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Abstract

We show that all consistent learning methods—that is, that asymptotically achieve the lowest pos-
sible expected loss for any distribution on(X,Y)—are necessarily localizable, by which we mean
that they do not significantly change their response at a particular point when we show them only
the part of the training set that is close to that point. This is true in particular for methods that
appear to be defined in a non-local manner, such as support vector machines in classification and
least-squares estimators in regression. Aside from showing that consistency implies a specific form
of localizability, we also show that consistency is logically equivalent to the combination of two
properties: (1) a form of localizability, and (2) that the method’s global mean (over the entireX
distribution) correctly estimates the true mean. Consistency can therefore be seen as comprised of
two aspects, one local and one global.
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1. Introduction

In a supervised learning problem we are given an i.i.d sampleSn = {(xi ,yi)}i=1..n of sizen from
some distributionP; then a new pair(x,y) is drawn from the sameP and our goal is to predicty
when shown onlyx. Our prediction (also called estimate, or guess) ofy is written f (Sn,x), some
function that depends on the training set and the point at which we estimate (note that it is slightly
atypical to have both the training set and point as inputs tof , but this will be very convenient
in our setting). We callf a learning method; in the context of regression we will also use the
termestimator, and in the context of classification we will use the termclassifier. In both of these
settings, iff achieves the lowest possible expected loss asn→∞, for every distribution, then we call
f consistent(we will formalize all of these definitions later on; for now we just sketch the general
ideas). Consistent estimators are of obvious interest due to their capability tolearn without knowing
in advance anything about the actual distribution.

When we look at the learning methods known to be consistent, we can separate them into two
general types. In the first of these we have methods that are defined in alocal manner, for example,
the k-nearest-neighbor (k-NN) classifier (Stone, 1977; Devroye etal., 1996). The k-NN classifier
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guesses the class of a pointx based on its nearest neighbors in the training set, thus, this classifier
behaves in a ‘local’ way: only close-by points affect the estimate. More generally, by a locally-
behaving method we mean one that, given a training setSn and a pointx at which to estimate
the value ofy, in some way treats the close-by part of the training set as the most important. A
second type of consistent learning method is defined in a global manner, for example, support
vector machines (see Vapnik, 1998; Steinwart, 2002, for a description and proof of consistency,
respectively). It is not clear from the definition of support vector machines whether they behave
locally or not: The separating hyperplane is determined based on the entire training setSn, and
furthermore does not depend on the specific pointx at which we classify, perhaps leading us to
expect that support vector machines donot behave locally. Thus, on an intuitive level we might
think that some consistent methods behave locally and some do not.

This intuition also appears relevant when we consider regression: The k-NN regression estima-
tor appears to behave locally, while on the other hand support vector regression (see, e.g., Smola
and Schoelkopf, 1998), kernel ridge regression (Saunders et al.,1998), etc., seem not to have that
property. Another example is that of orthogonal series estimation, that is, of using a weighted sum
of fixed harmonic functions (Lugosi and Zeger, 1995); this method appears to not behave locally
both because the harmonic functions are non-local and because the coefficients are determined in a
way based on all of the data.

Despite the intuition that some consistent methods might not behave locally, we willsee that
in fact all of them necessarily behave in that manner. As mentioned before, we already know that
some locally-behaving methods are consistent, since some are in fact defined in a local manner,
for example, k-NN. What we will see is that all other consistent methods mustalsobehave locally.
In classification, this implies that, in particular, (properly regularized) support vector machines and
boosting (Freund and Schapire, 1999; Zhang, 2004; Bartlett and Traskin, 2007) must behave locally,
despite being defined in a way that appears global. In the area of regression, our results show
that neural network estimators, orthogonal series estimators, etc., must behave locally if they are
consistent, again, despite their being defined in a way that does not indicatesuch behavior.

In the rest of this introductory section we will present a summary of our approach and results as
well as background regarding related work. While doing so we focus onregression problems since
that setting allows for simpler and clearer definitions. For the same reasons wewill also focus on
regression in the main part of this paper; in a later section we will show how to apply our results to
classification.

Our goal in regression is to estimatef ∗(x) = E(y|x), that is, the expected value ofy conditioned
on x, or the regression ofy on x. Our hope is thatf (Sn,x) is close to f ∗(x). We say thatf is
consistent on a distributionP iff

Ln( f ) ≡ E | f (Sn,x)− f ∗(x)|−→
n→∞

0

where the expected value is taken over training setsSn and observationsx both distributed according
to P (which is suppressed in the notation). If a method is consistent on allP then we call it consistent
(this is sometimes calleduniversal consistency). Note that there are stronger notions of consistency,
such as requiring that the loss converge to 0 with probability 1 (see, e.g., Gyorfi et al., 2002), but we
will focus on the loss as just described. Note also that theLn loss is ‘global’ in that we average over
all x, which makes it all the more interesting to see whether methods that minimize it must end up
behaving locally.
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The notion of local behavior that we will consider will be calledlocalizability, and it entails that
the method returns a similar estimate forx when shownSn in comparison to the estimate it would
have returned when shown only the part ofSn that is close tox. In other words, if we define

Sn(x, r) = {(xi ,yi) ∈ Sn : ||xi −x|| ≤ r}

then a localizable method has the property that

f (Sn,x) ≈ f (Sn(x, r),x)

for some smallr > 0 (the formal definitions of all of these concepts will be given in later sections).
More specifically, for any sequenceRn ց 0 we can seeg(Sn,x) = f

(
Sn
(
x,Rn

)
,x
)

as a ‘localization’
of f , since it appliesf to the close-by part of the training set for the particular point at which we
estimate. In other words, a localizable method is one that behaves similarly to a localization of
itself. (Note the convenience of thef (Sn,x) notation here, that is, of seeingf as a function of both
Sn andx.)

Why is the concept of localizability of interest? The main motivation for us is that, as we will
see later, consistency implies a form of localizability. That is, even an estimatordefined in what
seems to be a global manner, for example, by minimizing a global loss of the general form

1
n ∑

i=1..n

l
(

f (xi),yi
)
+λc( f )

wherel is, for example, least-squares, andc is (optional) complexity penalization—then even such
an estimator must be in some sense localizable, if it is consistent. Thus, our first motivation is to
point out that not only locally-defined methods like k-NN behave locally, but also all other consistent
methods as well.

Aside from this main motivation for investigating localizability, another reason is that it allows
us to answer questions such as, “What might happen if we localize a support vector machine?”
That is, we can apply a support vector machine (or some other useful method) to only the close-
by part of the training set, perhaps motivated by the fact that training on thissmaller set is more
computationally efficient, at least if all we need is to generate estimates at a smallnumber of points.
If support vector machines are localizable, then we in fact know that such an approach can be
consistent; and if they are not localizable, then we may end up with a non-consistent method with
poor performance. Thus, localizability can have practical applications.

Note that one can consider other ways to define local behaviour than localizability. In one such
approach, we can evaluate the behavior of a method when altering the far-off part of the training
set, as opposed to removing it (which is what we do with localizability). Work along those lines
(Zakai and Ritov, 2008) arrives at similar conclusions to the ones presented here. Comparing the
two approaches, localizability has the advantage of relevance to practicalapplications, as mentioned
in the previous paragraph.

Previous work related to localizability has been done in the context of learning methods that
work by minimizing a loss function: We can ‘localize’ the loss function by re-weighting it so that
close-by points are more influential; this has been investigated in the context of Empirical Risk
Minimization (ERM; Vapnik, 1998) (Bottou and Vapnik, 1992; Vapnik and Bottou, 1993), as well
as in the specific case of linear regression (see, e.g., Cleveland and Loader, 1995, and references
therein); this approach has also lead to various applications (Atkeson et al., 1997). In this paper we
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differ from these approaches in that we work in a more general context:Our approach is applicable
to all learning methods, and not just those that are based on minimizing a loss function that can
be re-weighted. Another difference is that we consider consistency in the sense of asymptotically
arriving at the lowest possible loss achievable by any measurable function, and not in the sense of
minimizing the loss within a set of finite VC dimension.

Another related work is that of Bengio et al. (2006), in which it was shownthat kernel machines
behave locally, in the sense of requiring a large number of examples in order to learn complex
functions (because each local area must be learned separately). Ourapproach differs from this
work in the way we define local behavior, and in that we are interested in all(consistent) learning
methods, not just kernel machines. However, our conclusion is in agreement with theirs, that even
methods that may appear to be global like support vector machines in fact behave locally.

We now sketch our main result, which is that consistency is logically equivalent to the combi-
nation of two properties (which will be given later, in Definitions 2 and 5):Uniform Approximate
Localizability (UAL), which is a form of localizability, andWeak Consistency in Mean(WCM),
which deals with the meanE f(Sn,x) estimating the true meanE f∗(x) reasonably well, where the
expected values are taken overSn andx. It will be easy to see that the UAL and WCM properties
are ‘independent’ in the sense that neither implies the other, and thereforewe can see consistency
as comprised of two independent aspects, which might be presented as

Consistency ⇐⇒ UAL ⊕ WCM .

This can be seen as describing consistency in terms of local (UAL) and global (WCM) aspects
(WCM is ‘global’ in the sense of only comparing scalar values averaged overx).

Note that there are two issues here which might be surprising, the first of which has already
been mentioned—that all consistent methods must behave locally. The second important issue is
that WCM is sufficient, when combined with UAL, to imply consistency. That is, ifour goal is to
be consistent,

E| f (Sn,x)− f ∗(x)| −→ 0 (1)

then it is interesting that all that is needed in addition to behaving locally is a property close to

|E f(Sn,x)−E f∗(x)| −→ 0.

Note that the latter condition is very weak. For example, it is fulfilled byg(Sn,x)= 1
n ∑i yi , the simple

empirical mean of they values in the sampleSn (ignoring thexs completely), since1n ∑i yi −→ Ey=
E f∗(x) a.s., whereEy is the mean ofy. On the other hand,g does not fulfill the stronger property (1)
except on trivial distributions.

Our main result, which has just been described, will also be generalized to settings other than
that of methods consistent on the set of all distributions. This will lead to peculiar consequences:
Consider, for example, the following two sets of distributions:

P1 =
{

P : y = f ∗(x)+ ε , Eε = 0 , ε is independent ofx
}

, P2 =
{

P : Ey= 0
}

(note thatP1 is simply regression with additive noise). It turns out that a method consistent on P1

must behave locally on that set (just as with the set of all distributions), butthe same is not true
for P2, where a consistent method does not necessarily behave locally. The reason for this will be
explained later.

830



CONSISTENCY ANDLOCALIZABILITY

The rest of this work is as follows. In Section 2 we present the formal setting and other pre-
liminary matters. In Section 3 we present definitions of local properties (andspecifically UAL) as
well as some results concerning them. In Section 4 we define the global concepts that we need,
specifically WCM. In Section 5 we present our main result, the equivalenceof consistency to the
combination of UAL and WCM. In Section 6 we extend our results to various sets of distributions.
In Section 7 we use results from previous sections in order to derive consequences for classification.
In Section 8 we summarize our results and discuss some directions for futurework. Finally, proofs
of our results appear in the Appendices.

2. Preliminaries

We now complete the description of the formal setting in which we work, as well as lay out notation
useful later. Most of this section deals with the context of regression; details specific to classification
will appear in Section 7.

We consider distributionsP on (X,Y) whereX ⊂ R
d,Y ⊂ R. We assume thatX,Y are bounded,

supx∈X ||x||,supy∈Y |y| ≤ M1 for someM1 > 0 which is the same for all distributions. Thus, when we
say ‘all distributions’ we mean all distributions bounded by the same value ofM1. We also assume
that our learning methods return bounded responses,∀S,x | f (S,x)| ≤ M2.1 Let M be a constant
fulfilling M ≥ M1,M2. Importantly, note that while these boundedness assumptions are non-trivial
in the context of regression, they do not limit us when we consider classification, as we will see in
Section 7.

Note that we wrotef (S,x) instead off (Sn,x) in the previous paragraph. The reason is thatn will
always denote the size of the original training set, which in turn will always be written asSn. Since
we will also apply f to to other training sets (in particular, subsets ofSn), for clarity of notation
we will therefore writeS for a general (finite) set of pairs(xi ,yi) and define learning methods via
f (S,x).

Formally speaking, a learning methodf (S,x) is defined as a sequence of measurable functions
{ fk}k∈N, where eachfk is a function on training sets of sizek, that is,

fk : (X×Y)k×X −→Y.

For brevity, we will continue to writef instead offk since whichfk is used is determined by the
size of the training set that we pass tof , that is, f (S,x) = f|S|(S,x). For example, we will often

denote byS̃ a subset of the original training setSn. Then in an expression of the formf (S̃,x) the
actual function used isfm, wherem= |S̃|, and in this example we expect to havem≤ n (where, as
mentioned before,n is the size of the original training setSn).

For any distributionP on (X,Y), we write f ∗(x) = E(y|x), as already mentioned, and we denote
the marginal distribution onX by µ. We write f ∗P,µP instead off ∗,µ to make explicit the dependence
onP when necessary. Denote by suppX(P) = supp(µP) the support ofµP. The measure of setsB⊆X
will be written in the formµ(B).

1. Note that this is a minor assumption since for most methods we have supx | f (S,x)| ≤C ·maxi |yi | for someC > 0, and
theyi values are already assumed to be bounded. If this does not hold, then we might in any case want to consider
enforcing boundedness based on the sample, that is, to truncate valueslarger in absolute value than maxi |yi |, and in
doing so perhaps improve performance. Finally, recall that we are concerned with consistent methods, that is, that
behave similarly tof ∗ in the limit, and f ∗ is bounded.
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We denote random variables by, for example,(x,y) ∼ P andSn ∼ P where in the latter case we
intend a random i.i.d sample ofn elements from the distributionP. We will often abbreviate and
write x,y ∼ P instead of(x,y) ∼ P; also, we will writex ∼ P where we meanx ∼ µP. To prevent
confusion we always usex andy to indicate a pair(x,y) sampled fromP.

We will write the mean and variance of random variablesv asE(v) = Evandσ2(v), respectively.
More generally, expected values will be denoted byEv∼VH(v) = EvH(v) wherev is a random vari-
able distributed according toV andH(v) is some function ofv; we may writeEH(v) when the
random variables are clear from the context. The conditional expected value ofH(v) givenw will
be written in the formEv|w(H(v)).

We will work mainly with theL1 loss, which we can now write formally as

Ln,P( f ) ≡ ESn,x∼P | f (Sn,x)− f ∗P(x)| ,

or, more briefly,
Ln( f ) ≡ ESn,x | f (Sn,x)− f ∗(x)| .

Note that for purposes of consistency (i.e.,Ln( f ) → 0) allLp losses are equivalent, since

∀0 < p < q E|z|p ≤ (E|z|q)p/q ≤ (2M)p(q−p)/q(E|z|p)p/q

wherez= f (Sn,x)− f ∗(x). Thus, if oneLp loss converges to 0, so do all the others. Hence our
results apply to allLp norms; we work mainly with theL1 norm for convenience.

For any setB ⊆ X, denote byPB the conditioning ofP on B, that is, the conditioning ofµP

on B (and leaving unchanged the behavior ofy given x). Denote the ball of radiusr aroundx by
Bx,r = {x′ ∈ R

d : ||x−x′|| ≤ r}. Let Px,r = PBx,r .
Finally, we mention two useful conventions. Note that we defined consistency on a single

distribution, and then consistency in general as the property of being consistent on all distributions.
More specifically, for any propertyA that can hold for a methodf on particular distributions, we
say that f has propertyA on aset of distributionsP when f has propertyA on all P ∈ P. We
also say thatf has propertyA (without specifyingP or P) when it has propertyA on the set ofall
distributions (with bounded support). This convention will be used for consistency as well as for
UAL and other properties.

Similarly, when we start by defining a propertyA on the set of all distributions, we then use
the convention thatf has propertyA on a setP when we simply replace∀P with ∀P ∈ P. This
convention will be used with the WCM property.

3. Local Behavior

In this section we consider local properties of learning methods. We will present a series of defini-
tions, leading up to a definition of Uniform Approximate Localizability (UAL).

We start with some introductory definitions. For any two learning methodsf ,g, we say that they
aremutually consistent iff

Dn( f ,g) ≡ ESn,x | f (Sn,x)−g(Sn,x)|−→
n→∞

0.

That is, f and g are mutually consistent if they behave asymptotically similarly according to a
distance metricDn. The term ‘mutual consistency’ is used sinceDn( f , f ∗) = Ln( f ) (where we can
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formally define f ∗(S,x) = f ∗(x)), that is, being mutually consistent withf ∗ is equivalent to being
consistent. Thus, mutual consistency is a natural extension of consistency. Note thatDn obeys the
triangle inequality,

∀ f ,g,h Dn( f ,g) ≤ Dn( f ,h)+Dn(h,g)

which will be convenient later.
We now define some useful notation for the topic of locality. For any training set Sandr ≥ 0,

we call
S(x, r) = {(xi ,yi) ∈ S : ||xi −x|| ≤ r}

a local training set for x within S, of radiusr. For every learning methodf andr ≥ 0, let

f |r(S,x) = f (S(x, r),x).

Note that, as mentioned previously, iff = { fk}k∈N then in the expressionf (Sn(x, r),x) (whereSn is,
as always, the original training set of sizen), we are passingSn(x, r),x to fm, wherem= |Sn(x, r)|,
which will in general be smaller thann = |Sn|. Thus, formally speaking we might write

f |r(S,x) = f|S(x,r)|(S(x, r),x)

but for simplicity we will continue to drop the lower index onf . Note thatf |r can also be formally
defined as a series of functions{ f |r,k}k∈N, but again, for simplicity we avoid this.

In words, f |r is a learning method that results from forcingf to only work on local training
sets of radiusr aroundx, when estimating the value atx. For example, iff is a linear regression
estimator then we can seef |r as performing local linear regression (Cleveland and Loader, 1995).

Continuing in our definitions, for any sequence{Rk}k∈N,Rk ≥ 0,Rk → 0, we call f |{Rk} a local
version, or alocalization of f ; by this notation, we mean

f |{Rk}(S,x) = f
(
S
(
x,R|S|

)
,x
)

—that is, whichRk is used from the sequence{Rk} depends on the size of the training set passed to
f |{Rk}. In particular, for the original training setSn we have

f |{Rk}(Sn,x) = f
(
Sn
(
x,Rn

)
,x
)
.

Note that, as a consequence, local versions are indeed ‘local’ in the limit since we haveRn → 0.
We can now define one form of local behavior: Call a methodf localizableon a distributionP

iff there exists a local versionf |{Rk} of f with which f is mutually consistent, that is,

Dn
(

f |{Rk}, f
)
−→
n→∞

0.

Thus, a localizable method is one that is similar, in the sense of mutual consistency, to a local version
of it, which implies that it gives similar results when seeing the entire training set versus only the
local part of it; we can localize the method without changing the estimates significantly. Note once
more that the requirementRn → 0 is what makes this definition truly define local behavior.

We will also need a notion of a method that, when localized, is consistent. Call a method f
locally consistenton a distributionP iff there exists a local versionf |{Rk} of f which is consistent,

Ln
(

f |{Rk}
)

= Dn
(

f |{Rk}, f ∗
)
−→
n→∞

0.
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That is, there is a way to localizef so that it becomes consistent.
Are all consistent learning methods localizable and locally consistent? Consider the latter prop-

erty: It appears as if any consistent method must be locally consistent, since a consistent method
can successfully ‘learn’ given any underlying distribution, and when we localize such a method we
are in effect applying that same useful behavior in every local area. Thus, it seems reasonable to
expect a localization of a consistent method to be consistent as well, and if thiswere true then it
might have useful practical applications, as mentioned in the introduction. Yet this intuition turns
out to be false, and a similar failure occurs for localizability:

Proposition 1 A learning method exists which is consistent but neither localizable nor locallycon-
sistent.

The proof of Proposition 1 (appearing in Appendix A) is mainly technical, and consists in con-
structing a methodf = { fk} which becomes less smooth asn rises, and asymptotically considerably
less smooth than the truef ∗. That is, the issue is that we have required merely that the functionsfk
be measurable, and it turns out that without additional assumptions they canbehave erratically in
a manner that rendersf not locally consistent. The specific example that we construct in the proof
involves functionsfk that behave oddly on an area close toExbut otherwise perform well. It is then
possible to show that the ‘problematic area’ nearEx can be large enough so that all local versions
of the method behave poorly, but small enough so that the original method is consistent.

Now, the counterexample constructed in the proof of Proposition 1 might rightfully be called a
‘fringe case’. Yet, it suffices to show that not all consistent methods are localizable, contrary perhaps
to intuition. There is therefore the question of what to do. One solution to this matter is to work
with a property stronger than consistency, one that includes an additionalsmoothness requirement.
The disadvantage of such an approach is that we cannot immediately derive consequences for the
various methods known to be consistent, unless we also prove that they have the stronger property.

Instead, the approach that we will follow is to define more complex notions of local behavior
which can be used to arrive at properties equivalent to consistency. Thus, one major goal of this
paper is to arrive at suitable definitions for the topic of local behavior, that on the one hand capture
the intuition correctly and on the other allow useful results to be proven. Thesimple definitions
given before fail in the second matter; we will now give definitions that remedy that problem.

In order to formulate our improved definitions we first require some preparation. For anyr,q≥ 0
and distributionP, let

f̄ |qr (S,x) = Ex′∼Px,q·r f (S(x, r),x′). (2)

Compared tof |r , f̄ |qr adds a smoothing operation performed around thex at which we estimate. Note
that if q = 0 then we interpret the expected value as a delta function and we getf̄ |0r = f |r . Note
also that we require the actual unknown distributionP in the definition of f̄ |qr , that is, f̄ |qr cannot
be directly implemented in practice—̄f |qr is a construction useful mainly for theoretical purposes.
However, we can implement an approximate version off̄ |qr (S,x) by replacing the true expectation
with the empirical one. We will return to this matter later.

We define the following set of sequences:

T =
{
{Tk} : Tk ց 0 strictly

}
.

For any sequenceT = {Tk}, let T = {Tk : k ∈ N}, that is, the set containing the elements in the
sequence. For any such sequenceT = {Tk}, we then define the set of its infinite subsequences and
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selection functions on them by

R (T) =
{

R= {Rk} : R ⊆ T , Rk ց 0
}

,

Q (T) =
{

Q : T → T : Q(Tk) ց 0
}

.

For anyT ∈ T and{Rk} ∈ R (T), Q∈ Q (T), we call f̄ |{Q(Rk)}
{Rk} a smoothed local versionof f ;

by this notation, we mean to replace theq, r values in (2) in an appropriate manner, that is,

f̄ |{Q(Rk)}
{Rk} (S,x) = Ex′∼Px,Q(R|S|)·R|S|

f
(
S
(
x,R|S|

)
,x′
)
.

Note that on the original training setSn we get

f̄ |{Q(Rk)}
{Rk} (Sn,x) = Ex′∼Px,Q(Rn)·Rn

f
(
S
(
x,Rn

)
,x′
)
.

We now elaborate on these definitions.T is the set of possible values thatQ(Rn),Rn can take;
these values must approach 0 as our goal is to consider local behavior.R (T) contains sequences
of radii of local training sets; we require thatRn ց 0, as we are interested in behavior on local
training sets with radius descending to 0, that is, that become truly ‘local’ asymptotically. Q (T)
contains functions that become small whenTk is small; the valuesQ(Rn) determine radii on which
to smooth, viaQ(Rn) ·Rn. SinceQ(Rn) ·Rn = o(Rn), the smoothing is done on radii much smaller
(asymptotically negligibly small) than the radii of the local training setsRn, and therefore this is a
minor operation. In conclusion, a smoothed local version is similar to a local version, but adds an
averaging operation on small radii.

We now start with our main definitions. The idea behind them is not overly complex, but their
description is necessarily somewhat technical.

Definition 2 Call a learning method fUniformly Approximately Localizable (UAL) iff
∀P ∀T ∈ T

∃Q∈ Q (T)

∀Q′ ∈ Q (T) , Q′ ≥ Q

∃{Rk} ∈ R (T)

∀{R′
k} ∈ R (T) , {R′

k} ≥ {Rk}

Dn

(
f̄ |{Q′(R′

k)}
{R′

k}
, f
)
−→
n→∞

0.

(Here the expression{R′
k} ≥ {Rk} simply implies an inequality for the entire series, that is, for all

k. Q′ ≥ Q impliesQ′(Tk) ≥ Q(Tk) for all k.)
In essence, a UAL learning method is one for whom, for any choice ofT, all large-enough

choices ofQ and{Rk} are suitable in order to get similar behavior betweenf and a smoothed local
version of f . That is, if we take{Rk} andQ slowly enough to 0 then we get local behavior. Note
that in any case taking{Rk} to 0 very quickly is problematic since we may get empty local training
sets, that is,Sn(x,Rn) = /0.

Concerning our choice of name for this definition, ‘uniformly’ appears in the title ‘uniformly
approximately local’ due to the requirement for all large-enough choices of {Rk},Q to be relevant,
and ‘approximately’ appears because we allow smoothed local versions and not just local versions.
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Both of these changes from the original definition of localizability are present in order to prevent
odd counterexamples. A concrete counterexample was shown in Proposition 1 to make clear the
need for smoothing; we do not present one in full for the uniformity requirement in order to save
space.

Note that we only consider{Rk},Q taking values in some fixedT, and that whileT is arbitrary
it does need to be determined in advance. The issue is that if we instead allow all the values[0,∞)
to appear in{Rk} andQ then, due to this being an uncountable set, it is not clear to the authors if
additional conditions are not required to prove our main results in that case. In any event, a countable
set of possible values is of sufficient interest for any practical learning-theoretical purpose, and as
already mentioned the actual set of possible values can be chosen in whatever manner is desired.

We also need a definition parallel to that of local consistency, as follows.

Definition 3 LetUniform Approximate Local Consistency (UALC) be the property defined exactly
the same as UAL, except for replacing the last condition with

Ln

(
f̄ |{Q′(R′

k)}
{R′

k}

)
= Dn

(
f̄ |{Q′(R′

k)}
{R′

k}
, f ∗
)
−→
n→∞

0.

A UALC method is one whose smoothed local versions are consistent for any large-enough choice
of Q,{Rk}.

We now mention some properties of UAL and UALC, noting first that they are independent, in
that each can exist without the other. Consider the following two methods:

fy(S,x) =
1
|S| ∑

i=1..|S|
yi , f0(S,x) = 0 (3)

fy (called thus because it considers only they values) is UALC since a local version of it is simply
a kernel estimator, using the ‘window kernel’k(x) = 1{||x|| ≤ 1}, and thus consistent, for any{Rk}
fulfilling nRd

n → ∞ (Devroye and Wagner, 1980);{Rk} acts as the bandwidth parameter of a kernel
estimator. (Note that smoothing has no effect, as the guess does not depend on x.) fy, however,
clearly cannot be UAL (e.g., consider the simple example ofx uniform on[−1,1] andy = sign(x));
neither is it consistent. Turning tof0, this method is clearly UAL but it is neither UALC nor
consistent.

Our first main result is that consistency is equivalent to the combination of UAL and UALC:

Theorem 4 A learning method is consistent iff it is both UAL and UALC.

In light of the independence of UAL and UALC, mentioned before, we cansummarize this as

Consistency ⇐⇒ UAL ⊕ UALC .

The proof of⇐ is immediate: Pick anyT. We derive someQ,Q̃ from the appropriate∃ clauses of
the definitions of UAL and UALC, respectively; letQ′ ∈ Q (T) fulfill Q′ ≥ Q,Q̃. GivenQ′, we can
then derive some{Rk},{R̃k} from the appropriate∃ clauses of UAL and UALC; let{R′

k} ∈ R (T)
fulfill R′

k ≥ Rk, R̃k. It is then clear that

Dn

(
f̄ |{Q′(R′

k)}
{R′

k}
, f ∗
)

,Dn

(
f̄ |{Q′(R′

k)}
{R′

k}
, f
)
−→ 0
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due to UALC and UAL. By the triangle inequality we get

Dn( f , f ∗) ≤ Dn

(
f , f̄ |{Q′(R′

k)}
{R′

k}

)
+Dn

(
f̄ |{Q′(R′

k)}
{R′

k}
, f ∗
)
−→ 0 (4)

that is, consistency. Thus, it is fairly immediate from the definitions of UAL andUALC that together
they suffice for consistency. What is interesting is that they are equivalent to it. Instead of proving
that fact directly, the remainder of the proof of Theorem 4 will be a corollary of the results in Section
5.

4. Global Properties

In this section we define global properties that will be useful in the next section, where we present
our main results.

First we need some preliminary definitions. We define the means off , f ∗ in the natural way,

En( f ) ≡ En,P( f ) ≡ ESn,x f (Sn,x),

E( f ∗) ≡ EP( f ∗) ≡ Ex f ∗(x) = ExE(y|x) = Ey

the latter expression which is just the global mean ofy. We also want to consider the Mean Absolute
Deviation (MAD) of f and f ∗,

MADn( f ) ≡ MADn,P( f ) ≡ ESn,x | f (Sn,x)−En( f )| ,

MAD( f ∗) ≡ MADP( f ∗) ≡ Ex | f ∗(x)−E( f ∗)| .

We can now define the first version of the global property of interest to us: We say thatf is
consistent in meaniff

∀P lim
n→∞

|En( f )−E( f ∗)| = lim
n→∞

|MADn( f )−MAD( f ∗)| = 0.

A consistent in mean learning method is required to correctly estimateE( f ∗) and MAD( f ∗); that
is, we require that the global behavior off , averaged overx, be asymptotically equal to that off ∗.
Note that we are only interested here in two scalar values which representglobal averages of the
behavior off , f ∗.

Consistency in mean is obviously a weaker property than requiring that, on average,f behave
similarly to f ∗ on everyx separately—that is, consistency—since

|En( f )−E( f ∗)| = |ESn,x f (Sn,x)−Ex f ∗(x)| ≤ ESn,x | f (Sn,x)− f ∗(x)| . (5)

By consistency the RHS converges to 0, and therefore so does the LHS.Consider now the MAD:

MADn( f ) = ESn,x| f (Sn,x)−En( f )|
= ESn,x| f (Sn,x)− f ∗(x)+ f ∗(x)−E( f ∗)+E( f ∗)−En( f )|
≤ ESn,x| f (Sn,x)− f ∗(x)|+Ex| f ∗(x)−E( f ∗)|+ |E( f ∗)−En( f )|
≤ Dn( f , f ∗)+MAD( f ∗)+ |E( f ∗)−En( f )|.
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Of the last three expressions, the first converges to 0 by consistency,and the third by (5) (which was
implied by consistency). Similarly,

MADn( f ) ≥ MAD( f ∗)−Dn( f , f ∗)−|E( f ∗)−En( f )|

showing that|MADn( f )−MAD( f ∗)| → 0. Thus, unsurprisingly, consistency implies consistency
in mean.

It turns out that a weaker property than consistency in mean is sufficientfor our purposes:

Definition 5 We say that f isWeakly Consistent in Mean (WCM) iff there exists a function H:
R → R, H(0) = 0, limt→0H(t) = 0, for which

∀P limsup
n→∞

∣∣En( f )−E( f ∗)
∣∣ , limsup

n→∞
MADn( f ) ≤ H

(
MAD( f ∗)

)
.

(Note that the sameH is used for allP.) A WCM learning method is required only to do ‘reasonably’
well in estimating the global properties of the distribution, in a way that dependson the MAD, that
is, on the difficulty: We only require that performance be good when the learning task is overall quite
easy, in the sense off ∗(x) being almost constant. Note that whenH(MAD( f ∗)) ≥ 2M we require
nothing of f for such f ∗ (since| f |, | f ∗| ≤ M), and also that for small MAD( f ∗) we may allow the
MAD of f to be significantly larger than that off ∗ (consider, for example,H(t) = c · (

√
t + t) for

largec > 0). Note also that we take the limsups, that is, we do not even require that the limits exist
(except in the trivial case where MAD( f ∗) = 0).

To see the justification for the adjective ‘weak’, note first that consistency in mean immediately
implies WCM, usingH(t) = t. Second, recall the example hinted at in the introduction:fy(S,x) =
1
n ∑i yi is clearly not consistent, since it ignores thexs, nor is it consistent in mean, since

MADn( fy) = ESn,x| fy(Sn,x)−En( fy)| = Ey1,...,yn

∣∣∣∣∣
1
n ∑

i

yi −Ey

∣∣∣∣∣−→ 0.

However, fy is WCM, sinceEn( fy) → E( f ∗) and, as just mentioned,fy’s MAD converges to 0. (In
fact, fy is WCM with H ≡ 0, that is, in the strongest sense. That is, there are even ‘weaker’ methods
that are WCM.)

5. Main Result

In this section we present our main result, the logical equivalence of consistency to the combination
of the UAL and WCM properties. This will be arrived at during the courseof proving the final step
of Theorem 4.

The logical relationships between the concepts of consistency, UAL, UALC and WCM are
shown in graph form in Figure 1. Note that we already saw that consistency implies WCM (since
consistency implies consistency in mean, which implies WCM), and that UAL combined with
UALC implies consistency (shown immediately after the statement of Theorem 4).Instead of prov-
ing directly that consistency implies UAL and UALC, we will prove that WCM impliesUALC, and
hence that consistency implies UALC. Consistency combined with UALC, in turn, implies UAL,
since

Dn

(
f , f̄ |{Q(Rk)}

{Rk}

)
≤ Dn( f , f ∗)+Dn

(
f̄ |{Q(Rk)}
{Rk} , f ∗

)
→ 0

similarly to (4). Thus, in order to complete the picture sketched in Figure 1, it remains to show that
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Consistency -� ( UAL + UALC )

WCM

6

-

Figure 1: Logical relations between consistency, Uniform Approximate Localizability (UAL), Uni-
form Approximate Local Consistency (UALC) and Weak Consistency in Mean (WCM).
That is, consistency is equivalent to the combination of UAL and UALC; consistency
implies WCM; and WCM implies UALC.

Lemma 6 A learning method that is WCM is UALC.

The proof of Lemma 6 is the most complex of our results; we now sketch it verybriefly (the full
proof appears in Appendix B). The initial idea is to considerSn(x, r) as|Sn(x, r)| points derived from
Px,r . The expected loss of a smoothed local version can then be seen to be approximately equal to
a mean of expected losses overPx,r for variousx. The expected losses overPx,r can, in turn, be
bounded by the MADs off ∗Px,r

and f as well as the difference between their means; we bound the
latter two using the WCM property. Finally, we construct in a recursive manner Q and{Rk} that
fulfill the requirements of UALC, using some results from measure theory regarding the asymptotic
behavior off ∗Px,r

.
Based on our results thus far, as summarized in Figure 1, it is obvious that we can also conclude

the following:

Corollary 7 A learning method is consistent iff it is both UAL and WCM.

This can be stated as
Consistency ⇐⇒ UAL ⊕ WCM

since just like UAL and UALC, UAL and WCM are clearly independent in thatneither implies the
other, in fact, the same two examples seen in (3) apply here:fy has already been mentioned to be
WCM, while clearly it is not UAL, whereasf0 is UAL but not WCM.

6. Localizable Sets of Distributions

Thus far we have been concerned with consistency in the sense of the set of all (appropriately
bounded) distributions; this is a very general case. However, many specific types of learning prob-
lems consider more limited sets of distributions. Our goal in this section is to apply our results to
such problems. In addition, this section will provide some of the tools used in Section 7 to derive
results for classification.

This section relies on the following definition:

Definition 8 We call a set of distributionsP localizable iff

P∈ P =⇒ ∀r ≥ 0,x∈ suppX(P) Px,r ∈ P.
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That is, a localizable set of distributions contains all conditionings of its distributions onto small
balls. Simple inspection of the proof of Lemma 6 reveals that it holds true on localizable sets of
distributions, and not just on the set of all distributions, simply because we apply the WCM property
of f only on distributionsPx,r . Consequently, it is easy to see that our results—specifically, Theorem
4 and Corollary 7—apply to localizable sets in general, and not just to the setof all distributions
bounded by some constantM > 0 (which is just one type of example of a localizable set). Note that
the requirement that a set of distributions be localizable is in a sense the minimal requirement we
would expect, since iff is consistent on a distributionP but not on somePx,r then there is no reason
to expectf to be UALC. We will say more about this matter in Section 8.

Are all standard learning problems defined (perhaps implicitly) on localizablesets of distri-
butions? The answer is no; for example, if we assume thatEy = 0, which impliesEx f ∗(x) = 0,
then this is clearly not necessarily preserved when we consider somePx,r . However, the converse
is true for many standard setups in statistics and machine learning. Specific examples include the
following, to all of which our results apply (assuming the boundedness assumption is upheld):

1. y = f ∗(x)+ ε , ε is independent ofx , Eε = 0

This is the standard regression model with additive noise (and random design) appearing in
statistics. It is clearly a setup that implicitly works on a localizable set sincePx,r retains the
property thaty = f ∗(x)+ ε.

2. As a subcase of the previous example, we can assume thatf ∗ ∈ F , whereF is the set of
all continuous functions, or alternatively some ‘smoothness class’, for example, Lipschitz-
continuous functions, etc. Note, however, that if the density of the marginal distribution onX
is assumed to be bounded then this is no longer a localizable set.

3. P
(
y = f ∗(x)

)
= 1 , ∀S,x f(S,x), f ∗(x) ∈ {−1,+1}

This is a noiseless classification problem, or set-estimation problem with non-overlapping
sets, since

P
(

f (Sn,x) 6= y
)

= ESn,(x,y)1
{

f (Sn,x) 6= y
}

=
1
2

ESn,x
∣∣ f (Sn,x)− f ∗(x)

∣∣= 1
2

Ln( f ).

That is, the 0-1 loss used in classification is equal to (half) theL1 loss in this case. Note,
however, that we assumef (S,x) ∈ {−1,+1}, and smoothed local versions do not have this
property; for them the equality between the 0-1 andL1 losses is not valid. If we are willing
to use theL1 norm for classification, however, then our results apply here.

In the next section we will see a way to derive results for the 0-1 loss, as well as allow noisy
distributions, that is, the standard classification setup. This will require somewhat different
definitions than those used for regression.

4. x = φ(z) for some random variablez, whereφ : Rd → RD is smooth andD > d.

We conclude with this final somewhat more complex example in order to show howlocal-
izable sets can be present even in settings where we might not expect them.In the setting
described here, the original data(z,y) lies on some low-dimensional space, but we observe
(x,y) = (φ(z),y), which lies on a low-dimensional manifold inside a high-dimensional space.
This sort of setting is considered in the manifold-learning field in unsupervised learning (see,
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e.g., Roweis and Saul, 2000; Belkin and Niyogi, 2003); recently such methods have been
applied to supervised learning (see, e.g., Kouropteva et al., 2003; Li etal., 2005). Note also
the relevance to the kernel trick, in which a kernel implicitly defines such a transformationφ.

The assumption ofx = φ(z) (and thatφ is smooth) is a nontrivial requirement; however, it
is easy to see that if we consider the set of allφ andz then this set is a localizable set of
distributions.

7. Classification

As mentioned in the previous section, noiseless classification in theL1 norm can be dealt with using
the results we have seen thus far, but this is quite limiting. Therefore in this section we consider the
standard case of classification, using the natural 0-1 loss, and allowing for the possibility of noise.

In classification (also known as pattern recognition; Devroye et al., 1996) we consider only
distributions for whomY = {−1,+1}; when we say ‘all distributions’ in this section we mean only
distributions of this sort. Note that such distributions form a localizable set, and thus we might
expect our results to apply to them. Note also thatf ∗(x) = E(y|x) = 2η(x)− 1 whereη(x) =
P(y = 1|x), the conditional probability. We call a learning methodc a classifier iff ∀S,x c(S,x) ∈
{−1,+1}. We will usec,d, etc., to denote classifiers, to differentiate them from general learning
methods, which we generally denotef ,g.

In classification the natural loss is the 0-1,

R0−1(c) = P(c(Sn,x) 6= y) = ESn,(x,y)1{c(Sn,x) 6= y}

and the minimal (Bayesian) loss is

R∗
0−1 = inf

h
Ex,y1{h(x) 6= y}

where the infimum is taken over all measurableh. Denote the optimal (Bayesian) classification rule
by

c∗(x) = sign( f ∗(x)) = sign(2η(x)−1)

which clearly minimizesR0−1. We are interested in the relative loss∆R0−1(c) = R0−1(c)−R∗
0−1.

This is well-known to be equal to (half the value of)

L̃n(c) ≡ ESn,x|c(Sn,x)−c∗(x)| · |2η(x)−1| = ESn,x|c(Sn,x)−c∗(x)| · | f ∗(x)|.

That is, we have the usualL1 loss but it is weighted according to the distance ofη(x) from 1/2.
Another difference is that we comparec to c∗ = sign( f ∗) and not tof ∗. These differences between
L̃n and the lossLn we considered in the main part of this work prevent an immediate application
of our results. We will therefore present alternative definitions that will allow us to get around this
problem.

First, we define mutual consistency in the context of classification, which wewill call mutual
classification-consistency(or, briefly,mutual C-consistency), using

D̃n(c,d) = ESn,x|c(Sn,x)−d(Sn,x)| · |2η(x)−1| −→ 0

—that is, we simply add the same weighting as inL̃n. This leads to definingclassification-consistency
(or, briefly,C-consistency) on a distributionP as

L̃n(c) = D̃n(c,c
∗) = ESn,x|c(Sn,x)−c∗(x)| · |2η(x)−1| −→ 0

841



ZAKAI AND RITOV

(denotingc∗(S,x) = c∗(x)). Note that, in a similar way as in regression,C-consistency is a specific
case of mutualC-consistency.

A change needs to be made to smoothed local versions to ensure that they remain classifiers,
sincec̄|qr can return values not in{−1,+1}. Define, therefore,

c̃|qr (S,x) = sign(c̄|qr (S,x)) = sign
(
Ex′∼Px,qrc(S(x, r),x′)

)
.

When we talk of smoothed local versions in the context of classification, we intendc̃|qr .
We can now define a version of UAL for the context of classification, in the following natural

way. LetC-UAL be the same as UAL, but replaceDn with D̃n, f with c and f̄ |qr with c̃|qr .
Instead of proving results ‘from scratch’ for the definitions given in thissection, we can build

upon the previous ones, using the following general technique. Letfker be a consistent Nadaraya-
Watson kernel estimator using the window kernel. Define

f|·|(S,x) = | fker(S,x)|.

For any classifierc, define a learning method

fc(S,x) = c(S,x) f|·|(S,x).

We can seefc(S,x) as an estimate off ∗(x), using (in a plug-in manner)c(S,x) to estimate sign( f ∗(x))
and f|·|(S,x) to estimate| f ∗(x)|.

We will now use our results on regression for estimatorsfc in order to arrive at conclusions
for classifiersc. Note that| fc(S,x)| ≤ 1 (since fker uses the window kernel, it is bounded by the
largest|yi | in the training set, which is 1). Given the additional fact that in classification we have
Y = {−1,+1}, we can conclude that our boundedness assumption on learning methods isof no con-
sequence to our treatment of classification, that is, to get completely general results for classification
we need only rely on bounded regression withM = 1.

To arrive at results, we will need some minor facts:

Lemma 9 The following hold true for every P,c,d:

1. Dn( fc, fd) → 0 ⇐⇒ D̃n(c,d) → 0.

2. Dn( fc, f ∗) → 0 ⇐⇒ D̃n(c,c∗) → 0.

3. fc is UALC ⇒ Dn

(
¯( fc)|{Q(Rk)}

{Rk} , f
c̃|{Q(Rk)}
{Rk}

)
→ 0

for large-enough Q,{Rk} in the sense appearing in the definitions UAL,UALC.

The first part of the lemma indicates that theC-mutual consistency of anyc,d are linked to the
mutual consistency offc, fd; the second does the same forC-consistency and consistency. The third
part of the lemma shows that iffc is UALC then smoothed local versions offc are asymptotically
equivalent tofc′ , wherec′ is a smoothed local version in the sense of classification ofc (in other
words, we can either smoothfc or first smoothc and then applyf ; the result is similar). A proof of
all parts of the lemma appears in Appendix E.

We can now present an example of deriving results for classification from those for regression.
Assume thatc is C-consistent on some localizable setP. Then fc is consistent onP by part 2 of
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Lemma 9, hence by Theorem 4 (and what we have seen regarding localizable sets in Section 6)fc
is UAL on P, that is, for everyP∈ P we have

Dn

(
fc, ¯( fc)|{Q(Rk)}

{Rk}

)
→ 0

for large-enoughQ,Rk in the sense of the definition of UAL.fc is also UALC onP, and therefore
for large enoughQ,Rk we have

Dn

(
¯( fc)|{Q(Rk)}

{Rk} , f
c̃|{Q(Rk)}
{Rk}

)
→ 0

by part 3 of Lemma 9, and therefore we conclude by the triangle inequality that (again, for large
enoughQ,Rk)

Dn

(
fc, f

c̃|{Q(Rk)}
{Rk}

)
→ 0.

Hence, by part 1 of Lemma 9,c andc̃|{Q(Rk)}
{Rk} are mutuallyC-consistent for large-enoughQ,Rk, that

is, c is C-UAL on P. Since this was for everyP∈ P, we conclude thatc is C-UAL on P. Since the
entire argument was for an arbitrary localizable setP, we conclude that

Theorem 10 A C-consistent classifier on a localizable setP is C-UAL onP.

In particular, since the set of all distributions (havingY = {−1,+1}) is localizable, we get

Corollary 11 A C-consistent classifier is C-UAL.

In a similar way we can define in the context of classification concepts parallel to UALC and WCM,
and prove corresponding results (we do not go into details to avoid repetition).

8. Concluding Remarks

Our analysis of consistency has led to the following result: Consistent learning methods must have
two properties, first, that they behave locally (UAL); second, that their mean must not be far from
estimating the true mean (WCM). Only a learning method having these two independent properties
is consistent, and vice versa; their combination is logically equivalent to consistency.

To further elaborate on this result, note that UAL is clearly a local property, and WCM a global
one. Thus, we can see consistency as comprised of two aspects, one local and one global. Note also
that the global property, WCM, is a trivial consequence of consistency, and therefore what is worth
noting about this result is that consistency implies local behavior. We can then ask, in an informal
manner at least, why is this so?

As noted in the introduction, the lossLn that we considered is a global one, in that we average
over x, and hence it does not seem to directly imply local behavior. What does seem to be the
crux of the matter is the requirement to perform well onall distributions, or more generally on a
localizable set; note that the term ‘localizable’ here is a giveaway. Indeed, if we have a method
that is consistent on anon-localizable set of distributions, it may not behave locally. As a simple
example (but complex enough for the underlying issues to be evident), let us assume we work on
distributions havingEy= 0 (which was mentioned in Section 6 as being non-localizable). We might
consider the following approach on this problem: Letf be some general learning method known
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to be useful on other data sets; specifically, assume thatf is consistent. We can then calibrate its
output so that it returns an empirical mean of 0, which makes sense since weknow thatEy = 0.
That is, let

g(S,x) = f (S,x)− 1
|S| ∑

i=1..|S|
f (S,xi)

(alternatively, we might calibrate by multiplying by an appropriate scalar, etc.). Then, whileg is
consistent on the set of distributions withEy= 0 (using the consistency off on all distributions),
g does not behave locally. This can be seen, for example, by consideringg on a distribution withx
uniform on[−1,1] andy = sign(x). This distribution fulfillsEy= 0, andg is consistent on it, but
neither UAL nor UALC, since smoothed local versions ofg in fact return values tending towards 0.

Thus, in summary, the fact that the set of all distributions is localizable is whatcauses consis-
tency to imply local behavior. If we are concerned about that fact (e.g.,because we suspect local
behavior might lead to the curse of dimensionality; Bengio et al., 2006), then wemust do away
with consistency on the set of all distributions and instead talk about consistency on a more limited
set, one which is not localizable. However, part of the reason why nonparametric methods often
outperform parametric ones on real-world data is precisely because theymake as few as possible
assumptions about the unknown distribution. Consequently, we may find thatlocal behavior is hard
to avoid.

We now turn to directions for future work. One such direction is to apply ourresults towards
proving the consistency of learning methods not yet known to be consistent. It appears that in
many cases proving the WCM property should not be difficult; hence, what remains is to prove
UAL. While not necessarily a simple property to show, it may in some cases be easier than proving
consistency directly.

An additional area for possible future work is empirical investigation, as follows. Since a con-
sistent method is necessarily UALC, we can consider using a smoothed localversion of the original
method, since if chosen appropriately it is also consistent.2 Now, if for example we have a large
training set and only a few points at which to estimate, then by training on the local parts of the
original training set we may save time. Of course, there is no guarantee thatthis will be beneficial
on a particular problem, since consistency is an asymptotic property. Futureempirical work might
therefore examine real-world data sets in detail to see how the performanceof local versions of a
method compare to the original.
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2. Note that we might not need smoothing in practice, since the smoothing radius becomes negligibly small,Q(Rk)Rk =
o(Rk). That is, local versions might behave similarly enough to smoothed localversions for practical purposes.
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Appendix A. Proof of Proposition 1

For any sampleS, denote the mean and standard deviation (of thexs) by

Ê(S) =
1
|S| ∑

i=1..|S|
xi , σ̂(S) =

√
1
|S| ∑

i=1..|S|

(
xi − Ê(S)

)2
.

Now, start with a consistent methodg, which istranslation-invariantin the sense that

∀S,x,b g(S,x) = g(S+b,x+b)

whereS+b = {(xi +b,yi) : (xi ,yi) ∈ S} (for example, we can takeg to be a kernel estimator).
Define, for anyq > 0,

f q(S,x) =

{
g(S,x) x /∈ BÊ(S),q or x∈ {xi : (xi ,yi) ∈ S}
0 otherwise

and let

Q(S) =
σ̂(S)

log(|S|) .

Finally, let
f (S,x) = f Q(S)(S,x).

We will first show that f is consistent; then we will show thatf is neither locally consistent nor
localizable. A brief overview of the proof is as follows: Asn→ ∞, we get thatQ(Sn) ≈ const

log(n) . This
means thatf is forced to return 0 on an area with vanishing radius, and hencef behaves likeg on
an area with measure rising to 1, and is consistent. On the other hand, when we consider a local

version, we get thatQ(Sn(x,Rn)) ≈ O
(

Rn
log(m)

)
, wherem is the size ofSn(x,Rn). We also get thatx,

the point at which we are estimating, is at distance≈ O
(

Rn√
m

)
from Ê(Sn(x,Rn)), a distance which

is asymptotically smaller thanQ. Hencex will tend to be in the area on whichf is forced to return
0, making f neither locally consistent nor localizable.

We now start with the formal proof, first showing thatf is consistent. SinceX is bounded,
σ̂(Sn) is bounded, and henceQ(Sn) = σ̂(Sn)

log(n) → 0. We first assume that there is not a point mass

on Ex, which impliesµ
(

BÊ(Sn),Q(Sn)

)
→ 0 almost surely, which follows from the fact that, since

Ê(Sn) → Ex a.s. (by the LLN) andQ(Sn) → 0, we must have limsupnBÊ(Sn),Q(Sn)
⊆ {Ex} with

probability 1. We can then use the consistency ofg to see that

ESnEx | f (Sn,x)− f ∗(x)|
≤ ESnEx1{x /∈ BÊ(Sn),Q(Sn)

or x∈ {xi : (xi ,yi) ∈ Sn}}|g(Sn,x)− f ∗(x)|

+ESn2Mµ
(

BÊ(Sn),Q(Sn)

\

{xi : (xi ,yi) ∈ Sn}C
)

≤ ESn

[
Ex |g(Sn,x)− f ∗(x)|+2Mµ

(
BÊ(Sn),Q(Sn)

)]

→ 0
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which proves thatf is consistent. Consider now the case where there is a point mass onEx. Recall
that limsupnBÊ(Sn),Q(Sn)

⊆ {Ex} a.s., and note that due to the point mass onEx, we haveP
(
Ex∈

{xi : (xi ,yi) ∈ Sn}
)
→ 1. Because of these two facts, we get

ESnµ
(

BÊ(Sn),Q(Sn)

\

{xi : (xi ,yi) ∈ Sn}C
)
→ 0

hence once moref is consistent by the consistency ofg, by a similar argument as before.
We will now show thatf is not locally consistent. For this, it is sufficient to show a single

distribution on whichLn
(

f |{Rk}
)

does not converge to 0, for any sequenceRk → 0. TakeX = [0,1]
(higher-dimensional cases can be proved similarly), letµ be uniform onX, and lety = +1 with
probability(1+ f ∗(x))/2, and otherwisey = −1 (which makes sense iff ∗(x) ∈ [−1,+1]). Define

f ∗(x) =

{
+1/2 x∈

[
0, 1

2

]

−1/2 x∈
(

1
2,1
] .

Fix somex ∈ (0,1). Note thatµ has no point masses, soP(x ∈ {xi : (xi ,yi) ∈ Sn}) = 0, and the
relevant condition in the definition off q is of no consequence. Now, for large enoughn (that is,
small enoughRn) we havex∈ [Rn,1−Rn]; we will now focus on that case.

DenoteS̃= Sn(x,Rn) and m = m(n,x,Rn) = |S̃|. Notice thatm is the sum of i.i.d Bernoulli
variables, and that

Em= 2nRn , σ2(m) ≤ 2nRn (6)

(recall thatEm,σ2(m) denote the expected value and variance of the random variablem, respec-
tively). Now, consider the case in whichnRn 6→ ∞. Then there is some bounded subsequence,
knRkn ≤ K for all n. Then (using Chebyshev) clearlym is less than 4knRkn with non-vanishing prob-
ability on this subsequence. SinceRk → 0 then in order forf to be consistent we must, for large
enoughn, discriminate between the two possibilitiesf ∗(x) = +1/2, f ∗(x) = −1/2 in a way that
does not depend uponx (due to the translation-invariance off , which stems from the translation-
invariance ofg). But discriminating between the two cases with arbitrarily small error cannotbe
done with a bounded sample size, hence the loss cannot go to 0. Thus, we conclude that ifnRn 6→ ∞
then f is not locally consistent.

Consider now the other case, ofnRn → ∞. We start by formulating bounds form, |x− Ê(S̃)|,
andσ̂2(S̃).

• m: Using Bernstein’s Inequality and (6), we get

P(|m−2nRn| ≥ t) ≤ 2exp

(
−1

2
t2

2nRn + t/3

)
.

Pickingt = tn = nRn, we get

P(|m−2nRn| ≥ nRn) ≤ 2exp

(
−1

6
nRn

)
. (7)

Note that this bound converges to 0 sincenRn → ∞.
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• |x− Ê(S̃)|: Clearly x is the mean ofPx,Rn, and also the mean of the individual observations
in S̃, as they are distributed i.i.d asPx,Rn. Note that for everyxi ∈ S̃ (i.e., taken from the

distributionPx,Rn) we haveσ2(xi) = R2
n

3 . Then, by Hoeffding’s Inequality,

P
(∣∣∣x− Ê(S̃)

∣∣∣≥ t
)
≤ Em

{
2exp

(
−mt2

2R2
n

)}
.

Pickingt = tn = Rn

√
log(nRn)

nRn
, we get

P



∣∣∣x− Ê(S̃)

∣∣∣≥ Rn

√
log(nRn)

nRn


≤ Em

{
2exp

(
−1

2
m

nRn
log(nRn)

)}
(8)

≤ 2exp

(
−1

2
log(nRn)

)
+4exp

(
−1

6
nRn

)

→ 0

using the bound formabove (7).

• A final bound that we will need relates tôσ2(S̃). Note that for any sampleSand pointx,

σ̂2(S) =
1
|S| ∑i

(xi −x)2− (x− Ê(S))2

Consider the first expression on the RHS. On our (sub)sampleS̃, we have for everyxi ∈ S̃that

E(xi −x)2 = R2
n

3 , and note that(xi −x)2 ≤ R2
n. Then, by Hoeffding’s Inequality,

P

(∣∣∣∣∣
1
m

m

∑
i=1

(xi −x)2− R2
n

3

∣∣∣∣∣≥ t

)
≤ Em2exp

(
−mt2

2R4
n

)
.

Pickingt = tn = R2
n

√
log(nRn)

nRn
, we get

P



∣∣∣∣∣
1
m

m

∑
i=1

(xi −x)2− R2
n

3

∣∣∣∣∣≥ R2
n

√
log(nRn)

nRn




≤ Em2exp

(
−1

2
m

nRn
log(nRn)

)

≤ 2exp

(
−1

2
log(nRn)

)
+4exp

(
−1

6
nRn

)

→ 0
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similarly as before. Combined with the bound from before for|x− Ê(S̃)|, we get, for large
enoughn,

P

(
σ̂2(S̃) ≤ 1

12
R2

n

)

= P

(
σ̂2(S̃) ≤ 1

12
R2

n ,
(
x− Ê(S̃)

)2
< R2

n
log(nRn)

nRn

)

+P

(
σ̂2(S̃) ≤ 1

12
R2

n ,
(
x− Ê(S̃)

)2 ≥ R2
n
log(nRn)

nRn

)

≤ P

(
1
m

m

∑
i=1

(xi −x)2 ≤ 1
6

R2
n

)
+P



∣∣∣x− Ê(S̃)

∣∣∣≥ Rn

√
log(nRn)

nRn




→ 0.

We now have all the bounds we need. Using our results form= |S̃| andσ̂2(S̃) together, we get

lim
n→∞

P
(∣∣∣x− Ê(S̃)

∣∣∣≥ Q(S̃)
)

= lim
n→∞

P

(∣∣∣x− Ê(S̃)
∣∣∣≥ σ̂(S̃)

log(m)

)

= lim
n→∞

P

(∣∣∣x− Ê(S̃)
∣∣∣≥ σ̂(S̃)

log(m)
, |m−2nRn| ≤ nRn , σ̂2(S̃) ≥ 1

12
R2

n

)

≤ lim
n→∞

P

(∣∣∣x− Ê(S̃)
∣∣∣≥ Rn√

12log(3nRn)

)

→ 0

where to reach the very last line we used what we know about|x− Ê(S̃)|, as appearing in (8). Thus,

for everyx∈ suppX(P) we haveP
(

x∈ BÊ(S̃),Q(S̃)

)
→ 1.

Finally, we can see that

ESn

∣∣ f |{Rk}(Sn,x)− f ∗(x)
∣∣= ESn

∣∣∣ f (S̃,x)− f ∗(x)
∣∣∣

= ESn1{x∈ BÊ(S̃),Q(S̃)}
∣∣∣ f (S̃,x)− f ∗(x)

∣∣∣

+ESn1{x /∈ BÊ(S̃),Q(S̃)}
∣∣∣ f (S̃,x)− f ∗(x)

∣∣∣

≥ ESn1{x∈ BÊ(S̃),Q(S̃)}| f
∗(x)|

=
1
2

ESn1{x∈ BÊ(S̃),Q(S̃)}

=
1
2

P
(

x∈ BÊ(S̃),Q(S̃)

)

→ 1
2

848



CONSISTENCY ANDLOCALIZABILITY

where we used thatf ∗(x) ∈ {−1/2,+1/2}. Taking the expected value overx, the dominated con-
vergence theorem gives us

lim
n→∞

Ln
(

f |{Rk}
)
≥ 1

2
.

Thus, f |{Rk} is not consistent, that is,f is not locally consistent (note that this is even by a relatively
large constant factor).

Having shown thatf is consistent but not locally consistent, we now show that in additionf
cannot be localizable. This is immediate, since iff were localizable, then some sequenceRk → 0
would exist for whichDn

(
f , f |{Rk}

)
→ 0, and therefore

Ln
(

f |{Rk}
)

= Dn
(

f |{Rk}, f ∗
)
≤ Dn

(
f |{Rk}, f

)
+Dn( f , f ∗) → 0

by the localizability and consistency off . But this result impliesf is locally consistent, contradict-
ing what we saw earlier.

Appendix B. Proof of Lemma 6

Define (as in the proof of Proposition 1)S̃= Sn(x, r), m= m(n,x, r) = |Sn(x, r)|, the size of the local
training set. Note that we can seeS̃asmpoints sampled fromPx,r . Then we get, for anyr,q > 0,

Dn
(

f̄ |qr , f ∗
)

= ESn,x
∣∣Ex′∼Px,qr f (Sn(x, r),x

′)− f ∗(x)
∣∣

= Ex,mES̃∼Px,r | m

∣∣∣Ex′∼Px,qr f (S̃,x′)− f ∗(x)
∣∣∣

≤ Ex,mES̃∼Px,r | mEx′∼Px,qr

∣∣∣ f (S̃,x′)− f ∗(x)
∣∣∣

≤ Ex,mES̃∼Px,r | m , x′∼Px,qr

∣∣∣ f (S̃,x′)− f ∗(x′)
∣∣∣

+Ex,x′∼Px,qr

∣∣ f ∗(x′)− f ∗(x)
∣∣ .

We now start to consider the limit behavior of these expressions when we replacer > 0 with {Rk} ∈
R (T) andq > 0 with {Q(Rk)},Q∈ Q (T), whereT ∈ T is arbitrary. First, for any such{Rk},Q we
have

lim
n→∞

Ex,x′∼Px,Q(Rn)Rn

∣∣ f ∗(x′)− f ∗(x)
∣∣= 0

by the corollary to the following lemma (and sinceRn,Q(Rn) → 0):

Lemma 12 [Devroye, 1981; Lemma 1.1] For any distribution P and measurable g, ifEx∼P|g(x)| <
∞ then

lim
r→0

Ex′∼Px,r g(x′) = g(x)

for almost all x.

Corollary 13 For any distribution P and measurable g, if Ex∼P|g(x)| < ∞ then

lim
r→0

Ex′∼Px,r

∣∣g(x′)−g(x)
∣∣= 0

for almost all x.
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Write S̃= Sn(x,Rn) (a minor abuse of our notation, as we also writeS̃= Sn(x, r), but r is always a
placeholder forRn in any case). Then

limsup
n→∞

Dn

(
f̄ |{Q(Rk)}
{Rk} , f ∗

)
≤ limsup

n→∞
Ex,mES̃∼Px,Rn | m , x′∼Px,Q(Rn)Rn

∣∣∣ f (S̃,x′)− f ∗(x′)
∣∣∣ .

To simplify notation for this last expression, define, for anyx∈ suppX(P),n∈ N, r,q∈ T,

C(x,n, r,q) = EmES̃∼Px,r | m , x′∼Px,qr

∣∣∣ f (S̃,x′)− f ∗(x′)
∣∣∣

and

C(n, r,q) = ExC(x,n, r,q).

It is therefore our goal to show thatC(n,Rn,Q(Rn)) → 0 for appropriate{Rk},Q. Towards that end,
we consider the limit limsupn→∞C(n, r,q), for fixed r,q. We have, for everyx∈ suppX(P),

C(x,n, r,q)

= EmES̃∼Px,r | m , x′∼Px,qr

∣∣∣ f (S̃,x′)− f ∗(x′)
∣∣∣

=
µ(Bx,r)

µ(Bx,qr)
EmES̃∼Px,r | m , x′∼Px,r

∣∣∣ f (S̃,x′)− f ∗(x′)
∣∣∣1
{

x′ ∈ Bx,qr
}

≤ µ(Bx,r)

µ(Bx,qr)
EmES̃,x′∼Px,r | m

∣∣∣ f (S̃,x′)− f ∗(x′)
∣∣∣

=
µ(Bx,r)

µ(Bx,qr)
EmES̃,x′∼Px,r | m

∣∣∣ f (S̃,x′)−Em( f )+Em( f )−E( f ∗)+E( f ∗)− f ∗(x′)
∣∣∣

≤ µ(Bx,r)

µ(Bx,qr)
Em
[
MADm,Px,r ( f )+ |Em,Px,r ( f )−EPx,r ( f ∗)|+MADPx,r ( f ∗)

]

where the expected valuesEm( f ),E( f ∗) on the line before last are w.r.tPx,r , and the expected values
and MADs on the last two lines are all conditional onm.

Now, clearlym→ ∞ almost surely (sincex is in the support ofµ, andr > 0 is fixed, so there is
a positive probability for an observation to fall withinBx,r ). Hence, by the WCM property off on
Px,r (afixeddistribution in the current view),

limsup
n→∞

C(x,n, r,q) ≤ µ(Bx,r)

µ(Bx,qr)

[
MADPx,r ( f ∗)+2H

(
MADPx,r ( f ∗)

)]
.

Using this bound, we can then conclude that

limsup
n→∞

C(n, r,q) = limsup
n→∞

ExC(x,n, r,q)

≤ Ex limsup
n→∞

C(x,n, r,q) (9)

≤ Exmin

{
2M ,

µ(Bx,r)

µ(Bx,qr)

[
MADPx,r ( f ∗)+2H

(
MADPx,r ( f ∗)

)]}
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using the Fatou-Lebesgue theorem for the first inequality, where we relyon the trivial fact that
C(x,n, r,q) ≤ 2M based on our boundedness assumptions onf , f ∗, and using those same bounded-
ness assumptions for the second inequality as well. We define

C∗(r,q) = limsup
n→∞

C(n, r,q),

C̄∗(r,q) = Exmin

{
2M ,

µ(Bx,r)

µ(Bx,qr)

[
MADPx,r ( f ∗) +2H

(
MADPx,r ( f ∗)

)]}
.

Hence, based on (9) we have
C∗(r,q) ≤ C̄∗(r,q) (10)

We will now need the following lemma:

Lemma 14 [Devroye, 1981; see the proof of Lemma 2.2] For any measure µ, foralmost every x,

lim
r→0

rd

µ(Bx,r)
= cx , |cx| < ∞.

That is, the limit exists and is finite.

We now consider̄C∗ for fixedq and varyingr. By Lemma 14, we know that for almost everyx,

lim
r→0

µ(Bx,r)

µ(Bx,qr)
= lim

r→0

cxrd

cxqdrd =
1
qd (11)

and using Lemma 12 we can consider the MAD, as follows. First, by Lemma 12 wehave, for almost
everyx,

lim
r→0

Ex′∼Px,r f ∗(x′) = f ∗(x)

so, for almost everyx,

lim
r→0

MADPx,r ( f ∗) = lim
r→0

Ex′∼Px,r | f ∗(x′)−Ex′′∼Px,r f ∗(x′′)|

≤ lim
r→0

Ex′∼Px,r | f ∗(x′)− f ∗(x)|+ | f ∗(x)−Ex′′∼Px,r f ∗(x′′)|

= lim
r→0

Ex′∼Px,r | f ∗(x′)− f ∗(x)|

= 0

using Corollary 13 for the last equality. Combining this with (11), and using theproperties ofH,
we get

lim
r→0

C̄∗(r,q) = lim
r→0

Exmin

{
2M ,

µ(Bx,r)

µ(Bx,qr)

[
MADPx,r ( f ∗)+2H

(
MADPx,r ( f ∗)

)]}
= 0

since we have convergence to 0 for almost everyx in the expected value, and can apply the domi-
nated convergence theorem (for which the bound of 2M is crucial). Consequently, due to (10) we
have

lim
r→0

C∗(r,q) ≤ lim
r→0

C̄∗(r,q) = 0. (12)
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We now turn to defining{Rk} andQ, using what we have seen thus far. Recall thatT = {Tk} is
arbitrary and thatTk ց 0. Define in a recursive manner, for everyq∈ T (where recall thatT is the
set containing all the members in the sequenceT),

K(T0) = 0,

K(q) = min

{
k∈ N :

∀q′ ∈ T,q′ > q
k > K(q′)

and
∀k′ ≥ k ∀q′ ∈ T,q′ ≥ q

C∗(Tk′ ,q′) ≤ q′

}

(sinceTk ց 0, we start by definingK for the largest value inT, which isT0, and then proceed to
lower ones). Note that the clause regardingC∗ is fulfillable by (12) for individualq′, and since we
consider a finite number of suchq′, we can takek large enough for them all. Note also that we
ensure thatK(Tk) strictly increases, for which we rely on the fact thatTk strictly descends.

We now defineQ:

Q(T0), ...,Q(TK(T1)) = T0,

Q(TK(T1)+1), ...,Q(TK(T2)) = T1, (13)
...

Q(TK(Tk)+1), ...,Q(TK(Tk+1)) = Tk,

...

Then according to these definitions, for anyQ′ ∈ Q (T),Q′ ≥ Q, and any (large enough)k′ ∈ N,

Q′(Tk′) ≥ Q(Tk′) = Tk for somek fulfilling k′ > K(Tk)

and hence, for all large enoughk′,

C∗(Tk′ ,Q
′(Tk′)) ≤ Q′(Tk′). (14)

We now work towards definingR= {Rk}, which just as withQ will be done in two stages. First,
we define in a recursive manner, for everyr,q∈ T,

N(T0,T0) = 0,

N(r,q) =

min

{
ñ∈ N :

∀r ′,q′ ∈ T, r ′ > r,q′ ≥ q
ñ > N(r ′,q′)

and
∀ñ′ ≥ ñ∀r ′,q′ ∈ T, r ′ ≥ r,q′ ≥ q

C(ñ′, r ′,q′) ≤ 2C∗(r ′,q′)

}
.

Note that the clause regardingC,C∗ is fulfillable by the definition ofC∗ as the limsup ofC, and
hence we can achieve it over a set of finiteq, r as well. Note also that we ensureN(r,q) strictly
increases whenr strictly descends (andq does not rise).

Define, for anyQ′ ∈ Q (T),

R0, ...,RN(T1,Q′(T1)) = T0,

RN(T1,Q′(T1))+1, ...,RN(T2,Q′(T2)) = T1,

...

RN(Tk,Q′(Tk))+1, ...,RN(Tk+1,Q′(Tk+1)) = Tk,

...
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Then, for anyR′ ∈ R (T),R′ ≥ R, and ifn is large enough,

R′
n ≥ Rn = Tk for somek fulfilling n > N(Tk,Q

′(Tk)).

Note thatQ′(R′
n) ≥ Q′(Tk). Thus, by the definition ofN(·, ·),

C(n,R′
n,Q

′(R′
n)) ≤ 2C∗(R′

n,Q
′(R′

n)).

If we now also assume thatQ′ ≥ Q, whereQ is as defined in (13), then by (14) we get

C(n,R′
n,Q

′(R′
n)) ≤ 2C∗(R′

n,Q
′(R′

n)) ≤ 2Q′(R′
n)−→n→∞

0

completing the proof.

Appendix C. Proof of Lemma 9

1. First, note that

∀P ESn,x
∣∣ f|·|(Sn,x)−| f ∗(x)|

∣∣≤ ESn,x | fker(Sn,x)− f ∗(x)| −→ 0. (15)

Now, notice that for anyP,c,d,

Dn( fc, fd) = ESn,x
∣∣c(Sn,x) f|·|(Sn,x)−d(Sn,x) f|·|(Sn,x)

∣∣

= ESn,x |c(Sn,x)−d(Sn,x)| f|·|(Sn,x)

= ESn,x |c(Sn,x)−d(Sn,x)| |2η(x)−1|
+ESn,x |c(Sn,x)−d(Sn,x)|

(
f|·|(Sn,x)−|2η(x)−1|

)

= D̃n(c,d)+ESn,x |c(Sn,x)−d(Sn,x)|
(

f|·|(Sn,x)−|2η(x)−1|
)
.

The last expression converges to 0 by (15) since

ESn,x |c(Sn,x)−d(Sn,x)|
(

f|·|(Sn,x)−|2η(x)−1|
)
≤ 2ESn,x

∣∣ f|·|(Sn,x)−|2η(x)−1|
∣∣→ 0

which leads directly to the result we wanted.
2. By part 1 we know thatDn( fc, fc∗) → 0 ⇐⇒ D̃n(c,c∗) → 0, so it suffices to prove that
∀P Dn( fc∗ , f ∗) → 0, which can be shown using (15):

Dn( fc∗ , f ∗) = ESn,x
∣∣c∗(x) f|·|(Sn,x)− f ∗(x)

∣∣= ESn,x
∣∣ f|·|(Sn,x)−| f ∗(x)|

∣∣→ 0.

3. We considerDn

(
¯( fc)|qr , fc̃|qr

)
; later we will replaceq, r with {Q(Rk)},{Rk}. By the definitions,

Dn

(
¯( fc)|qr , fc̃|qr

)

= ESn,x
∣∣Ex′∼Px,qrc(Sn(x, r),x

′) f|·|(Sn(x, r),x
′)−sign

(
Ex′∼Px,qrc(Sn(x, r),x

′)
)

f|·|(Sn,x)
∣∣

≤ ESn,x
∣∣Ex′∼Px,qrc(Sn(x, r),x

′)−sign
(
Ex′∼Px,qrc(Sn(x, r),x

′)
)∣∣ | f ∗(x)|

+ESn,x
∣∣sign

(
Ex′∼Px,qrc(Sn(x, r),x

′)
)(

f|·|(Sn,x)−| f ∗(x)|
)∣∣

+ESn,x
∣∣Ex′∼Px,qrc(Sn(x, r),x

′)
(

f|·|(Sn(x, r),x
′)−| f ∗(x)|

)∣∣ (16)

≤ ESn,x
∣∣Ex′∼Px,qrc(Sn(x, r),x

′)−c∗(x)
∣∣ | f ∗(x)|

+ESn,x
∣∣ f|·|(Sn,x)−| f ∗(x)|

∣∣

+ESn,xEx′∼Px,qr

∣∣ f|·|(Sn(x, r),x
′)−| f ∗(x)|

∣∣
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where we used the fact that|a−sign(a)| ≤ |a−b| for anyb∈ {−1,+1}. We now consider the final
three expressions separately, denoting them (1),(2),(3):

(1) : ESn,x
∣∣Ex′∼Px,qrc(Sn(x, r),x

′)−c∗(x)
∣∣ | f ∗(x)|

= ESn,x
∣∣Ex′∼Px,qrc(Sn(x, r),x

′)| f ∗(x)|− f ∗(x)
∣∣

≤ ESn,x
∣∣Ex′∼Px,qrc(Sn(x, r),x

′)
(
| f ∗(x)|− f|·|(Sn(x, r),x

′)
)∣∣

+ESn,x
∣∣Ex′∼Px,qrc(Sn(x, r),x

′) f|·|(Sn(x, r),x
′)− f ∗(x)

∣∣

≤ ESn,xEx′∼Px,qr

∣∣| f ∗(x)|− f|·|(Sn(x, r),x
′)
∣∣

+ESn,x
∣∣Ex′∼Px,qrc(Sn(x, r),x

′) f|·|(Sn(x, r),x
′)− f ∗(x)

∣∣ .

Of the last two expressions, the first is equal to the last of the three expressions we arrived at
in (16), so we can consider later on double the value of that expression instead of handling it
here. Regarding the second, it is simply equal toDn

( ¯( fc)|qr , f ∗
)
, which we know to converge

to 0 for large-enoughQ,{Rk} since fc is UALC onP.

(2) : This converges to 0 by (15).

(3) : Since

ESn,xEx′∼Px,qr

∣∣ f|·|(Sn(x, r),x
′)−| f ∗(x)|

∣∣≤ ESn,xEx′∼Px,qr

∣∣ fker(Sn(x, r),x
′)− f ∗(x)

∣∣

we can use the same techniques as in the proof of Lemma 6:

ESn,xEx′∼Px,qr

∣∣ fker(Sn(x, r),x
′)− f ∗(x)

∣∣

≤ ESn,xEx′∼Px,qr

∣∣ fker(Sn(x, r),x
′)− f ∗(x′)

∣∣

+ExEx′∼Px,qr

∣∣ f ∗(x′)− f ∗(x)
∣∣

= Ex
µ(Bx,r)

µ(Bx,rq)
EmES̃∼Px,r | m Ex′∼Px,r

∣∣∣ fker(S̃,x′)− f ∗(x′)
∣∣∣1{x′ ∈ Bx,rq}

+ExEx′∼Px,qr

∣∣ f ∗(x′)− f ∗(x)
∣∣

≤ Ex
µ(Bx,r)

µ(Bx,rq)
EmES̃,x′∼Px,r | m

∣∣∣ fker(S̃,x′)− f ∗(x′)
∣∣∣

+ExEx′∼Px,qr

∣∣ f ∗(x′)− f ∗(x)
∣∣

where, as in previous proofs,m = |Sn(x, r)|. The expression before last converges to 0 for
everyx ∈ suppX(P) and fixedr,q > 0 by the consistency offker on Px,r (using the fact that
m→ ∞ a.s.), and therefore in a similar way as that performed in Lemma 6 we can see that the
entire expression (with expected value overx) converges to 0 for slowly-enough descending
Q,{Rk}. The final expression converges to 0 for anyqr → 0 by Corollary 13.

Thus, by replacingq, r with large-enoughQ,{Rk} we can see that the original expression converges
to 0, as required.
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