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Up to this point in class, you have seen multivariate Gaussians arise in a number of appli-
cations, such as the probabilistic interpretation of linear regression, Gaussian discriminant
analysis, mixture of Gaussians clustering, and most recently, factor analysis. In these lec-
ture notes, we attempt to demystify some of the fancier properties of multivariate Gaussians
that were introduced in the recent factor analysis lecture. The goal of these notes is to give
you some intuition into where these properties come from, so that you can use them with
confidence on your homework (hint hint!) and beyond.

1 Definition

A vector-valued random variable x ∈ Rn is said to have a multivariate normal (or Gaus-
sian) distribution with mean µ ∈ Rn and covariance matrix Σ ∈ Sn

++
1 if its probability

density function is given by

p(x; µ, Σ) =
1

(2π)n/2|Σ|1/2
exp

(

−1

2
(x − µ)T Σ−1(x − µ)

)

.

We write this as x ∼ N (µ, Σ).

2 Gaussian facts

Multivariate Gaussians turn out to be extremely handy in practice due to the following facts:

• Fact #1: If you know the mean µ and covariance matrix Σ of a Gaussian random
variable x, you can write down the probability density function for x directly.

1Recall from the section notes on linear algebra that S
n
++ is the space of symmetric positive definite n×n

matrices, defined as

S
n
++ =

{

A ∈ R
n×n : A = AT and xT Ax > 0 for all x ∈ R

n such that x 6= 0
}

.
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• Fact #2: The following Gaussian integrals have closed-form solutions:
∫

x∈Rn

p(x; µ, Σ)dx =

∫ ∞

−∞

· · ·
∫ ∞

−∞

p(x; µ, Σ)dx1 . . . dxn = 1

∫

x∈Rn

xip(x; µ, σ2)dx = µi

∫

x∈Rn

(xi − µi)(xj − µj)p(x; µ, σ2)dx = Σij.

• Fact #3: Gaussians obey a number of closure properties:

– The sum of independent Gaussian random variables is Gaussian.

– The marginal of a joint Gaussian distribution is Gaussian.

– The conditional of a joint Gaussian distribution is Gaussian.

At first glance, some of these facts, in particular facts #1 and #2, may seem either
intuitively obvious or at least plausible. What is probably not so clear, however, is why
these facts are so powerful. In this document, we’ll provide some intuition for how these facts
can be used when performing day-to-day manipulations dealing with multivariate Gaussian
random variables.

3 Closure properties

In this section, we’ll go through each of the closure properties described earlier, and we’ll
either prove the property using facts #1 and #2, or we’ll at least give some type of intuition
as to why the property is true.

The following is a quick roadmap of what we’ll cover:

sums marginals conditionals
why is it Gaussian? no yes yes

resulting density function yes yes yes

3.1 Sum of independent Gaussians is Gaussian

The formal statement of this rule is:

Suppose that y ∼ N (µ, Σ) and z ∼ N (µ′, Σ′) are independent Gaussian dis-
tributed random variables, where µ, µ′ ∈ Rn and Σ, Σ′ ∈ Sn

++. Then, their sum
is also Gaussian:

y + z ∼ N (µ + µ′, Σ + Σ′).

Before we prove anything, here are some observations:
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1. The first thing to point out is that the importance of the independence assumption in
the above rule. To see why this matters, suppose that y ∼ N (µ, Σ) for some mean
vector µ and covariance matrix Σ, and suppose that z = −y. Clearly, z also has a
Gaussian distribution (in fact, z ∼ N (−µ, Σ), but y + z is identically zero!

2. The second thing to point out is a point of confusion for many students: if we add
together two Gaussian densities (“bumps” in multidimensional space), wouldn’t we get
back some bimodal (i.e., “two-humped” density)? Here, the thing to realize is that the
density of the random variable y + z in this rule is NOT found by simply adding the
densities of the individual random variables y and z. Rather, the density of y + z will
actually turn out to be a convolution of the densities for y and z.2 To show that the
convolution of two Gaussian densities gives a Gaussian density, however, is beyond the
scope of this class.

Instead, let’s just use the observation that the convolution does give some type of Gaus-
sian density, along with Fact #1, to figure out what the density, p(y + z|µ, Σ) would be, if
we were to actually compute the convolution. How can we do this? Recall that from Fact
#1, a Gaussian distribution is fully specified by its mean vector and covariance matrix. If
we can determine what these are, then we’re done.

But this is easy! For the mean, we have

E[yi + zi] = E[yi] + E[zi] = µi + µ′
i

from linearity of expectations. Therefore, the mean of y + z is simply µ + µ′. Also, the
(i, j)th entry of the covariance matrix is given by

E[(yi + zi)(yj + zj)] − E[yi + zi]E[yj + zj]

= E[yiyj + ziyj + yizj + zizj] − (E[yi] + E[zi])(E[yj] + E[zj])

= E[yiyj] + E[ziyj] + E[yizj] + E[zizj] − E[yi]E[yj] − E[zi]E[yj] − E[yi]E[zj] − E[zi][zj]

= (E[yiyj] − E[yi]E[yj]) + (E[zizj] − E[zi]E[zj])

+ (E[ziyj] − E[zi]E[yj]) + (E[yizj] − E[yi]E[zj]).

Using the fact that y and z are independent, we have E[ziyj] = E[zi]E[yj] and E[yizj] =
E[yi]E[zj]. Therefore, the last two terms drop out, and we are left with,

E[(yi + zi)(yj + zj)] − E[yi + zi]E[yj + zj]

= (E[yiyj] − E[yi]E[yj]) + (E[zizj] − E[zi]E[zj])

= Σij + Σ′
ij.

2For example, if y and z were univariate Gaussians (i.e., y ∼ N (µ, σ2), z ∼ N (µ′, σ′2)), then the
convolution of their probability densities is given by

p(y + z;µ, µ′, σ2, σ′2) =

∫

∞

−∞

p(w;µ, σ2)p(y + z − w;µ′, σ′2)dw

=

∫

∞

−∞

1√
2πσ

exp

(

− 1

2σ2
(w − µ)2

)

· 1√
2πσ′

exp

(

− 1

2σ′2
(y + z − w − µ′)2

)

dw
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From this, we can conclude that the covariance matrix of y + z is simply Σ + Σ′.
At this point, take a step back and think about what we have just done. Using some

simple properties of expectations and independence, we have computed the mean and co-
variance matrix of y + z. Because of Fact #1, we can thus write down the density for y + z

immediately, without the need to perform a convolution!3

3.2 Marginal of a joint Gaussian is Gaussian

The formal statement of this rule is:

Suppose that

[

xA

xB

]

∼ N
([

µA

µB

]

,

[

ΣAA ΣAB

ΣBA ΣBB

])

,

where xA ∈ Rm, xB ∈ Rn, and the dimensions of the mean vectors and covariance
matrix subblocks are chosen to match xA and xB. Then, the marginal densities,

p(xA) =

∫

xB∈Rn

p(xA, xB; µ, Σ)dxB

p(xB) =

∫

xA∈Rm

p(xA, xB; µ, Σ)dxA

are Gaussian:

xA ∼ N (µA, ΣAA)

xB ∼ N (µB, ΣBB).

To justify this rule, let’s just focus on the marginal distribution with respect to the variables
xA.4

First, note that computing the mean and covariance matrix for a marginal distribution
is easy: simply take the corresponding subblocks from the mean and covariance matrix of
the joint density. To make sure this is absolutely clear, let’s look at the covariance between
xA,i and xA,j (the ith component of xA and the jth component of xA). Note that xA,i and
xA,j are also the ith and jth components of

[

xA

xB

]

3Of course, we needed to know that y + z had a Gaussian distribution in the first place.
4In general, for a random vector x which has a Gaussian distribution, we can always permute entries of

x so long as we permute the entries of the mean vector and the rows/columns of the covariance matrix in
the corresponding way. As a result, it suffices to look only at xA, and the result for xB follows immediately.
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(since xA appears at the top of this vector). To find their covariance, we need to simply look
at the (i, j)th element of the covariance matrix,

[

ΣAA ΣAB

ΣBA ΣBB

]

.

The (i, j)th element is found in the ΣAA subblock, and in fact, is precisely ΣAA,ij. Using
this argument for all i, j ∈ {1, . . . ,m}, we see that the covariance matrix for xA is simply
ΣAA. A similar argument can be used to find that the mean of xA is simply µA. Thus, the
above argument tells us that if we knew that the marginal distribution over xA is Gaussian,
then we could immediately write down a density function for xA in terms of the appropriate
submatrices of the mean and covariance matrices for the joint density!

The above argument, though simple, however, is somewhat unsatisfying: how can we
actually be sure that xA has a multivariate Gaussian distribution? The argument for this
is slightly long-winded, so rather than saving up the punchline, here’s our plan of attack up
front:

1. Write the integral form of the marginal density explicitly.

2. Rewrite the integral by partitioning the inverse covariance matrix.

3. Use a “completion-of-squares” argument to evaluate the integral over xB.

4. Argue that the resulting density is Gaussian.

Let’s see each of these steps in action.

3.2.1 The marginal density in integral form

Suppose that we wanted to compute the density function of xA directly. Then, we would
need to compute the integral,

p(xA) =

∫

xB∈Rn

p(xA, xB; µ, Σ)dxB

=
1

(2π)
m+n

2

∣

∣

∣

∣

ΣAA ΣAB

ΣBA ΣBB

∣

∣

∣

∣

1/2

∫

xB∈Rn

exp

(

−1

2

[

xA − µA

xB − µB

]T [
ΣAA ΣAB

ΣBA ΣBB

]−1 [
xA − µA

xB − µB

]

)

dxB.

3.2.2 Partitioning the inverse covariance matrix

To make any sort of progress, we’ll need to write the matrix product in the exponent in a
slightly different form. In particular, let us define the matrix V ∈ R(m+n)×(m+n) as5

V =

[

VAA VAB

VBA VBB

]

= Σ−1.

5Sometimes, V is called the “precision” matrix.
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It might be tempting to think that

V =

[

VAA VAB

VBA VBB

]

=

[

ΣAA ΣAB

ΣBA ΣBB

]−1

“=”

[

Σ−1
AA Σ−1

AB

Σ−1
BA Σ−1

BB

]

However, the rightmost equality does not hold! We’ll return to this issue in a later step; for
now, though, it suffices to define V as above without worrying what actual contents of each
submatrix are.

Using this definition of V , the integral expands to

p(xA) =
1

Z

∫

xB∈Rn

exp
(

−
[1

2
(xA − µA)T VAA(xA − µA) +

1

2
(xA − µA)T VAB(xB − µB)

+
1

2
(xB − µB)T VBA(xA − µA) +

1

2
(xB − µB)T VBB(xB − µB)

])

dxB,

where Z is some constant not depending on either xA or xB that we’ll choose to ignore for
the moment. If you haven’t worked with partitioned matrices before, then the expansion
above may seem a little magical to you. It is analogous to the idea that when defining a
quadratic form based on some 2 × 2 matrix A, then

xT Ax =
∑

i

∑

j

Aijxixj = x1A11x1 + x1A12x2 + x2A21x1 + x2A22x2.

Take some time to convince yourself that the matrix generalization above also holds.

3.2.3 Integrating out xB

To evaluate the integral, we’ll somehow want to integrate out xB. In general, however,
Gaussian integrals are hard to compute by hand. Is there anything we can do to save time?
There are, in fact, a number of Gaussian integrals for which the answer is already known
(see Fact #2). The basic idea in this section, then, will be to transform the integral we had
in the last section into a form where we can apply one of the results from Fact #2 in order
to perform the required integration easily.

The key to this is a mathematical trick known as “completion of squares.” Consider the
quadratic function zT Az + bT z + c where A is a symmetric, nonsingular matrix. Then, one
can verify directly that

1

2
zT Az + bT z + c =

1

2

(

z + A−1b
)T

A
(

z + A−1b
)

+ c − 1

2
bT A−1b.

This is the multivariate generalization of the “completion of squares” argument used in single
variable algebra:

1

2
az2 + bz + c =

1

2
a

(

z +
b

a

)2

+ c − b2

2a
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To apply the completion of squares in our situation above, let

z = xB − µB

A = VBB

b = VBA(xA − µA)

c =
1

2
(xA − µA)T VAA(xA − µA).

Then, it follows that the integral can be rewritten as

p(xA) =
1

Z

∫

xB∈Rn

exp

(

−
[

1

2

(

xB − µB + V −1
BBVBA(xA − µA)

)T
VBB

(

xB − µB + V −1
BBVBA(xA − µA)

)

+
1

2
(xA − µA)T VAA(xA − µA) − 1

2
(xA − µA)T VABV −1

BBVBA(xA − µA)

])

dxB

We can factor out the terms not including xB to obtain,

p(xA) = exp

(

−1

2
(xA − µA)T VAA(xA − µA) +

1

2
(xA − µA)T VABV −1

BBVBA(xA − µA)

)

· 1

Z

∫

xB∈Rn

exp

(

−1

2

[

(

xB − µB + V −1

BBVBA(xA − µA)
)T

VBB

(

xB − µB + V −1

BBVBA(xA − µA)
)

])

dxB

At this point, we can now apply Fact #2. In particular, we know that generically speaking,
for a multivariate Gaussian distributed random variable x with mean µ and covariance matrix
Σ, the density function normalizes, i.e.,

1

(2π)n/2|Σ|1/2

∫

Rn

exp

(

−1

2
(x − µ)T Σ−1(x − µ)

)

= 1,

or equivalently,

∫

Rn

exp

(

−1

2
(x − µ)T Σ−1(x − µ)

)

= (2π)n/2|Σ|1/2.

We use this fact to get rid of the remaining integral in our expression for p(xA):

p(xA) =
1

Z
· (2π)n/2|VBB |1/2 · exp

(

−1

2
(xA − µA)T (VAA − VABV −1

BBVBA)(xA − µA)

)

.

3.2.4 Arguing that resulting density is Gaussian

At this point, we are almost done! Ignoring the normalization constant in front, we see that
the density of xA is the exponential of a quadratic form in xA. We can quickly recognize
that our density is none other than a Gaussian with mean vector µA and covariance matrix
(VAA−VABV −1

BBVBA)−1. Although the form of the covariance matrix may seem a bit complex,
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we have already achieved what we set out to show in the first place—namely, that xA has a
marginal Gaussian distribution. Using the logic before, we can conclude that this covariance
matrix must somehow reduce to ΣAA.

But, in case you are curious, it’s also possible to show that our derivation is consistent
with this earlier justification. To do this, we use the following result for partitioned matrices:

[

A B

C D

]−1

=

[

M−1 −M−1BD−1

−D−1CM−1 D−1 + D−1CM−1BD−1

]

.

where M = A−BD−1C. This formula can be thought of as the multivariable generalization
of the explicit inverse for a 2 × 2 matrix,

[

a b

c d

]−1

=
1

ad − bc

[

d −b

−c a

]

.

Using the formula, it follows that

[

ΣAA ΣAB

ΣBA ΣBB

]

=

[

VAA VAB

VBA VBB

]−1

=

[

(VAA − VABV −1
BBVBA)−1 −(VAA − VABV −1

BBVBA)−1VABV −1
BB

−V −1
BBVBA(VAA − VABV −1

BBVBA)−1 (VBB − VBAV −1
AAVAB)−1

]

We immediately see that (VAA − VABV −1
BBVBA)−1 = ΣAA, just as we expected!

3.3 Conditional of a joint Gaussian is Gaussian

The formal statement of this rule is:

Suppose that
[

xA

xB

]

∼ N
([

µA

µB

]

,

[

ΣAA ΣAB

ΣBA ΣBB

])

,

where xA ∈ Rm, xB ∈ Rn, and the dimensions of the mean vectors and covariance
matrix subblocks are chosen to match xA and xB. Then, the conditional densities

p(xA | xB) =
p(xA, xB; µ, Σ)

∫

xA∈Rm p(xA, xB; µ, Σ)dxA

p(xB | xA) =
p(xA, xB; µ, Σ)

∫

xB∈Rn p(xA, xB; µ, Σ)dxB

are also Gaussian:

xA | xB ∼ N
(

µA + ΣABΣ−1
BB(xB − µB), ΣAA − ΣABΣ−1

BBΣBA

)

xB | xA ∼ N
(

µB + ΣBAΣ−1
AA(xA − µA), ΣBB − ΣBAΣ−1

AAΣAB

)

.
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As before, we’ll just examine the conditional distribution xB | xA, and the other result will
hold by symmetry. Our plan of attack will be as follows:

1. Write the form of the conditional density explicitly.

2. Rewrite the expression by partitioning the inverse covariance matrix.

3. Use a “completion-of-squares” argument.

4. Argue that the resulting density is Gaussian.

Let’s see each of these steps in action.

3.3.1 The conditional density written explicitly

Suppose that we wanted to compute the density function of xB given xA directly. Then, we
would need to compute

p(xB | xA) =
p(xA, xB; µ, Σ)

∫

xB∈Rm p(xA, xB; µ, Σ)dxA

=
1

Z ′
exp

(

−1

2

[

xA − µA

xB − µB

]T [
ΣAA ΣAB

ΣBA ΣBB

]−1 [
xA − µA

xB − µB

]

)

where Z ′ is a normalization constant that we used to absorb factors not depending on xB.
Note that this time, we don’t even need to compute any integrals – the value of the integral
does not depend on xB, and hence the integral can be folded into the normalization constant
Z ′.

3.3.2 Partitioning the inverse covariance matrix

As before, we reparameterize our density using the matrix V , to obtain

p(xB | xA) =
1

Z ′
exp

(

−1

2

[

xA − µA

xB − µB

]T [
VAA VAB

VBA VBB

] [

xA − µA

xB − µB

]

)

=
1

Z ′
exp
(

−
[1

2
(xA − µA)T VAA(xA − µA) +

1

2
(xA − µA)T VAB(xB − µB)

+
1

2
(xB − µB)T VBA(xA − µA) +

1

2
(xB − µB)T VBB(xB − µB)

])

.

3.3.3 Use a “completion of squares” argument

Recall that

1

2
zT Az + bT z + c =

1

2

(

z + A−1b
)T

A
(

z + A−1b
)

+ c − 1

2
bT A−1b
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provided A is a symmetric, nonsingular matrix. As before, to apply the completion of squares
in our situation above, let

z = xB − µB

A = VBB

b = VBA(xA − µA)

c =
1

2
(xA − µA)T VAA(xA − µA).

Then, it follows that the expression for p(xB | xA) can be rewritten as

p(xB | xA) =
1

Z ′
exp

(

−
[

1

2

(

xB − µB + V −1
BBVBA(xA − µA)

)T
VBB

(

xB − µB + V −1
BBVBA(xA − µA)

)

+
1

2
(xA − µA)T VAA(xA − µA) − 1

2
(xA − µA)T VABV −1

BBVBA(xA − µA)

])

Absorbing the portion of the exponent which does not depend on xB into the normalization
constant, we have

p(xB | xA) =
1

Z ′′
exp

(

−1

2

(

xB − µB + V −1
BBVBA(xA − µA)

)T
VBB

(

xB − µB + V −1
BBVBA(xA − µA)

)

)

3.3.4 Arguing that resulting density is Gaussian

Looking at the last form, p(xB | xA) has the form of a Gaussian density with mean µB −
V −1

BBVBA(xA − µA) and covariance matrix V −1
BB. As before, recall our matrix identity,

[

ΣAA ΣAB

ΣBA ΣBB

]

=

[

(VAA − VABV −1
BBVBA)−1 −(VAA − VABV −1

BBVBA)−1VABV −1
BB

−V −1
BBVBA(VAA − VABV −1

BBVBA)−1 (VBB − VBAV −1
AAVAB)−1

]

.

From this, it follows that

µB|A = µB − V −1
BBVBA(xA − µA) = µB + ΣBAΣ−1

AA(xA − µA).

Conversely, we can also apply our matrix identity to obtain:

[

VAA VAB

VBA VBB

]

=

[

(ΣAA − ΣABΣ−1
BBΣBA)−1 −(ΣAA − ΣABΣ−1

BBΣBA)−1ΣABΣ−1
BB

−Σ−1
BBΣBA(ΣAA − ΣABΣ−1

BBΣBA)−1 (ΣBB − ΣBAΣ−1
AAΣAB)−1

]

,

from which it follows that

ΣB|A = V −1
BB = ΣBB − ΣBAΣ−1

AAΣAB.

And, we’re done!
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4 Summary

In these notes, we used a few simple properties of multivariate Gaussians (plus a couple
matrix algebra tricks) in order to argue that multivariate Gaussians satisfy a number of
closure properties. In general, multivariate Gaussians are exceedingly useful representations
of probability distributions because the closure properties ensure that most of the types
of operations we would ever want to perform using a multivariate Gaussian can be done
in closed form. Analytically, integrals involving multivariate Gaussians are often nice in
practice since we can rely on known Gaussian integrals to avoid having to ever perform the
integration ourselves.

5 Exercise

Test your understanding! Let A ∈ Rn×n be a symmetric nonsingular square matrix, b ∈ Rn,
and c. Prove that

∫

x∈Rn

exp

(

−1

2
xT Ax − xT b − c

)

dx =
(2π)n/2

|A|1/2 exp(c − bT A−1b)
.
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