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Linear Independence

▶ A set of vectors {x1, x2, . . . xn} ⊂ Rm is linearly independent if no

vector can be represented as a linear combination of the remaining

vectors.

▶ Conversely, if one vector belonging to the set can be represented as

a linear combination of the remaining vectors, then the vectors are

said to be linearly dependent. That is, if

xn =

n−1∑
i=1

αixi

for some scalar values α1, . . . , αn−1 ∈ R, then we say that the

vectors x1, . . . , xn are linearly dependent.
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Linear Independence

Example:

x1 =

 1

2

3

 x2 =

 4

1

5

 x3 =

 2

−3

−1


Question: Are the vectors x1, x2, x3 linearly dependent?

Hint: x3 = −2x1 + x2
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Rank

▶ column rank: the size of the largest subset of columns of matrix A

that constitute a linearly independent set. (the number of linearly

independent columns of matrix A.)

▶ row rank: the largest number of rows of A that constitute a linearly

independent set.

▶ For any matrix A ∈ Rm×n, the column rank of A equals to the row

rank of A, denoted as rank(A).
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Basic Properties of the Rank

▶ For A ∈ Rm×n, rank(A) ≤ min(m,n). If rank(A) = min(m,n),

then A is said to be full rank.

▶ For A ∈ Rm×n, rank(A) = rank
(
AT

)
.

▶ For A ∈ Rm×n, B ∈ Rn×p, rank(AB) ≤ min(rank(A), rank(B))

▶ For A,B ∈ Rm×n, rank(A+B) ≤ rank(A) + rank(B)
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Definition of the Inverse

▶ The inverse of a square matrix A ∈ Rn×n is denoted A−1, and is

the unique matrix such that

A−1A = I = AA−1

▶ Note: Not all matrices have inverses.

– Non-square matrices do not have inverses by definition.

– For some square matrices A, A−1 may not exist. In this case,we say

that A is non-invertible or singular.

▶ In order for a square matrix A to have an inverse A−1, then A must

be full rank.
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Properties of the inverse

Assume that A,B ∈ Rn×n are non-singular.

▶
(
A−1

)−1
= A

▶ (AB)−1 = B−1A−1

▶
(
A−1

)T
=

(
AT

)−1
.

For this reason this matrix is often denoted A−T .

Example: Consider the linear system of equations, Ax = b where

A ∈ Rn×n, and x, b ∈ Rn. If A is nonsingular (i.e., invertible), then

x = A−1b.
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Orthogonal Matrices

▶ Orthogonal of vectors:

Two vectors x, y ∈ Rn are orthogonal if xT y = 0.

▶ Normalized: A vector x ∈ Rn is normalized if ∥x∥2 = 1.

(the Euclidean or ℓ2 norm: ∥x∥2 =
√∑n

i=1 x
2
i =

√
xTx )

▶ Orthogonal of matrices:

A square matrix U ∈ Rn×n is orthogonal if all its columns are

orthogonal to each other and are normalized. (the columns are then

referred to as being orthonormal).
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Orthogonal Matrices

▶ From the definition of orthogonality and normality, we have

UTU = I = UUT

In other words, the inverse of an orthogonal matrix is its transpose.

▶ Note that if U is not square - i.e., U ∈ Rm×n, n < m - but its

columns are still orthonormal, then UTU = I, but UUT ̸= I. We

generally only use the term orthogonal to describe the case where U

is square.

▶ ∥Ux∥2 = ∥x∥2 for any x ∈ Rn, U ∈ Rn×n orthogonal.
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Span and Projection

▶ The span of a set of vectors {x1, x2, . . . xn} is the set of all vectors

that can be expressed as a linear combination of {x1, . . . , xn}. That
is,

span ({x1, . . . xn}) =

{
v : v =

n∑
i=1

αixi, αi ∈ R

}
▶ The projection of a vector y ∈ Rm onto span ({x1, . . . xn}) (each

xi ∈ Rm) is the vector v ∈ span ({x1, . . . xn} ), such that v is as

close as possible to y, as measured by the Euclidean norm ∥v − y∥2.
We define it formally as,

Proj (y; {x1, . . . xn}) = argminv∈span({x1,...,xn}) ∥y − v∥2
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Range

▶ The range (sometimes also called the column space) of a matrix

A ∈ Rm×n, denoted R(A), is the the span of the columns of A:

R(A) = {v ∈ Rm : v = Ax, x ∈ Rn}

▶ Assume A is full rank and n < m, the projection of a vector y ∈ Rm

onto the range of A is given by,

Proj(y;A) = argminv∈R(A) ∥v − y∥2 = A
(
ATA

)−1
AT y

▶ When A contains only a single column, a ∈ Rm, this gives the

special case for a projection of a vector on to a line:

Proj(y; a) =
aaT

aTa
y
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Nullspace

▶ The nullspace of a matrix A ∈ Rm×n, denoted N (A) is the set of

all vectors that equal 0 when multiplied by A, i.e.,

N (A) = {x ∈ Rn : Ax = 0}

▶ Vectors in R(A) are of size m, while vectors in the N (A) are of size

n, so vectors in R
(
AT

)
and N (A) are both in Rn.

{
w : w = u+ v, u ∈ R

(
AT

)
, v ∈ N (A)

}
= Rn

R
(
AT

)
∩N (A) = {0}.
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Nullspace

▶ R
(
AT

)
and N (A) are disjoint subsets that together span the entire

space of Rn.

▶ Sets of this type are called orthogonal complements, and we

denote this R
(
AT

)
= N (A)⊥

Range and Nullspace of a Matrix 17
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Several Properties of the Determinant

▶ For A ∈ Rn×n, |A| =
∣∣AT

∣∣.
▶ For A,B ∈ Rn×n, |AB| = |A||B|.

▶ For A ∈ Rn×n, |A| = 0 if and only if A is singular (i.e.,

non-invertible).

▶ For A ∈ Rn×n and A is non-singular,
∣∣A−1

∣∣ = 1/|A|.
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Quadratic Forms

Given a square matrix A ∈ Rn×n and a vector x ∈ Rn, the scalar value

xTAx is called a quadratic form.

xTAx =

n∑
i=1

xi(Ax)i =

n∑
i=1

xi

 n∑
j=1

Aijxj

 =

n∑
i=1

n∑
j=1

Aijxixj .

xTAx =
(
xTAx

)T
= xTATx = xT

(
1

2
A+

1

2
AT

)
x

(Hint for 1st equality: the transpose of a scalar is equal to itself.)

Only the symmetric part of A contributes to the quadratic form and we

often assume that the matrices in a quadratic form are symmetric.
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Positive Semidefinite Matrices

▶ A symmetric matrix A ∈ Sn is positive definite (PD) if for all

non-zero vectors x ∈ Rn, xTAx > 0.

This is denoted A ≻ 0 (or just A > 0 ). The set of all positive

definite matrices is denoted Sn++.

▶ A symmetric matrix A ∈ Sn is positive semidefinite (PSD) if for

all vectors xTAx ≥ 0 .

This is written A ⪰ 0 (or just A ≥ 0 ), and the set of all positive

semidefinite matrices is often denoted Sn+.
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Negative Semidefinite Matrices

▶ A symmetric matrix A ∈ Sn is negative definite (ND), denoted

A ≺ 0 (or just A < 0) if for all non-zero x ∈ Rn, xTAx < 0.

▶ A symmetric matrix A ∈ Sn is negative semidefinite (NSD),

denoted A ⪯ 0 (or just A ≤ 0 ) if for all x ∈ Rn, xTAx ≤ 0.

▶ Finally, a symmetric matrix A ∈ Sn is indefinite, if it is neither

positive semidefinite nor negative semidefinite - i.e., if there exists

x1, x2 ∈ Rn such that xT
1 Ax1 > 0 and xT

2 Ax2 < 0
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Properties of Positive Definite Matrices

▶ Positive definite and negative definite matrices are always full rank,

and hence, invertible.

▶ Given any matrix A ∈ Rm×n (not necessarily symmetric or even

square), the Gram matrix G = ATA is always positive semidefinite.

▶ Further, if m ≥ n (and we assume for convenience that A is full

rank), then G = ATA is positive definite.

Quadratic Forms and Positive Semidefinite Matrices 24



Outline

Linear Independence and Rank

The Inverse of a Square Matrix

Orthogonal Matrices

Range and Nullspace of a Matrix

The Determinant

Quadratic Forms and Positive Semidefinite Matrices

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors of Symmetric Matrices

Eigenvalues and Eigenvectors 25



Eigenvalues and Eigenvectors

Given a square matrix A ∈ Rn×n, we say that λ ∈ C is an eigenvalue of

A and x ∈ Cn is the corresponding eigenvector if

Ax = λx, x ̸= 0

▶ Let λ1, . . . , λn are all the eigenvalues of the matrix A, they may not

be distinct.

▶ To find the eigenvector corresponding to the eigenvalue λi, we solve

the linear equation (λiI −A)x = 0, which is guaranteed to have a

non-zero solution because λiI −A is singular.

▶ We usually assume that the eigenvector is normalized to have length

1.
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Properties of Eigenvalues and Eigenvectors

Assume A ∈ Rn×n has eigenvalues

▶ The trace of a A is equal to the sum of its eigenvalues,

tr(A) =

n∑
i=1

λi

▶ The determinant of A is equal to the product of its eigenvalues,

|A| =
n∏

i=1

λi

▶ The rank of A is equal to the number of non-zero eigenvalues of A.
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Properties of Eigenvalues and Eigenvectors

Assume A ∈ Rn×n has eigenvalues

▶ Suppose A is non-singular with eigenvalue λ and an associated

eigenvector x.

Then 1/λ is an eigenvalue of A−1 with an associated eigenvector x,

i.e., A−1x = (1/λ)x.

▶ The eigenvalues of a diagonal matrix D = diag (d1, . . . dn) are just

the diagonal entries d1, . . . dn.
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Properties

Assume A is a symmetric real matrix.

▶ All eigenvalues of A are real numbers. Denote them by λ1, . . . , λn.

▶ There exists a set of eigenvectors u1, . . . , un such that

a) for all i, ui is an eigenvector with eigenvalue λi

b) u1, . . . , un are unit vectors and orthogonal to each other.
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Diagonalization of the matrix

Let U be the orthonormal matrix that contains ui’s as columns:

U =

 | | |
u1 u2 · · · un

| | |


Let Λ = diag (λ1, . . . , λn) be the diagonal matrix and we can verify

AU =

 | | |
Au1 Au2 · · · Aun

| | |

 =

 | | |
λ1u1 λ2u2 · · · λnun

| | |


= U diag (λ1, . . . , λn) = UΛ
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Diagonalization of the matrix

Recalling that orthonormal matrix U satisfies that UUT = I, we have

A = AUUT = UΛUT

▶ This new presentation of A as UΛUT is often called the

diagonalization of the matrix A.

▶ We can often effectively treat a symmetric matrix A as a diagonal

matrix w.r.t the basis defined by the eigenvectors U .
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Background: representing vector w.r.t. another basis

Any orthonormal matrix U =

 | | |
u1 u2 · · · un

| | |

 defines a new basis

(coordinate system) of Rn in the following sense:

For any vector x ∈ Rn can be represented as a linear combination of

u1, . . . , un with coefficient x̂1, . . . , x̂n :

x = x̂1u1 + · · ·+ x̂nun = Ux̂
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Background: representing vector w.r.t. another basis

Indeed, such x̂ uniquely exists

x = Ux̂ ⇔ UTx = x̂

In other words, the vector x̂ = UTx can serve as another representation

of the vector x w.r.t the basis defined by U .
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”Diagonalizing” quadratic form

The quadratic form xTAx can also be simplified under the new basis

xTAx = xTUΛUTx = x̂TΛx̂ =

n∑
i=1

λix̂
2
i

▶ With the old representation, xTAx =
∑n

i=1,j=1 xixjAij involves a

sum of n2 terms instead of n terms in the equation above.

▶ With this viewpoint, we can also show that the definiteness of the

matrix A depends entirely on the sign of its eigenvalues.

Eigenvalues and Eigenvectors of Symmetric Matrices 35



”Diagonalizing” quadratic form

▶ If all λi > 0, then the matrix A is positive definite because

xTAx =
∑n

i=1 λix̂
2
i > 0 for any x̂ ̸= 0.

▶ If all λi ≥ 0, it is positive semidefinite because

xTAx =
∑n

i=1 λix̂
2
i ≥ 0 for all x̂.

▶ Likewise, if all λi < 0 or λi ≤ 0, then A is negative definite or

negative semidefinite respectively.

▶ Finally, if A has both positive and negative eigenvalues, say λi > 0

and λj < 0, then it is indefinite.
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