Linear Algebra Review - Part 2

STAT 415: Data Mining and Machine Learning

University of Michigan

Fall 2022

Linear Independence and Rank

- The Inverse of a Square Matrix
- **Orthogonal Matrices**
- Range and Nullspace of a Matrix
- The Determinant
- Quadratic Forms and Positive Semidefinite Matrices
- **Eigenvalues and Eigenvectors**

Eigenvalues and Eigenvectors of Symmetric Matrices

Linear Independence and Rank

Linear Independence

- A set of vectors {x₁, x₂,...x_n} ⊂ ℝ^m is **linearly independent** if no vector can be represented as a linear combination of the remaining vectors.
- Conversely, if one vector belonging to the set can be represented as a linear combination of the remaining vectors, then the vectors are said to be **linearly dependent**. That is, if

$$x_n = \sum_{i=1}^{n-1} \alpha_i x_i$$

for some scalar values $\alpha_1, \ldots, \alpha_{n-1} \in \mathbb{R}$, then we say that the vectors x_1, \ldots, x_n are linearly dependent.

Linear Independence

Example:

$$x_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix} \quad x_2 = \begin{bmatrix} 4\\1\\5 \end{bmatrix} \quad x_3 = \begin{bmatrix} 2\\-3\\-1 \end{bmatrix}$$

Question: Are the vectors x_1, x_2, x_3 linearly dependent?

Hint: $x_3 = -2x_1 + x_2$

Rank

- column rank: the size of the largest subset of columns of matrix A that constitute a linearly independent set. (the number of linearly independent columns of matrix A.)
- row rank: the largest number of rows of A that constitute a linearly independent set.
- For any matrix A ∈ ℝ^{m×n}, the column rank of A equals to the row rank of A, denoted as rank(A).

Basic Properties of the Rank

▶ For $A \in \mathbb{R}^{m \times n}$, rank $(A) \le \min(m, n)$. If rank $(A) = \min(m, n)$, then A is said to be full rank.

For
$$A \in \mathbb{R}^{m \times n}$$
, $\operatorname{rank}(A) = \operatorname{rank}(A^T)$.

For
$$A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}, \operatorname{rank}(AB) \le \min(\operatorname{rank}(A), \operatorname{rank}(B))$$

For
$$A, B \in \mathbb{R}^{m \times n}$$
, $\operatorname{rank}(A + B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$

Linear Independence and Rank

The Inverse of a Square Matrix

Orthogonal Matrices

Range and Nullspace of a Matrix

The Determinant

Quadratic Forms and Positive Semidefinite Matrices

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors of Symmetric Matrices

The Inverse of a Square Matrix

Definition of the Inverse

▶ The **inverse** of a square matrix $A \in \mathbb{R}^{n \times n}$ is denoted A^{-1} , and is the unique matrix such that

$$A^{-1}A = I = AA^{-1}$$

Note: Not all matrices have inverses.

- Non-square matrices do not have inverses by definition.
- For some square matrices A, A^{-1} may not exist. In this case, we say that A is **non-invertible** or **singular**.
- In order for a square matrix A to have an inverse A⁻¹, then A must be full rank.

Properties of the inverse

Assume that $A, B \in \mathbb{R}^{n \times n}$ are non-singular.

$$\blacktriangleright (A^{-1})^{-1} = A$$

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$\blacktriangleright (A^{-1})^T = (A^T)^{-1}$$

For this reason this matrix is often denoted A^{-T} .

Example: Consider the linear system of equations, Ax = b where $A \in \mathbb{R}^{n \times n}$, and $x, b \in \mathbb{R}^n$. If A is nonsingular (i.e., invertible), then $x = A^{-1}b$.

The Inverse of a Square Matrix

Linear Independence and Rank

The Inverse of a Square Matrix

Orthogonal Matrices

Range and Nullspace of a Matrix

The Determinant

Quadratic Forms and Positive Semidefinite Matrices

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors of Symmetric Matrices

Orthogonal Matrices

Orthogonal Matrices

Orthogonal of vectors:

Two vectors $x, y \in \mathbb{R}^n$ are orthogonal if $x^T y = 0$.

▶ Normalized: A vector $x \in \mathbb{R}^n$ is normalized if $||x||_2 = 1$. (the Euclidean or ℓ_2 norm: $||x||_2 = \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{x^T x}$)

Orthogonal of matrices:

A square matrix $U \in \mathbb{R}^{n \times n}$ is orthogonal if all its columns are orthogonal to each other and are normalized. (the columns are then referred to as being **orthonormal**).

Orthogonal Matrices

From the definition of orthogonality and normality, we have

$$U^T U = I = U U^T$$

In other words, the inverse of an orthogonal matrix is its transpose.

Note that if U is not square - i.e., U ∈ ℝ^{m×n}, n < m - but its columns are still orthonormal, then U^TU = I, but UU^T ≠ I. We generally only use the term orthogonal to describe the case where U is square.

•
$$||Ux||_2 = ||x||_2$$
 for any $x \in \mathbb{R}^n, U \in \mathbb{R}^{n \times n}$ orthogonal.

Orthogonal Matrices

Linear Independence and Rank

The Inverse of a Square Matrix

Orthogonal Matrices

Range and Nullspace of a Matrix

The Determinant

Quadratic Forms and Positive Semidefinite Matrices

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors of Symmetric Matrices

Span and Projection

► The span of a set of vectors {x₁, x₂,...x_n} is the set of all vectors that can be expressed as a linear combination of {x₁,...,x_n}. That is,

span
$$(\{x_1, \dots, x_n\}) = \left\{ v : v = \sum_{i=1}^n \alpha_i x_i, \quad \alpha_i \in \mathbb{R} \right\}$$

▶ The projection of a vector $y \in \mathbb{R}^m$ onto $\operatorname{span}(\{x_1, \ldots x_n\})$ (each $x_i \in \mathbb{R}^m$) is the vector $v \in \operatorname{span}(\{x_1, \ldots x_n\})$, such that v is as close as possible to y, as measured by the Euclidean norm $||v - y||_2$. We define it formally as,

$$Proj(y; \{x_1, \dots, x_n\}) = \operatorname{argmin}_{v \in \operatorname{span}(\{x_1, \dots, x_n\})} \|y - v\|_2$$

Range

▶ The range (sometimes also called the column space) of a matrix $A \in \mathbb{R}^{m \times n}$, denoted $\mathcal{R}(A)$, is the the span of the columns of A:

$$\mathcal{R}(A) = \{ v \in \mathbb{R}^m : v = Ax, x \in \mathbb{R}^n \}$$

Assume A is full rank and n < m, the projection of a vector $y \in \mathbb{R}^m$ onto the range of A is given by,

$$\operatorname{Proj}(y; A) = \operatorname{argmin}_{v \in \mathcal{R}(A)} \|v - y\|_2 = A \left(A^T A\right)^{-1} A^T y$$

When A contains only a single column, a ∈ ℝ^m, this gives the special case for a projection of a vector on to a line:

$$\operatorname{Proj}(y;a) = \frac{aa^T}{a^T a} y$$

Nullspace

▶ The **nullspace** of a matrix $A \in \mathbb{R}^{m \times n}$, denoted $\mathcal{N}(A)$ is the set of all vectors that equal 0 when multiplied by A, i.e.,

$$\mathcal{N}(A) = \{ x \in \mathbb{R}^n : Ax = 0 \}$$

Vectors in R(A) are of size m, while vectors in the N(A) are of size n, so vectors in R (A^T) and N(A) are both in Rⁿ.

$$\left\{w: w = u + v, u \in \mathcal{R}\left(A^{T}\right), v \in \mathcal{N}(A)\right\} = \mathbb{R}^{n}$$
$$\mathcal{R}\left(A^{T}\right) \cap \mathcal{N}(A) = \{\mathbf{0}\}.$$

Nullspace

- ▶ R (A^T) and N(A) are disjoint subsets that together span the entire space of ℝⁿ.
- Sets of this type are called orthogonal complements, and we denote this R (A^T) = N(A)[⊥]

Linear Independence and Rank

The Inverse of a Square Matrix

Orthogonal Matrices

Range and Nullspace of a Matrix

The Determinant

Quadratic Forms and Positive Semidefinite Matrices

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors of Symmetric Matrices

The Determinant

Several Properties of the Determinant

For
$$A \in \mathbb{R}^{n \times n}$$
, $|A| = |A^T|$.

For
$$A, B \in \mathbb{R}^{n \times n}, |AB| = |A||B|$$
.

For $A \in \mathbb{R}^{n \times n}$, |A| = 0 if and only if A is singular (i.e., non-invertible).

For
$$A \in \mathbb{R}^{n \times n}$$
 and A is non-singular, $|A^{-1}| = 1/|A|$.

The Determinant

Linear Independence and Rank

The Inverse of a Square Matrix

Orthogonal Matrices

Range and Nullspace of a Matrix

The Determinant

Quadratic Forms and Positive Semidefinite Matrices

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors of Symmetric Matrices

Quadratic Forms and Positive Semidefinite Matrices

Quadratic Forms

Given a square matrix $A \in \mathbb{R}^{n \times n}$ and a vector $x \in \mathbb{R}^n$, the scalar value $x^T A x$ is called a **quadratic form**.

$$x^{T}Ax = \sum_{i=1}^{n} x_{i}(Ax)_{i} = \sum_{i=1}^{n} x_{i}\left(\sum_{j=1}^{n} A_{ij}x_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}x_{i}x_{j}.$$
$$x^{T}Ax = (x^{T}Ax)^{T} = x^{T}A^{T}x = x^{T}\left(\frac{1}{2}A + \frac{1}{2}A^{T}\right)x$$

(Hint for 1st equality: the transpose of a scalar is equal to itself.)

Only the symmetric part of A contributes to the quadratic form and we often assume that the matrices in a quadratic form are symmetric.

Positive Semidefinite Matrices

A symmetric matrix A ∈ Sⁿ is positive definite (PD) if for all non-zero vectors x ∈ ℝⁿ, x^TAx > 0.

This is denoted $A\succ 0$ (or just A>0). The set of all positive definite matrices is denoted $\mathbb{S}^n_{++}.$

▶ A symmetric matrix $A \in \mathbb{S}^n$ is **positive semidefinite** (PSD) if for all vectors $x^T A x \ge 0$.

This is written $A \succeq 0$ (or just $A \ge 0$), and the set of all positive semidefinite matrices is often denoted \mathbb{S}^n_+ .

Negative Semidefinite Matrices

- A symmetric matrix $A \in \mathbb{S}^n$ is **negative definite** (ND), denoted $A \prec 0$ (or just A < 0) if for all non-zero $x \in \mathbb{R}^n, x^T A x < 0$.
- A symmetric matrix $A \in \mathbb{S}^n$ is **negative semidefinite** (NSD), denoted $A \leq 0$ (or just $A \leq 0$) if for all $x \in \mathbb{R}^n, x^T A x \leq 0$.
- Finally, a symmetric matrix A ∈ Sⁿ is indefinite, if it is neither positive semidefinite nor negative semidefinite i.e., if there exists x₁, x₂ ∈ ℝⁿ such that x₁^TAx₁ > 0 and x₂^TAx₂ < 0</p>

Properties of Positive Definite Matrices

- Positive definite and negative definite matrices are always full rank, and hence, invertible.
- Given any matrix $A \in \mathbb{R}^{m \times n}$ (not necessarily symmetric or even square), the Gram matrix $G = A^T A$ is always positive semidefinite.
- Further, if $m \ge n$ (and we assume for convenience that A is full rank), then $G = A^T A$ is positive definite.

Linear Independence and Rank

The Inverse of a Square Matrix

Orthogonal Matrices

Range and Nullspace of a Matrix

The Determinant

Quadratic Forms and Positive Semidefinite Matrices

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors of Symmetric Matrices

Eigenvalues and Eigenvectors

Given a square matrix $A \in \mathbb{R}^{n \times n}$, we say that $\lambda \in \mathbb{C}$ is an **eigenvalue** of A and $x \in \mathbb{C}^n$ is the corresponding **eigenvector** if

$$Ax = \lambda x, \quad x \neq 0$$

- Let λ₁,...,λ_n are all the eigenvalues of the matrix A, they may not be distinct.
- ► To find the eigenvector corresponding to the eigenvalue \(\lambda_i\), we solve the linear equation \((\lambda_iI A)\) x = 0\), which is guaranteed to have a non-zero solution because \(\lambda_iI A\) is singular.
- We usually assume that the eigenvector is normalized to have length 1.

Eigenvalues and Eigenvectors

Properties of Eigenvalues and Eigenvectors

Assume $A \in \mathbb{R}^{n \times n}$ has eigenvalues

▶ The trace of a A is equal to the sum of its eigenvalues,

$$\operatorname{tr}(A) = \sum_{i=1}^{n} \lambda_i$$

▶ The determinant of A is equal to the product of its eigenvalues,

$$|A| = \prod_{i=1}^{n} \lambda_i$$

The rank of A is equal to the number of non-zero eigenvalues of A.

Properties of Eigenvalues and Eigenvectors

Assume $A \in \mathbb{R}^{n \times n}$ has eigenvalues

Suppose A is non-singular with eigenvalue λ and an associated eigenvector x.

Then $1/\lambda$ is an eigenvalue of A^{-1} with an associated eigenvector x, i.e., $A^{-1}x=(1/\lambda)x.$

► The eigenvalues of a diagonal matrix D = diag (d₁,...d_n) are just the diagonal entries d₁,...d_n.

Linear Independence and Rank

The Inverse of a Square Matrix

Orthogonal Matrices

Range and Nullspace of a Matrix

The Determinant

Quadratic Forms and Positive Semidefinite Matrices

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors of Symmetric Matrices

Eigenvalues and Eigenvectors of Symmetric Matrices

Properties

Assume A is a symmetric real matrix.

- ▶ All eigenvalues of A are real numbers. Denote them by $\lambda_1, \ldots, \lambda_n$.
- There exists a set of eigenvectors u_1, \ldots, u_n such that
 - a) for all i, u_i is an eigenvector with eigenvalue λ_i
 - b) u_1, \ldots, u_n are unit vectors and orthogonal to each other.

Diagonalization of the matrix

Let U be the orthonormal matrix that contains u_i 's as columns:

$$U = \left[\begin{array}{cccc} | & | & | \\ u_1 & u_2 & \cdots & u_n \\ | & | & | \end{array} \right]$$

Let
$$\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$
 be the diagonal matrix and we can verify

$$AU = \begin{bmatrix} | & | & | \\ Au_1 & Au_2 & \cdots & Au_n \\ | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ \lambda_1 u_1 & \lambda_2 u_2 & \cdots & \lambda_n u_n \\ | & | & | \end{bmatrix}$$

$$= U \operatorname{diag}(\lambda_1, \dots, \lambda_n) = U\Lambda$$

Eigenvalues and Eigenvectors of Symmetric Matrices

Diagonalization of the matrix

Recalling that orthonormal matrix \boldsymbol{U} satisfies that $\boldsymbol{U}\boldsymbol{U}^T=\boldsymbol{I},$ we have

$$A = AUU^T = U\Lambda U^T$$

- ► This new presentation of A as UAU^T is often called the diagonalization of the matrix A.
- We can often effectively treat a symmetric matrix A as a diagonal matrix w.r.t the basis defined by the eigenvectors U.

Background: representing vector w.r.t. another basis

Any orthonormal matrix $U = \begin{bmatrix} | & | & | & | \\ u_1 & u_2 & \cdots & u_n \\ | & | & | \end{bmatrix}$ defines a new basis (coordinate system) of \mathbb{R}^n in the following sense:

For any vector $x \in \mathbb{R}^n$ can be represented as a linear combination of u_1, \ldots, u_n with coefficient $\hat{x}_1, \ldots, \hat{x}_n$:

$$x = \hat{x}_1 u_1 + \dots + \hat{x}_n u_n = U\hat{x}$$

Eigenvalues and Eigenvectors of Symmetric Matrices

Background: representing vector w.r.t. another basis

Indeed, such \hat{x} uniquely exists

$$x = U\hat{x} \Leftrightarrow U^T x = \hat{x}$$

In other words, the vector $\hat{x} = U^T x$ can serve as another representation of the vector x w.r.t the basis defined by U.

"Diagonalizing" quadratic form

The quadratic form $x^T A x$ can also be simplified under the new basis

$$x^T A x = x^T U \Lambda U^T x = \hat{x}^T \Lambda \hat{x} = \sum_{i=1}^n \lambda_i \hat{x}_i^2$$

- With the old representation, x^TAx = ∑_{i=1,j=1}ⁿ x_ix_jA_{ij} involves a sum of n² terms instead of n terms in the equation above.
- With this viewpoint, we can also show that the definiteness of the matrix A depends entirely on the sign of its eigenvalues.

"Diagonalizing" quadratic form

- If all $\lambda_i > 0$, then the matrix A is positive definite because $x^T A x = \sum_{i=1}^n \lambda_i \hat{x}_i^2 > 0$ for any $\hat{x} \neq 0$.
- If all $\lambda_i \ge 0$, it is positive semidefinite because $x^T A x = \sum_{i=1}^n \lambda_i \hat{x}_i^2 \ge 0$ for all \hat{x} .
- ► Likewise, if all \u03c6_i < 0 or \u03c6_i ≤ 0, then A is negative definite or negative semidefinite respectively.
- ▶ Finally, if A has both positive and negative eigenvalues, say λ_i > 0 and λ_i < 0, then it is indefinite.</p>