independence: In general we say that A_1, \ldots, A_k are mutually independent if for any subset $S \subseteq \{1, 2, \ldots, k\}$, we have

$$P\left(\bigcap_{i\in S}A_i\right) = \prod_{i\in S}P\left(A_i\right)$$

Law of total probability and Bayes' theorem

Law of total probability: Theorem. Suppose A₁,..., A_n are disjoint events, and event B satisfies B ⊆ ⋃ⁿ_{i=1} A_i, then

$$P(B) = \sum_{i=1}^{n} P(A_i) P(B \mid A_i)$$

Bayes' theorem: Theorem. Suppose A₁,..., A_n are disjoint events, and event B satisfies B ⊂ ⋃ⁿ_{i=1} A_i. Then if P(B) > 0, it is the case that

$$P(A_{j} | B) = \frac{P(A_{j}) P(B | A_{j})}{\sum_{i=1}^{n} P(A_{i}) P(B | A_{i})}.$$

Elements of Probability

Outline

Elements of Probability

Definition and examples

Random variable: a random variable X is a function

$$X: \Omega \longrightarrow \mathbf{R}$$

Such that for all "nice" subsets $A \subseteq \mathbf{R}$ we have

$$\{\omega \in \Omega | X(\omega) \in A\} \in \mathcal{F}$$

In words, we can calculate the probability that the random variable X is on the subset A.

Definition and examples

Ex 1. Consider an experiment in which we flip 10. coins, and we want to know the number of coins that come up heads

we might have $\omega_0 = \langle H, H, T, H, T, H, H, T, T, T \rangle \in \Omega$

In our experiment above, suppose that $X(\omega)$ is the number of heads which occur in the sequence of tosses ω . Then $X(\omega_0) = 5$. Note that $X(\omega_0)$ can take only a finite (Countable) number of values 0,1,...,10, so it is known as a **discrete random variable**. Here, the probability of the set associated with a random variable X taking on some specific value k is:

$$P(X = k) := P(\{\omega : X(\omega) = k\})$$

Definition and examples

Ex 2. Suppose that X(ω) is a random variable indicating the amount of time it takes for a radioactive particle to decay. In this case, X(ω) takes on a infinite (Uncountable) number of possible values, so it is called a continuous random variable. In this case we are interested in the probability of intervals of time.

$$P(a \le X \le b) := P(\{\omega : a \le X(\omega) \le b\})$$

Cumulative distribution functions

A cumulative distribution function (CDF) is a function $F_X : \mathbf{R} \to [0, 1]$ which specifies a probability measure as,

$$F_X(x) \triangleq P(X \le x).$$

By using this function one can calculate the probability of any event in \mathcal{F} . ³ Figure 1 shows a sample CDF function. A CDF function satisfies the following properties.

$$\blacktriangleright \ 0 \le F_X(x) \le 1$$

$$\blacktriangleright \lim_{x \to -\infty} F_X(x) = 0.$$

$$\blacktriangleright \lim_{x \to \infty} F_X(x) = 1.$$

 $x \le y \Longrightarrow F_X(x) \le F_X(y).$

Cumulative distribution functions

Probability mass functions

If X is a discrete random variable, we can define the Probability mass function $p_X : \Omega \to \mathbf{R}$:

$$p_X(x) \triangleq P(X=x)$$

A PMF function satisfies the following properties.

$$\blacktriangleright \ 0 \le p_X(x) \le 1.$$

$$\blacktriangleright \sum_{x \in \operatorname{Val}(X)} p_X(x) = 1.$$

$$\blacktriangleright \sum_{x \in A} p_X(x) = P(X \in A).$$

Probability density functions

For some continuous random variables, the cumulative distribution function $F_X(x)$ is differentiable everywhere. In these cases, we define the Probability Density Function (PDF) as the derivative of the CDF, i.e.,

$$f_X(x) \triangleq \frac{dF_X(x)}{dx}$$

We can interpret $f_X(x)$ as $P(x \le X \le x + \Delta x) \approx f_X(x)\Delta x$ A PDF function satisfies the following properties.

Expectation

Suppose that $g: \mathbf{R} \longrightarrow \mathbf{R}$ is an arbitrary function. We define the expectation or expected value of g(X) as

discrete random variable

$$E[g(X)] \triangleq \sum_{x \in \operatorname{Val}(X)} g(x) p_X(x)$$

continuous random variable

$$E[g(X)] \triangleq \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

Expectation

Expectation satisfies the following properties:

•
$$E[a] = a$$
 for any constant $a \in \mathbf{R}$.

▶
$$E[af(X)] = aE[f(X)]$$
 for any constant $a \in \mathbf{R}$.

• E[f(X) + g(X)] = E[f(X)] + E[g(X)]. This property is known as the linearity of expectation.

▶
$$E[1_{\{X \in A\}}] = P(X \in A).$$

Variance

The variance of a random variable X is a measure of how concentrated the distribution of a random variable X is around its mean. Formally, the variance of a random variable X is defined as

$$\operatorname{Var}[X] \triangleq E\left[(X - E(X))^2 \right]$$

We note the following properties of the variance.

•
$$\operatorname{Var}[a] = 0$$
 for any constant $a \in \mathbf{R}$.

▶
$$\operatorname{Var}[af(X)] = a^2 \operatorname{Var}[f(X)]$$
 for any constant $a \in \mathbf{R}$.

Some common distributions

Bernoulli

Binomial

- ► Geometric
- Poisson
- Uniform
- Exponential

Normal