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Linear Independence

> A set of vectors {z1,Z2,...2,} C R™ is linearly independent if no
vector can be represented as a linear combination of the remaining

vectors.

» Conversely, if one vector belonging to the set can be represented as
a linear combination of the remaining vectors, then the vectors are

said to be linearly dependent. That is, if

n—1
Tp = § Q; T
1=1

for some scalar values ay,...,a,—1 € R, then we say that the

vectors 1, ..., T, are linearly dependent.
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Linear Independence

Example:
4 2
T = 2 To = 1 xr3 = -3
5 -1

Question: Are the vectors 1, 2, x3 linearly dependent?

Hint: 23 = —2x1 + 29
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Rank

» column rank: the size of the largest subset of columns of matrix A
that constitute a linearly independent set. (the number of linearly

independent columns of matrix A.)

» row rank: the largest number of rows of A that constitute a linearly

independent set.

» For any matrix A € R™*", the column rank of A equals to the row
rank of A, denoted as rank(A).
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Basic Properties of the Rank

» For A € R™*" rank(A4) < min(m,n). If rank(A4) = min(m,n),
then A is said to be full rank.

> For A € R™*" rank(A) = rank (A7).
» For A € R™*" B € R"*P rank(AB) < min(rank(A), rank(B))

» For A, B € R"™*" rank(A + B) < rank(A) + rank(B)

Linear Independence and Rank
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Definition of the Inverse

» The inverse of a square matrix A € R™*™ is denoted A~!, and is

the unique matrix such that
APA=T=A4A""1

» Note: Not all matrices have inverses.

— Non-square matrices do not have inverses by definition.
— For some square matrices A, A~ may not exist. In this case,we say
that A is non-invertible or singular.

» In order for a square matrix A to have an inverse A~!, then A must
be full rank.

The Inverse of a Square Matrix



Properties of the inverse

Assume that A, B € R™ ™ are non-singular.

> (A1)l =4
> (AB)~! = B~14-!

> (A7) = (47)"

For this reason this matrix is often denoted A~ 7T.

Example: Consider the linear system of equations, Ax = b where
A €eR™" and z,b € R™. If A is nonsingular (i.e., invertible), then
x=A"1b.

The Inverse of a Square Matrix
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Orthogonal Matrices

» Orthogonal of vectors:
Two vectors z,y € R™ are orthogonal if 27y = 0.

> Normalized: A vector z € R™ is normalized if ||z]j2 = 1.
(the Euclidean or 5 norm: |[z|2 = /> 1, 27 = VaTx )

» Orthogonal of matrices:
A square matrix U € R"*" is orthogonal if all its columns are
orthogonal to each other and are normalized. (the columns are then

referred to as being orthonormal).

Orthogonal Matrices
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Orthogonal Matrices

» From the definition of orthogonality and normality, we have
Ut =1=0U0"

In other words, the inverse of an orthogonal matrix is its transpose.

» Note that if U is not square - i.e., U € R™*" n < m - but its
columns are still orthonormal, then UTU = I, but UUT # 1. We
generally only use the term orthogonal to describe the case where U

is square.

» ||[Ux||2 = ||z||2 for any x € R™, U € R™*™ orthogonal.

Orthogonal Matrices 12
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Span and Projection

» The span of a set of vectors {x,z2,...2,} is the set of all vectors
that can be expressed as a linear combination of {z1,...,2,}. That
is,

n
span ({z1,...z,}) = {v v = Zaixi, o; € ]R}
i=1

» The projection of a vector y € R™ onto span ({x1,...x,}) (each
x; € R™) is the vector v € span ({z1,...2,} ), such that v is as
close as possible to y, as measured by the Euclidean norm [|v — y||o.

We define it formally as,

PI‘Oj (y7 {'Tlv ce xn}) = argminvéspan({xl,4..,J;n}) ||y - U||2

Range and Nullspace of a Matrix
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Range

> The range (sometimes also called the column space) of a matrix
A € R™*" denoted R(A), is the the span of the columns of A:

RA) ={veR™:v=Az,x € R"}

> Assume A is full rank and n < m, the projection of a vector y € R™

onto the range of A is given by,
. . -1
Proj(y; A) = argmin,cga) lv—ylla=A4 (ATA) ATy

» When A contains only a single column, a € R™, this gives the
special case for a projection of a vector on to a line:
T
a
Proj(y;a) = —
iya) =~y
Range and Nullspace of a Matrix 15



Nulispace

» The nullspace of a matrix A € R™*", denoted N'(A) is the set of
all vectors that equal 0 when multiplied by A4, i.e.,

N(A) ={z eR": Az = 0}

> Vectors in R(A) are of size m, while vectors in the N'(A) are of size
n, so vectors in R (A”) and N'(A) are both in R™.

{w w—u+vu€R(AT)U€N } R"

R (AT) NN (A) = {0}.

Range and Nullspace of a Matrix 16



Nulispace

> R (AT) and N(A) are disjoint subsets that together span the entire
space of R™.

» Sets of this type are called orthogonal complements, and we
denote this R (A7) = N(4)*

Range and Nullspace of a Matrix
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Several Properties of the Determinant
> For A e R™" |A| = |AT).
> For A, B € R"™" |AB| = |A||B|.

» For A e R"*" |A| =0 if and only if A is singular (i.e.,

non-invertible).

> For A € R"*™ and A is non-singular, |[A~| = 1/|A].

The Determinant
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Quadratic Forms

Given a square matrix A € R™"*"™ and a vector x € R", the scalar value

T Ax is called a quadratic form.

i=1 i=1 j=1

i=1 j=1
1 1
zT Az = (xTAx)T =gl ATy =27 (2A + 2AT) T
(Hint for 1st equality: the transpose of a scalar is equal to itself.)

Only the symmetric part of A contributes to the quadratic form and we

often assume that the matrices in a quadratic form are symmetric.

Quadratic Forms and Positive Semidefinite Matrices
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Positive Semidefinite Matrices

> A symmetric matrix A € S” is positive definite (PD) if for all

non-zero vectors x € R™, z7 Az > 0.

This is denoted A > 0 (or just A > 0 ). The set of all positive

definite matrices is denoted S , .

» A symmetric matrix A € S is positive semidefinite (PSD) if for

all vectors 2T Az > 0 .

This is written A = 0 (or just A > 0 ), and the set of all positive

semidefinite matrices is often denoted S’} .

Quadratic Forms and Positive Semidefinite Matrices
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Negative Semidefinite Matrices

» A symmetric matrix A € S is negative definite (ND), denoted
A <0 (or just A < 0) if for all non-zero x € R", 2T Az < 0.

> A symmetric matrix A € S™ is negative semidefinite (NSD),
denoted A <0 (or just A <0 ) if for all z € R", 27 Az < 0.

» Finally, a symmetric matrix A € S™ is indefinite, if it is neither
positive semidefinite nor negative semidefinite - i.e., if there exists
71,72 € R such that 27 Azy > 0 and 2 Az < 0

Quadratic Forms and Positive Semidefinite Matrices
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Properties of Positive Definite Matrices

> Positive definite and negative definite matrices are always full rank,

and hence, invertible.

> Given any matrix A € R™*" (not necessarily symmetric or even

square), the Gram matrix G = AT A is always positive semidefinite.

» Further, if m > n (and we assume for convenience that A is full
rank), then G = AT A is positive definite.

Quadratic Forms and Positive Semidefinite Matrices
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Eigenvalues and Eigenvectors

Given a square matrix A € R™"*", we say that A € C is an eigenvalue of

A and z € C" is the corresponding eigenvector if
Az =Xz, x#0

> Let A\y,...,\, are all the eigenvalues of the matrix A, they may not
be distinct.

» To find the eigenvector corresponding to the eigenvalue \;, we solve
the linear equation (A\;I — A) x = 0, which is guaranteed to have a
non-zero solution because \;I — A is singular.

» We usually assume that the eigenvector is normalized to have length
1.

Eigenvalues and Eigenvectors
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Properties of Eigenvalues and Eigenvectors

Assume A € R™ "™ has eigenvalues

» The trace of a A is equal to the sum of its eigenvalues,

tI‘(A) = zn: Ai

» The determinant of A is equal to the product of its eigenvalues,

|A| = H i
i=1

» The rank of A is equal to the number of non-zero eigenvalues of A.

Eigenvalues and Eigenvectors
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Properties of Eigenvalues and Eigenvectors

Assume A € R™ "™ has eigenvalues

» Suppose A is non-singular with eigenvalue A\ and an associated
eigenvector .
Then 1/ is an eigenvalue of A~! with an associated eigenvector =,
e, A7z = (1/\)z.

» The eigenvalues of a diagonal matrix D = diag (dy, ...d,) are just
the diagonal entries dy,...d,.

Eigenvalues and Eigenvectors
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Properties

Assume A is a symmetric real matrix.

> All eigenvalues of A are real numbers. Denote them by Aq, ...

» There exists a set of eigenvectors uy, ..., u, such that

a) for all i, u; is an eigenvector with eigenvalue \;

b) uy,...,u, are unit vectors and orthogonal to each other.

Eigenvalues and Eigenvectors of Symmetric Matrices
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Diagonalization of the matrix

Let U be the orthonormal matrix that contains u;'s as columns:

Let A = diag (A1, ..., \,) be the diagonal matrix and we can verify

| | | | | |
AU = Aul AUQ s Aun = )\1U1 )\QUQ ce )\nun

=Udiag (A1,...,An) =UA

Eigenvalues and Eigenvectors of Symmetric Matrices 31



Diagonalization of the matrix

Recalling that orthonormal matrix U satisfies that UUT = I, we have
A=AUUT =UAUT

» This new presentation of A as UAU7 is often called the
diagonalization of the matrix A.

» We can often effectively treat a symmetric matrix A as a diagonal

matrix w.r.t the basis defined by the eigenvectors U.

Eigenvalues and Eigenvectors of Symmetric Matrices
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Background: representing vector w.r.t. another basis

Any orthonormal matrix U = | u; wus --- 1w, | defines a new basis

(coordinate system) of R™ in the following sense:

For any vector x € R™ can be represented as a linear combination of

U, ..., U, with coefficient Z1,...,Z, :

T=T1uy + -+ Tpu, = UL

Eigenvalues and Eigenvectors of Symmetric Matrices 33



Background: representing vector w.r.t. another basis

Indeed, such & uniquely exists

r=Ut = UTx=3%

In other words, the vector & = UTx can serve as another representation

of the vector = w.r.t the basis defined by U.

Eigenvalues and Eigenvectors of Symmetric Matrices 34



" Diagonalizing” quadratic form

The quadratic form 27 Az can also be simplified under the new basis

2" Az = 2"UNU" 2z = 3T Ae =) \id}

=1

» With the old representation, 7 Az = Y 7

i=1,j=1 xixinj involves a

sum of n? terms instead of n terms in the equation above.

» With this viewpoint, we can also show that the definiteness of the

matrix A depends entirely on the sign of its eigenvalues.

Eigenvalues and Eigenvectors of Symmetric Matrices
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" Diagonalizing” quadratic form

» If all A\; > 0, then the matrix A is positive definite because
eT Az =371 | X\i2? > 0 for any & # 0.

> If all A\; >0, it is positive semidefinite because
2T Az =370 \d2 >0 for all 2.

» Likewise, if all A; < 0 or \; <0, then A is negative definite or

negative semidefinite respectively.

» Finally, if A has both positive and negative eigenvalues, say \; > 0
and A; < 0, then it is indefinite.

Eigenvalues and Eigenvectors of Symmetric Matrices
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