Linear Algebra Review - Part 2

STAT 415: Data Mining and Machine Learning

University of Michigan

Fall 2022

Outline

Linear Independence and Rank

The Inverse of a Square Matrix
Orthogonal Matrices
Range and Nullspace of a Matrix
The Determinant
Quadratic Forms and Positive Semidefinite Matrices
Eigenvalues and Eigenvectors
Eigenvalues and Eigenvectors of Symmetric Matrices

Linear Independence and Rank

Linear Independence

- A set of vectors $\left\{x_{1}, x_{2}, \ldots x_{n}\right\} \subset \mathbb{R}^{m}$ is linearly independent if no vector can be represented as a linear combination of the remaining vectors.
- Conversely, if one vector belonging to the set can be represented as a linear combination of the remaining vectors, then the vectors are said to be linearly dependent. That is, if

$$
x_{n}=\sum_{i=1}^{n-1} \alpha_{i} x_{i}
$$

for some scalar values $\alpha_{1}, \ldots, \alpha_{n-1} \in \mathbb{R}$, then we say that the vectors x_{1}, \ldots, x_{n} are linearly dependent.

Linear Independence

Example:
$x_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \quad x_{2}=\left[\begin{array}{l}4 \\ 1 \\ 5\end{array}\right] \quad x_{3}=\left[\begin{array}{c}2 \\ -3 \\ -1\end{array}\right]$
Question: Are the vectors x_{1}, x_{2}, x_{3} linearly dependent?

Hint: $x_{3}=-2 x_{1}+x_{2}$

Rank

- column rank: the size of the largest subset of columns of matrix A that constitute a linearly independent set. (the number of linearly independent columns of matrix A.)
- row rank: the largest number of rows of A that constitute a linearly independent set.
- For any matrix $A \in \mathbb{R}^{m \times n}$, the column rank of A equals to the row rank of A, denoted as $\operatorname{rank}(A)$.

Basic Properties of the Rank

- For $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A) \leq \min (m, n)$. If $\operatorname{rank}(A)=\min (m, n)$, then A is said to be full rank.
- For $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$.
- For $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}, \operatorname{rank}(A B) \leq \min (\operatorname{rank}(A), \operatorname{rank}(B))$
- For $A, B \in \mathbb{R}^{m \times n}, \operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)$

Outline

Linear Independence and Rank

The Inverse of a Square Matrix

Orthogonal Matrices
Range and Nullspace of a Matrix

The Determinant

Quadratic Forms and Positive Semidefinite Matrices

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors of Symmetric Matrices

The Inverse of a Square Matrix

Definition of the Inverse

- The inverse of a square matrix $A \in \mathbb{R}^{n \times n}$ is denoted A^{-1}, and is the unique matrix such that

$$
A^{-1} A=I=A A^{-1}
$$

- Note: Not all matrices have inverses.
- Non-square matrices do not have inverses by definition.
- For some square matrices A, A^{-1} may not exist. In this case, we say that A is non-invertible or singular.
- In order for a square matrix A to have an inverse A^{-1}, then A must be full rank.

Properties of the inverse

Assume that $A, B \in \mathbb{R}^{n \times n}$ are non-singular.

- $\left(A^{-1}\right)^{-1}=A$
- $(A B)^{-1}=B^{-1} A^{-1}$
- $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$. For this reason this matrix is often denoted A^{-T}.

Example: Consider the linear system of equations, $A x=b$ where $A \in \mathbb{R}^{n \times n}$, and $x, b \in \mathbb{R}^{n}$. If A is nonsingular (i.e., invertible), then $x=A^{-1} b$.

Outline

```
Linear Independence and Rank
The Inverse of a Square Matrix
Orthogonal Matrices
Range and Nullspace of a Matrix
The Determinant
Quadratic Forms and Positive Semidefinite Matrices
Eigenvalues and Eigenvectors
Eigenvalues and Eigenvectors of Symmetric Matrices
```


Orthogonal Matrices

- Orthogonal of vectors:

Two vectors $x, y \in \mathbb{R}^{n}$ are orthogonal if $x^{T} y=0$.

- Normalized: A vector $x \in \mathbb{R}^{n}$ is normalized if $\|x\|_{2}=1$. (the Euclidean or ℓ_{2} norm: $\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}=\sqrt{x^{T} x}$)
- Orthogonal of matrices:

A square matrix $U \in \mathbb{R}^{n \times n}$ is orthogonal if all its columns are orthogonal to each other and are normalized. (the columns are then referred to as being orthonormal).

Orthogonal Matrices

- From the definition of orthogonality and normality, we have

$$
U^{T} U=I=U U^{T}
$$

In other words, the inverse of an orthogonal matrix is its transpose.

- Note that if U is not square - i.e., $U \in \mathbb{R}^{m \times n}, \quad n<m$ - but its columns are still orthonormal, then $U^{T} U=I$, but $U U^{T} \neq I$. We generally only use the term orthogonal to describe the case where U is square.
- $\|U x\|_{2}=\|x\|_{2}$ for any $x \in \mathbb{R}^{n}, U \in \mathbb{R}^{n \times n}$ orthogonal.

Outline

Linear Independence and Rank
The Inverse of a Square Matrix
Orthogonal Matrices
Range and Nullspace of a Matrix
The Determinant
Quadratic Forms and Positive Semidefinite Matrices
Eigenvalues and Eigenvectors
Eigenvalues and Eigenvectors of Symmetric Matrices

Range and Nullspace of a Matrix

Span and Projection

- The span of a set of vectors $\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ is the set of all vectors that can be expressed as a linear combination of $\left\{x_{1}, \ldots, x_{n}\right\}$. That is,

$$
\operatorname{span}\left(\left\{x_{1}, \ldots x_{n}\right\}\right)=\left\{v: v=\sum_{i=1}^{n} \alpha_{i} x_{i}, \quad \alpha_{i} \in \mathbb{R}\right\}
$$

- The projection of a vector $y \in \mathbb{R}^{m}$ onto $\operatorname{span}\left(\left\{x_{1}, \ldots x_{n}\right\}\right)$ (each $\left.x_{i} \in \mathbb{R}^{m}\right)$ is the vector $v \in \operatorname{span}\left(\left\{x_{1}, \ldots x_{n}\right\}\right)$, such that v is as close as possible to y, as measured by the Euclidean norm $\|v-y\|_{2}$. We define it formally as,

$$
\operatorname{Proj}\left(y ;\left\{x_{1}, \ldots x_{n}\right\}\right)=\operatorname{argmin}_{v \in \operatorname{span}\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)}\|y-v\|_{2}
$$

Range

- The range (sometimes also called the column space) of a matrix $A \in \mathbb{R}^{m \times n}$, denoted $\mathcal{R}(A)$, is the the span of the columns of A :

$$
\mathcal{R}(A)=\left\{v \in \mathbb{R}^{m}: v=A x, x \in \mathbb{R}^{n}\right\}
$$

- Assume A is full rank and $n<m$, the projection of a vector $y \in \mathbb{R}^{m}$ onto the range of A is given by,

$$
\operatorname{Proj}(y ; A)=\operatorname{argmin}_{v \in \mathcal{R}(A)}\|v-y\|_{2}=A\left(A^{T} A\right)^{-1} A^{T} y
$$

- When A contains only a single column, $a \in \mathbb{R}^{m}$, this gives the special case for a projection of a vector on to a line:

$$
\operatorname{Proj}(y ; a)=\frac{a a^{T}}{a^{T} a} y
$$

Nullspace

- The nullspace of a matrix $A \in \mathbb{R}^{m \times n}$, denoted $\mathcal{N}(A)$ is the set of all vectors that equal 0 when multiplied by A, i.e.,

$$
\mathcal{N}(A)=\left\{x \in \mathbb{R}^{n}: A x=0\right\}
$$

- Vectors in $\mathcal{R}(A)$ are of size m, while vectors in the $\mathcal{N}(A)$ are of size n, so vectors in $\mathcal{R}\left(A^{T}\right)$ and $\mathcal{N}(A)$ are both in \mathbb{R}^{n}.

$$
\begin{gathered}
\left\{w: w=u+v, u \in \mathcal{R}\left(A^{T}\right), v \in \mathcal{N}(A)\right\}=\mathbb{R}^{n} \\
\mathcal{R}\left(A^{T}\right) \cap \mathcal{N}(A)=\{\mathbf{0}\} .
\end{gathered}
$$

Nullspace

- $\mathcal{R}\left(A^{T}\right)$ and $\mathcal{N}(A)$ are disjoint subsets that together span the entire space of \mathbb{R}^{n}.
- Sets of this type are called orthogonal complements, and we denote this $\mathcal{R}\left(A^{T}\right)=\mathcal{N}(A)^{\perp}$

Outline

```
Linear Independence and Rank
The Inverse of a Square Matrix
Orthogonal Matrices
Range and Nullspace of a Matrix
The Determinant
Quadratic Forms and Positive Semidefinite Matrices
Eigenvalues and Eigenvectors
Eigenvalues and Eigenvectors of Symmetric Matrices
```

The Determinant

Several Properties of the Determinant

- For $A \in \mathbb{R}^{n \times n},|A|=\left|A^{T}\right|$.
- For $A, B \in \mathbb{R}^{n \times n},|A B|=|A||B|$.
- For $A \in \mathbb{R}^{n \times n},|A|=0$ if and only if A is singular (i.e., non-invertible).
- For $A \in \mathbb{R}^{n \times n}$ and A is non-singular, $\left|A^{-1}\right|=1 /|A|$.

Outline

```
Linear Independence and Rank
The Inverse of a Square Matrix
Orthogonal Matrices
Range and Nullspace of a Matrix
The Determinant
```

Quadratic Forms and Positive Semidefinite Matrices

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors of Symmetric Matrices

Quadratic Forms

Given a square matrix $A \in \mathbb{R}^{n \times n}$ and a vector $x \in \mathbb{R}^{n}$, the scalar value $x^{T} A x$ is called a quadratic form.

$$
\begin{gathered}
x^{T} A x=\sum_{i=1}^{n} x_{i}(A x)_{i}=\sum_{i=1}^{n} x_{i}\left(\sum_{j=1}^{n} A_{i j} x_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} . \\
x^{T} A x=\left(x^{T} A x\right)^{T}=x^{T} A^{T} x=x^{T}\left(\frac{1}{2} A+\frac{1}{2} A^{T}\right) x
\end{gathered}
$$

(Hint for 1st equality: the transpose of a scalar is equal to itself.)

Only the symmetric part of A contributes to the quadratic form and we often assume that the matrices in a quadratic form are symmetric.

Positive Semidefinite Matrices

- A symmetric matrix $A \in \mathbb{S}^{n}$ is positive definite (PD) if for all non-zero vectors $x \in \mathbb{R}^{n}, x^{T} A x>0$.

This is denoted $A \succ 0$ (or just $A>0$). The set of all positive definite matrices is denoted \mathbb{S}_{++}^{n}.

- A symmetric matrix $A \in \mathbb{S}^{n}$ is positive semidefinite (PSD) if for all vectors $x^{T} A x \geq 0$.

This is written $A \succeq 0$ (or just $A \geq 0$), and the set of all positive semidefinite matrices is often denoted \mathbb{S}_{+}^{n}.

Negative Semidefinite Matrices

- A symmetric matrix $A \in \mathbb{S}^{n}$ is negative definite (ND), denoted $A \prec 0$ (or just $A<0$) if for all non-zero $x \in \mathbb{R}^{n}, x^{T} A x<0$.
- A symmetric matrix $A \in \mathbb{S}^{n}$ is negative semidefinite (NSD), denoted $A \preceq 0$ (or just $A \leq 0$) if for all $x \in \mathbb{R}^{n}, x^{T} A x \leq 0$.
- Finally, a symmetric matrix $A \in \mathbb{S}^{n}$ is indefinite, if it is neither positive semidefinite nor negative semidefinite - i.e., if there exists $x_{1}, x_{2} \in \mathbb{R}^{n}$ such that $x_{1}^{T} A x_{1}>0$ and $x_{2}^{T} A x_{2}<0$

Properties of Positive Definite Matrices

- Positive definite and negative definite matrices are always full rank, and hence, invertible.
- Given any matrix $A \in \mathbb{R}^{m \times n}$ (not necessarily symmetric or even square), the Gram matrix $G=A^{T} A$ is always positive semidefinite.
- Further, if $m \geq n$ (and we assume for convenience that A is full rank), then $G=A^{T} A$ is positive definite.

Outline

Linear Independence and Rank

The Inverse of a Square Matrix

Orthogonal Matrices

Range and Nullspace of a Matrix

The Determinant

Quadratic Forms and Positive Semidefinite Matrices

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors of Symmetric Matrices

Eigenvalues and Eigenvectors

Given a square matrix $A \in \mathbb{R}^{n \times n}$, we say that $\lambda \in \mathbb{C}$ is an eigenvalue of A and $x \in \mathbb{C}^{n}$ is the corresponding eigenvector if

$$
A x=\lambda x, \quad x \neq 0
$$

- Let $\lambda_{1}, \ldots, \lambda_{n}$ are all the eigenvalues of the matrix A, they may not be distinct.
- To find the eigenvector corresponding to the eigenvalue λ_{i}, we solve the linear equation $\left(\lambda_{i} I-A\right) x=0$, which is guaranteed to have a non-zero solution because $\lambda_{i} I-A$ is singular.
- We usually assume that the eigenvector is normalized to have length 1.

Properties of Eigenvalues and Eigenvectors

Assume $A \in \mathbb{R}^{n \times n}$ has eigenvalues

- The trace of a A is equal to the sum of its eigenvalues,

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} \lambda_{i}
$$

- The determinant of A is equal to the product of its eigenvalues,

$$
|A|=\prod_{i=1}^{n} \lambda_{i}
$$

- The rank of A is equal to the number of non-zero eigenvalues of A.

Properties of Eigenvalues and Eigenvectors

Assume $A \in \mathbb{R}^{n \times n}$ has eigenvalues

- Suppose A is non-singular with eigenvalue λ and an associated eigenvector x.
Then $1 / \lambda$ is an eigenvalue of A^{-1} with an associated eigenvector x, i.e., $A^{-1} x=(1 / \lambda) x$.
- The eigenvalues of a diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots d_{n}\right)$ are just the diagonal entries $d_{1}, \ldots d_{n}$.

Outline

Linear Independence and Rank

The Inverse of a Square Matrix

Orthogonal Matrices

Range and Nullspace of a Matrix

The Determinant

Quadratic Forms and Positive Semidefinite Matrices

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors of Symmetric Matrices

Properties

Assume A is a symmetric real matrix.

- All eigenvalues of A are real numbers. Denote them by $\lambda_{1}, \ldots, \lambda_{n}$.
- There exists a set of eigenvectors u_{1}, \ldots, u_{n} such that
a) for all i, u_{i} is an eigenvector with eigenvalue λ_{i}
b) u_{1}, \ldots, u_{n} are unit vectors and orthogonal to each other.

Diagonalization of the matrix

Let U be the orthonormal matrix that contains u_{i} 's as columns:

$$
U=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
u_{1} & u_{2} & \cdots & u_{n} \\
\mid & \mid & & \mid
\end{array}\right]
$$

Let $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be the diagonal matrix and we can verify $A U=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ A u_{1} & A u_{2} & \cdots & A u_{n} \\ \mid & \mid & & \mid\end{array}\right]=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ \lambda_{1} u_{1} & \lambda_{2} u_{2} & \cdots & \lambda_{n} u_{n} \\ \mid & \mid & & \mid\end{array}\right]$

$$
=U \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=U \Lambda
$$

Diagonalization of the matrix

Recalling that orthonormal matrix U satisfies that $U U^{T}=I$, we have

$$
A=A U U^{T}=U \Lambda U^{T}
$$

- This new presentation of A as $U \Lambda U^{T}$ is often called the diagonalization of the matrix A.
- We can often effectively treat a symmetric matrix A as a diagonal matrix w.r.t the basis defined by the eigenvectors U.

Background: representing vector w.r.t. another basis

Any orthonormal matrix $U=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ u_{1} & u_{2} & \cdots & u_{n} \\ \mid & \mid & & \mid\end{array}\right]$ defines a new basis (coordinate system) of \mathbb{R}^{n} in the following sense:

For any vector $x \in \mathbb{R}^{n}$ can be represented as a linear combination of u_{1}, \ldots, u_{n} with coefficient $\hat{x}_{1}, \ldots, \hat{x}_{n}$:

$$
x=\hat{x}_{1} u_{1}+\cdots+\hat{x}_{n} u_{n}=U \hat{x}
$$

Background: representing vector w.r.t. another basis

Indeed, such \hat{x} uniquely exists

$$
x=U \hat{x} \Leftrightarrow U^{T} x=\hat{x}
$$

In other words, the vector $\hat{x}=U^{T} x$ can serve as another representation of the vector x w.r.t the basis defined by U.

"Diagonalizing" quadratic form

The quadratic form $x^{T} A x$ can also be simplified under the new basis

$$
x^{T} A x=x^{T} U \Lambda U^{T} x=\hat{x}^{T} \Lambda \hat{x}=\sum_{i=1}^{n} \lambda_{i} \hat{x}_{i}^{2}
$$

- With the old representation, $x^{T} A x=\sum_{i=1, j=1}^{n} x_{i} x_{j} A_{i j}$ involves a sum of n^{2} terms instead of n terms in the equation above.
- With this viewpoint, we can also show that the definiteness of the matrix A depends entirely on the sign of its eigenvalues.

"Diagonalizing" quadratic form

- If all $\lambda_{i}>0$, then the matrix A is positive definite because
$x^{T} A x=\sum_{i=1}^{n} \lambda_{i} \hat{x}_{i}^{2}>0$ for any $\hat{x} \neq 0$.
- If all $\lambda_{i} \geq 0$, it is positive semidefinite because
$x^{T} A x=\sum_{i=1}^{n} \lambda_{i} \hat{x}_{i}^{2} \geq 0$ for all \hat{x}.
- Likewise, if all $\lambda_{i}<0$ or $\lambda_{i} \leq 0$, then A is negative definite or negative semidefinite respectively.
- Finally, if A has both positive and negative eigenvalues, say $\lambda_{i}>0$ and $\lambda_{j}<0$, then it is indefinite.

