An oxygen barometer for rutile–ilmenite assemblages: oxidation state of metasomatic agents in the mantle

Donggao Zhao a,b, Eric J. Essene a,\ast, Youxue Zhang a

a Department of Geological Sciences, 2534 C.C. Little Building, Ann Arbor, MI 48109-1063, USA
b Department of Nuclear Engineering and Radiological Sciences, 1906 Cooley Building, Ann Arbor, MI 48109-2104, USA

Received 30 July 1998; revised version received 21 December 1998; accepted 21 December 1998

Abstract

Oxygen fugacity has been calculated for rutile–ilmenite assemblages from the reaction $2\text{Fe}_2\text{O}_3$ (in ilmenite) + 4TiO_2 (rutile) = 4FeTiO_3 (in ilmenite) + 2O_2. The equation $\log f\text{O}_2 = 22.59 - 25925/T - 3.09 \log T + 0.0016535 P + 48.836 P/T - 4 \log a_{\text{Ilm}}^{\text{FeTiO}_3} + 2 \log a_{\text{Ilm}}^{\text{Fe}_2\text{O}_3} + 4 \log a_{\text{Rut}}^{\text{TiO}_2}$, where T is in kelvin and P is in kbar, was derived from available thermodynamic data. The hypothetical end-member rutile–ilmenite reaction is located between the magnetite–hematite and Ni–NiO (NNO) buffers. The rutile–ilmenite oxygen barometer has been applied to ilmenite-bearing assemblages in mantle xenoliths from kimberlites, including the metasomatic MARID (mica–amphibole–rutile–ilmenite–diopside) suite and a MORID (mica–orthopyroxene–rutile–ilmenite–diopside) vein, along with rutile–ilmenite assemblages in eclogites and in Granny Smith diopside megacrysts. The oxygen fugacities of MARID and MORID lie around the NNO buffer and are comparable to those in metasomatized spinel lherzolites. Most MARID and MORID assemblages yield a more oxidizing $f\text{O}_2$ than the EMOD (enstatite–magnesite–olivine–diamond) buffer, such that MARID and MORID fluid or melt would tend to destroy diamond or graphite by oxidation. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: rutile; ilmenite; oxygen; mantle; xenoliths; kimberlite; diamond; metasomatic rocks

1. Introduction

The oxidation state of the mantle provides a fundamental constraint on mantle processes. Several methods have been developed to calculate oxygen fugacity ($f\text{O}_2$) in various mantle assemblages [1–9]. The most widely used oxygen barometer for mantle rocks applies the reaction 6FeSiO_3 (in orthopyroxene) + $2\text{Fe}_3\text{O}_4$ (in spinel) = $6\text{Fe}_2\text{SiO}_4$ (in olivine) + 2O_2 [4–8]. For example, Wood et al. [7] used this method on peridotite xenoliths from continental localities to obtain oxygen fugacities near those of the fayalite–magnetite–quartz (FMQ) buffer. The equilibrium $2\text{Fe}_2\text{O}_3$ (in ilmenite) + 4FeSiO_3 (in orthopyroxene) = $4\text{Fe}_2\text{SiO}_4$ (in olivine) + 2O_2 has been applied to megacrysts, mineral intergrowths, and peridotites from kimberlites and minettes [1]. The resultant values of $f\text{O}_2$ derived from the various equilibria fall mostly between FMQ -1.5 and FMQ $+1.5$ [7], with mid-oceanic ridge basaltic glasses and unmetasomatized mantle rocks below FMQ [7,8,11]. Esseneite and acmite components in clinopyroxene coexisting with olivine and orthopyroxene have also been used to characterize oxygen fugacity in mantle assemblage [9]. In addition, oxygen fugacities

\[0012-821X/99/$ - \text{see front matter} \text{© 1999 Elsevier Science B.V. All rights reserved.}
\]

PII: S0012-821X(98)00281-7
of mantle rocks have been measured by the intrinsic f_{O_2} method [3], although this method may not record f_{O_2} conditions of the xenolith at the time of equilibration in the mantle [7,10].

The redox state of mantle metasomatism has been characterized by applying orthopyroxene–spinel–olivine oxygen barometer to metasomatized spinel-bearing peridotite xenoliths [5,8,11]. It was found that mantle metasomatism recorded by peridotites from continental basalts appears to be coupled with oxidation, i.e., oxidation state increases with increasing degree of metasomatism [8], and that metasomatizing agents are more oxidizing than primitive mantle [12]. Extensively metasomatized mantle xenoliths with phlogopite, K-richterite and Ti- and Mn-enriched chromite yield f_{O_2} about 1.5 log unit above FMQ [8]. Mantle xenoliths brought up by kimberlites include MARID (mica–amphibole–rutile–ilmenite–diopside) suites, which are believed to form by mantle metasomatism [13,14] or from melts [15]. Waters [16] systematically studied about 50 MARID and related suites from the Bultfontein, De Beers, Wesselton, Dutoitspan and Newlands kimberlite pipes in southern Africa. Therefore, the oxidation state of the MARID suite may provide additional information about mantle metasomatism (e.g., [17]). The oxidation state of the MARID suite has not yet been studied systematically, and both oxidizing [13] and reducing [18] conditions have been suggested based on qualitative arguments such as high Fe$^{3+}$ in diopside and low Fe$^{3+}$/Fe$^{2+}$ ratio in ilmenite. We have described a metasomatic assemblage containing phlogopite–orthopyroxene–rutile–ilmenite–diopside–chromite (referred to as MORID hereafter) in a garnet–spinel lherzolite xenolith 1 in the Nikos kimberlites, Somerset Island, Northwest Territories, Canada [19]. MORID-type assemblages were previously reported in [13,16]. Given a similar enrichment in H, K, Ti and Fe, the MORID assemblage probably has a related metasomatic or melt origin as the MARID suite. Motivated by an attempt to constrain chemical conditions of mantle metasomatism in the MARID and MORID suites, we describe here an oxygen barometer using rutile and ilmenite, which are two characteristic phases in these suites.

Carmichael and Nicholls [36] suggested that ilmenite coexisting with rutile in eclogite could be used to estimate f_{O_2} using the reaction (referred to as RI hereafter) 2:

$$2\text{Fe}_2\text{O}_3 (\text{in ilm}) + 4\text{TiO}_2 (\text{rut}) = 4\text{FeTiO}_3 (\text{in ilm}) + \text{O}_2$$

Two comments may clarify the use of this reaction: (i) although only ilmenite solid solution that is low in Fe$^{3+}$ can coexist with rutile at low pressures owing to the formation of pseudobrookite solid solution, at high pressures and/or low to moderate temperatures, pseudobrookite group minerals (including armalcolite) are unstable and hence the above assemblage can serve as an oxygen barometer [37,38]; (ii) the single phase ilmenite by itself does not fix oxygen fugacity but only limits oxygen fugacity. Wöhrmann et al. [39] contoured f_{O_2} isobars for Fe$_2$O$_3$–FeTiO$_3$–MgTiO$_3$ solid solution in equilibrium with an undesignated spinel; their result was erroneously applied by later workers in the absence of spinel (e.g., some applications in Haggerty [17] were for ilmenite \pm spinel).

Grambling [40] used the Gibbs method to estimate $\Delta\mu_{\text{O}_2}$ (and hence $\Delta\log f_{\text{O}_2}$) at 4 kbar for coexisting rutile and ilmenite in crustal rocks with this reaction by assuming an ideal model for ilmenite solid solution. He obtained f_{O_2} for a reference sample with coexisting hematite and ilmenite phases [41] and then calculated f_{O_2} for other samples with coexisting rutile and ilmenite by using the reference f_{O_2} and the estimated $\Delta\log f_{\text{O}_2}$. His model cannot be applied if a reference f_{O_2} is not available and in any case mixing of Fe$_2$O$_3$–FeTiO$_3$–MgTiO$_3$ in ilmenite is not ideal [42,43]. In this paper, we formulate the rutile–ilmenite oxygen barometer using available thermodynamic data and non-ideal mix-

1 The transition between garnet lherzolite and spinel lherzolite in the system MAS is represented by the univariant reaction $2\text{Mg}_2\text{Si}_2\text{O}_6 + \text{MgAl}_2\text{O}_4 = 3\text{Mg}_2\text{Si}_3\text{O}_12 + \text{Mg}_2\text{Si}_6\text{O}_{16}$, and the addition of Cr_2O_3 to the system changes the univariant boundary to a wide divariant field extending the stability of spinel–enstatite to much higher pressure [20]. Therefore, garnet–chromite lherzolite is an expected divariant assemblage and is not uncommon in kimberlites [21–35].

2 This oxygen barometer can be combined with the two-oxide barometer to produce the following oxygen barometer: $2\text{Fe}_2\text{O}_3 (\text{in chrome}) + 3\text{TiO}_2 (\text{rutile}) = 3\text{Fe}_2\text{TiO}_3 (\text{in chrome}) + \text{O}_2$.

ing models for rhombohedral oxides in the system Fe₂O₃–FeTiO₃–MgTiO₃.

2. Formulation of the oxygen barometer

The oxygen fugacities of assemblages containing both rutile and ilmenite can be calculated from the equilibrium constant of reaction (1). At equilibrium,

\[\Delta G_T^P = 0.0016535 \times (P/1 \text{ bar}) + 0.902 \times \log f_O^2 + 2 \times \log a_{\text{FeTiO}_3} + 4 \times \log a_{\text{TiO}_2} \]

where \(R \) is the gas constant in J mol⁻¹ K⁻¹, \(T \) is in kelvin, \(P \) in bar, \(\Delta G_T^P \) and \(\Delta G_T^P \) are the Gibbs free energy (J) of the end-member reaction at \(T, P \) and at \((T_1, 1 \text{ bar}) \), and \(\Delta V_s \) is the volume difference between the solid product and reactants in J/bar. In evaluating \(\Delta G \) and \(\Delta V_s \), Fe₂O₃ in hematite is used as the standard state for Fe₂O₃ in ilmenite. This approach is appropriate because the activity model for Fe₂O₃ in ilmenite also uses Fe₂O₃ in hematite as the standard state (e.g., Ghiorso [42]; Andersen et al. [43]). The \(\Delta G_T^P \) for reaction (1) is evaluated from three different thermodynamic data sets [44–46]. Two data sets [45,46] yield \(\log f_O^2 \) nearly identical to each other (Fig. 1), while the third [44] shows small discrepancies at higher temperatures, with differences of \(< 0.3 \log f_O^2 \) at 1500°C and better agreement at lower temperatures (Fig. 1). The hypothetical end-member RI reaction in log \(f_O^2 \) vs. \(T \) space is located between the magnetite–hematite (MH) and the NNO buffers at 1 bar total pressure (Fig. 1). Because our calculations are related to Fe³⁺-bearing system and because the entropy of mixing on the ilmenite–hematite and geikielite–hematite joins was explicitly formulated in Ghiorso’s model [42], we select his solution model, which includes a modification of Berman’s [44] standard state thermodynamic data for consistency. The \(\Delta G_T^P \) was first calculated from Berman [44] (using the PerPlex program with data b92ver.dat, see Connolly [47] and http://buzzard.athz.ch/~jamie/perplex.html) at 700–1800 K and \(\leq 60 \) kbar, and then was fit to the form of \(\Delta G_T^P = C_0 + C_1 T + C_2 T \log T + C_3 P + C_4 PT \), which reproduces \(\Delta G_T^P \) from Berman [44] with a maximum deviation of 0.8 kJ at 700–1800 K and \(\leq 60 \) kbar (\(r^2 = 0.99998 \)), equivalent to 0.05 unit in \(\log f_O^2 \). Because Ghiorso [42] modified the standard state enthalpy of hematite at 298.15 K and 1 bar from Berman’s \(-825.627 \) kJ/mol [44] to \(-822.0 \) kJ/mol, his modification is incorporated by subtracting 7254 J for 2 moles of hematite from the \(\Delta G_T^P \) from Berman [44]. The resulting \(\Delta G_T^P \) expression at 700–1800 K and \(\leq 60 \) kbar is:

\[\Delta G_T^P = 496340 - 432.47 T + 59.168 T \log T - 934.96 P - 0.031656 PT \]

where \(\Delta G_T^P \) is in J, \(T \) in kelvin and \(P \) in kbar. Substituting Eq. 3 into Eq. 2 and rearranging yield:

\[\log f_O^2 = 22.59 - 25925/T - 3.09 \log T + 0.0016535 P + 48.836 P/T - 4 \log a_{\text{FeTiO}_3}^\text{lim} \]

\[+ 2 \log a_{\text{Fe}_2\text{O}_3} + 4 \log a_{\text{TiO}_2} \]

Therefore, oxygen fugacities of assemblages containing both rutile and ilmenite may be calculated from the activities of FeTiO₃, Fe₂O₃ and TiO₂ by Eq. 4 at a given \(P \) and \(T \). If rutile is not present, the RI oxygen barometer can be applied to single ilmenite crystals to obtain an upper limit of \(f_O^2 \). Because the \(\Delta V_s \) values for NNO and RI reactions are similar (\(-0.876 \) J/bar for NNO and \(-0.902 \) J/bar for RI at 1 bar and 298.15 K), the pressure effect nearly cancels if \(\log f_O^2 \) from the RI oxygen barometer is normalized to \(\log f_O^2 \) from the NNO buffer. The major component in rutile is TiO₂ (usually >95 wt%); the mole fraction of TiO₂ in rutile is used as the activity of TiO₂.

3. Sources of error

One source of uncertainty is from the mixing model [42,43] used to calculate the activities of Fe₂O₃ and FeTiO₃ in ilmenite, especially the uncertainty associated with the dependence of activity model on pressure, which has not yet been accounted for by available mixing models. Furthermore, the two mixing models for the ilmenite solid solution [42,43] do not result in similar activities. To compare results from the two models, \(\log f_O^2 \) values are calculated by (i) using Eq. 4 with activities from
Table 1
Oxygen fugacities of various assemblages calculated from rutile±ilmenite (RI) and other oxygen barometers

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>T^a</th>
<th>P^a</th>
<th>Mole fractions</th>
<th>Activities</th>
<th>log f_{O_2}</th>
<th>$\Delta \log f_{O_2}$</th>
<th>log f_{O_2}</th>
<th>log f_{O_2}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(K)</td>
<td>(kbar)</td>
<td></td>
<td></td>
<td>RI^b</td>
<td>R^b-NNO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1158</td>
<td>1300</td>
<td>36</td>
<td>0.386</td>
<td>0.058</td>
<td>0.547</td>
<td>0.009</td>
<td>0.923</td>
<td>-8.3</td>
</tr>
<tr>
<td>AJE288</td>
<td>1300</td>
<td>36</td>
<td>0.367</td>
<td>0.045</td>
<td>0.577</td>
<td>0.012</td>
<td>0.820</td>
<td>-8.9</td>
</tr>
<tr>
<td>AJE326-1</td>
<td>1300</td>
<td>36</td>
<td>0.452</td>
<td>0.093</td>
<td>0.451</td>
<td>0.004</td>
<td>0.946</td>
<td>-7.3</td>
</tr>
<tr>
<td>AJE326-3/1</td>
<td>1300</td>
<td>36</td>
<td>0.542</td>
<td>0.027</td>
<td>0.425</td>
<td>0.006</td>
<td>0.946</td>
<td>-9.1</td>
</tr>
<tr>
<td>BF18-1</td>
<td>1300</td>
<td>36</td>
<td>0.448</td>
<td>0.048</td>
<td>0.497</td>
<td>0.007</td>
<td>0.972</td>
<td>-8.3</td>
</tr>
<tr>
<td>JG2315-1</td>
<td>1300</td>
<td>36</td>
<td>0.324</td>
<td>0.055</td>
<td>0.613</td>
<td>0.008</td>
<td>0.898</td>
<td>0.1</td>
</tr>
<tr>
<td>JG2316-1</td>
<td>1300</td>
<td>36</td>
<td>0.252</td>
<td>0.066</td>
<td>0.673</td>
<td>0.009</td>
<td>0.893</td>
<td>0.1</td>
</tr>
<tr>
<td>JG2316-4/1</td>
<td>1300</td>
<td>36</td>
<td>0.396</td>
<td>0.080</td>
<td>0.516</td>
<td>0.009</td>
<td>0.893</td>
<td>0.1</td>
</tr>
<tr>
<td>JG2328</td>
<td>1300</td>
<td>36</td>
<td>0.322</td>
<td>0.050</td>
<td>0.622</td>
<td>0.006</td>
<td>0.961</td>
<td>0.1</td>
</tr>
<tr>
<td>AJE214(f)</td>
<td>1300</td>
<td>36</td>
<td>0.353</td>
<td>0.075</td>
<td>0.566</td>
<td>0.006</td>
<td>0.960</td>
<td>0.1</td>
</tr>
<tr>
<td>AJE281(f)</td>
<td>1300</td>
<td>36</td>
<td>0.339</td>
<td>0.075</td>
<td>0.580</td>
<td>0.007</td>
<td>0.960</td>
<td>0.1</td>
</tr>
<tr>
<td>AJE294(f)</td>
<td>1300</td>
<td>36</td>
<td>0.300</td>
<td>0.056</td>
<td>0.633</td>
<td>0.011</td>
<td>0.960</td>
<td>0.1</td>
</tr>
<tr>
<td>AJE31(f)</td>
<td>1300</td>
<td>36</td>
<td>0.387</td>
<td>0.075</td>
<td>0.530</td>
<td>0.007</td>
<td>0.960</td>
<td>0.1</td>
</tr>
<tr>
<td>AJE333(f)</td>
<td>1300</td>
<td>36</td>
<td>0.399</td>
<td>0.064</td>
<td>0.529</td>
<td>0.007</td>
<td>0.960</td>
<td>0.1</td>
</tr>
<tr>
<td>AJE66(f)</td>
<td>1300</td>
<td>36</td>
<td>0.303</td>
<td>0.080</td>
<td>0.607</td>
<td>0.010</td>
<td>0.960</td>
<td>0.1</td>
</tr>
<tr>
<td>FW12(f)</td>
<td>1300</td>
<td>36</td>
<td>0.459</td>
<td>0.037</td>
<td>0.498</td>
<td>0.006</td>
<td>0.960</td>
<td>0.1</td>
</tr>
<tr>
<td>FW26A(f)</td>
<td>1300</td>
<td>36</td>
<td>0.486</td>
<td>0.029</td>
<td>0.479</td>
<td>0.005</td>
<td>0.960</td>
<td>0.1</td>
</tr>
<tr>
<td>JG2319(f)</td>
<td>1300</td>
<td>36</td>
<td>0.381</td>
<td>0.075</td>
<td>0.535</td>
<td>0.009</td>
<td>0.960</td>
<td>0.1</td>
</tr>
<tr>
<td>JG2331(f)</td>
<td>1300</td>
<td>36</td>
<td>0.308</td>
<td>0.050</td>
<td>0.630</td>
<td>0.012</td>
<td>0.960</td>
<td>0.1</td>
</tr>
<tr>
<td>JG2332(f)</td>
<td>1300</td>
<td>36</td>
<td>0.302</td>
<td>0.061</td>
<td>0.624</td>
<td>0.013</td>
<td>0.960</td>
<td>0.1</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP1-X17 (MORID vein)</td>
<td>1300</td>
<td>36</td>
<td>0.480</td>
<td>0.062</td>
<td>0.454</td>
<td>0.004</td>
<td>0.952</td>
<td>-7.9 ± 0.7</td>
</tr>
<tr>
<td>JP1-X17 (herzolite host)</td>
<td>1300</td>
<td>36</td>
<td>0.380</td>
<td>0.042</td>
<td>0.415</td>
<td>0.004</td>
<td>0.908</td>
<td>-6.0</td>
</tr>
<tr>
<td>BD2394 (Rut±Ilm±Sp vein)</td>
<td>1500</td>
<td>50</td>
<td>0.539</td>
<td>0.042</td>
<td>0.415</td>
<td>0.004</td>
<td>0.908</td>
<td>-6.0</td>
</tr>
<tr>
<td>PHN2793/8B (eclogite)</td>
<td>1300</td>
<td>36</td>
<td>0.504</td>
<td>0.049</td>
<td>0.442</td>
<td>0.005</td>
<td>0.902</td>
<td>-8.2</td>
</tr>
<tr>
<td>A-306 (eclogite)</td>
<td>1300</td>
<td>36</td>
<td>0.396</td>
<td>0.040</td>
<td>0.561</td>
<td>0.003</td>
<td>0.970</td>
<td>-8.8</td>
</tr>
<tr>
<td>BD2997A</td>
<td>1300</td>
<td>36</td>
<td>0.494</td>
<td>0.040</td>
<td>0.462</td>
<td>0.004</td>
<td>0.910</td>
<td>-8.7</td>
</tr>
</tbody>
</table>

\(P^a\) and \(T^a\) estimated from the host assemblage of JP1-X17 are used for samples except for BD2394 [54], which is from a diamond mine and the minimum pressure for diamond to be stable at 1500 K [55] is used. The pressure effect is negligible when log f_{O_2} is expressed relative to NNO.

\(\text{RI}^b\), \(\text{R}^b\)-NNO, \(\text{Sp}^b\)-Ilm, \(\text{Ol}^b\)-Opx-Sp

\(a\) Sampling and temperature estimated from the host assemblage of JP1-X17 are used for samples except for BD2394 [54], which is from a diamond mine and the minimum pressure for diamond to be stable at 1500 K [55] is used. The pressure effect is negligible when log f_{O_2} is expressed relative to NNO.

\(b\) This study, Ghiorso's solution model and Ghiorso modified Berman thermodynamic data used [42,44].

\(c\) NNO from [8].

\(d\) Thermodynamic data from [42,44], solution models from [42,53].

\(e\) Using [7].

\(f\) $x(TiO_2)$ assumed to be 0.96. Sample sources: MARID samples from [16], table 12.1, except for 1158, which is from [13] (ilmenite is the average of 1 and 2 in table 5, rutile has 2–5 wt% Nb_2O_5). AJE214 and 288 are MARI (missing Cpx). JP1-X17 from [19]. BD2394 from [54], coexisting ilmenite, rutile and chromite in the vein in polymict xenolith, from the Bultfontein diamond mine. PHN2793/8B from [56], A-306 from [57], ilmenite in rutile. BD2997A from [58], rutile and ilmenite intergrowths inside Granny Smith diopside megacrysts.
Fig. 1. log \(f_O^2 \) vs. \(T \) for several oxygen buffer reactions at 1 bar. \(MH = \) magnetite–hematite; \(RI = \) rutile–ilmenite; \(NNO = \) Ni–NiO; \(FMQ = \) quartz–fayalite–magnetite; \(WM = \) wüstit(Fe\(_{0.947}\)O)–magnetite. The RI buffer curves are calculated using data from [44–46] for comparison. The thick curve of RI is from [45] and [46]; the thin curve immediately below is from [44] with modification from Ghiorso [42]. Other buffer curves are calculated using data from [46] only.

the model of Ghiorso [42], and (ii) using \(\Delta G_T^p \) for reaction (1) from the thermodynamic data of Robie et al. [48] (use of this data base is necessary to maintain self-consistency), volume data of Berman [44], and the mixing model of Andersen et al. [43]. For ilmenite containing \(X(\text{MgTiO}_3) \) of 0.4–0.5 and \(X(\text{Fe}_2\text{O}_3) \) of 0.05–0.1, the difference between the calculated log \(f_O^2 \) from the two mixing models is <1.0 log unit. Another \(T\)–\(X \) region where the two models agree within 1 log unit is at \(\sim 900 \) K and with \(X(\text{FeTiO}_3) \) of 0.3 to 0.8. However, outside the \(T\)–\(X \) regions, the log \(f_O^2 \) differences between the two models become larger, e.g., up to 5 log units for ilmenite with \(X(\text{FeTiO}_3) \) = 0.01, \(X(\text{MgTiO}_3) \) = 0.60 and \(X(\text{Fe}_2\text{O}_3) \) = 0.39 at 627°C and 5 kbar, with the model of Andersen et al. [43] usually giving more oxidizing results. When the RI oxygen barometer is applied to Grambling’s ilmenite–rutile–hematite assemblage at 500°C and 4 kbar [40], the model of Ghiorso [42] yields log \(f_O^2 \) of \(-19.1 \) and \(-19.9 \) for the hematite solid solution–rutile pair and for the ilmenite solid solution–rutile pair, respectively. These two values are close to each other and also close to an independent estimate (log \(f_O^2 \) of \(-20 \)) from hematite–ilmenite [41]. In contrast, the model of Anderson et al. [43] results in log \(f_O^2 \) of \(-20.9 \) for the hematite solid solution–rutile pair and \(-18.1 \) for the ilmenite solid solution–rutile pair. The mixing model from Ghiorso [42] is provisionally adopted in this paper. However, because of the discrepancies between the two solution models for ilmenite, caution should be exercised if the RI oxygen barometer is applied to crustal assemblages. For the applications discussed below in this paper (Table 1), the composition of ilmenite is such that the two mixing models give \(f_O^2 \) within 1 log unit.

A second source of uncertainty associated with the RI oxygen barometer arises from calculating \(X(\text{Fe}_2\text{O}_3) \) from electron microprobe analyses (EMPA) of ilmenite by stoichiometry and charge balance. We evaluated both the precision and accuracy as follows.

(1) The precision is obtained from repeated microprobe analysis of ilmenite in a sample. For ex-
ample, the average composition of 11 analyses of an ilmenite grain in the MORID vein (JP1-X17) in wt% is SiO₂ 0.30 ± 0.03 (2σ uncertainty hereafter), TiO₂ 55.51 ± 1.11, Al₂O₃ 0.29 ± 0.40, Cr₂O₃ 0.69 ± 0.35, V₂O₃ 0.13 ± 0.09 (corrected for Ti interference [49]), TFeO 27.97 ± 1.82, MnO 0.26 ± 0.05, MgO 14.45 ± 0.68, ZnO 0.02 ± 0.08. Because FeO and MgO co-vary negatively, only part of the compositional variations is due to counting error and the other part is due to real heterogeneity of the sample.

Calculated X(Fe₂O₃) and log fO₂ for the 11 analyses are 0.04 ± 0.02 (2σ uncertainty hereafter) and −8.8 ± 0.7 (at 1300 K and 36 kbar), respectively. The 2σ uncertainties on the mean of calculated X(Fe₂O₃) and log fO₂ are 0.006 and 0.2. As the X(Fe₂O₃) in ilmenite increases or decreases, the relative uncertainty in X(Fe₂O₃) and hence in calculated log fO₂ decreases or increases if the absolute error in X(Fe₂O₃) stays the same.

(2) Another critical issue for calculated X(Fe₂O₃) from EMPA is its accuracy (e.g., [8,10,50]). That has been assessed by comparing results from EMPA with those from Mössbauer measurements. Virgo et al. [10] compared EMPA and Mössbauer results and concluded that apparently precise EMPA results are not necessarily an indication of a high level of accuracy. The EMPA correction procedures and the choice of different standards may affect the calculated Fe³⁺/(Fe³⁺ + Fe²⁺) ratios [10]. To increase accuracy in calculating X(Fe₂O₃), an EMP procedure must analyze all major elements accurately (high precision is not enough) and must also include all minor elements. Hence, the accuracy of the calculated X(Fe₂O₃) is expected to depend on accuracy and homogeneity of standards, whether necessary minor elements are analyzed, and experience of the operator. Some ilmenite samples, for which Mössbauer measurements of Fe³⁺/(Fe³⁺ + Fe²⁺) were obtained by Virgo et al. [10], were analyzed on the University of Michigan electron microprobe using regular analytical procedure for magnesian ilmenite, which was designed before obtaining samples from Virgo. The standards used are MgTiO₃ (synthetic) for Mg, ilmenite for Ti and Fe, MgAl₂O₄ (synthetic) for Al, V₂O₃ (synthetic) for V, clinopyroxene (PX69) for Si, Ca₃Cr₂Si₃O₁₂ (synthetic) for Cr, rhodonite (Broken Hill) for Mn, and ZnS (synthetic) for Zn. The ilmenites were analyzed at an accelerating voltage of 15 kV and a beam current of 10 nA. The V₂O₃ content was corrected for Ti Kβ interference by subtracting 0.0042 wt% TiO₂ from the original value for V₂O₃. The coefficient 0.0042 was obtained by analyzing the synthetic TiO₂ and MgTiO₃ for apparent V. The calculated Fe³⁺/(Fe³⁺ + Fe²⁺) ratios for these samples analyzed at the University of Michigan, as well as those analyzed at other institutes, are compared with Mössbauer determinations (Fig. 2). The agreement between our calculated Fe³⁺/(Fe³⁺ + Fe²⁺) ratios (as well as those from microprobe analyses at Pennsylvania State University) and Mössbauer determinations is very good (Fig. 2).

We conclude that our electron microprobe analyses of ilmenite are of high enough quality for accurate calculation of the Fe³⁺/(Fe³⁺ + Fe²⁺) ratios.

The estimation of a minor ferric component from EMPA is a problem shared by all currently used oxygen barometers applied to mantle assemblages. For example, use of the oxygen barometer for olivine–orthopyroxene–spinel, olivine–orthopyroxene–ilmenite, and ilmenite–spinel requires estimation of minor FeO in spinel, Fe₂O₃ in ilmenite, or both. We have demonstrated above that at least for ilmenite, careful electron microprobe analyses yield Fe³⁺/(Fe³⁺ + Fe²⁺) similar to those from Mössbauer analyses, albeit with larger relative errors (Fig. 2). Ballhaus et al. [8] have also argued that reservations on the calculation of Fe₂O₃ component in spinel from microprobe analyses are unfounded (see also [51]).

Summarizing the above results, our assessment of the RI oxygen barometer is as follows.

(1) The standard state properties are well known for the purpose of oxygen barometry in mantle assemblages.

(2) Careful electron microprobe analyses can be used to obtain reliable X(Fe₂O₃). Estimating X(Fe₂O₃) from EMPA of Fe₂O₃-poor ilmenite yields relatively large uncertainties in the oxygen barometer, but the uncertainty is reduced for ilmenite containing high Fe₂O₃.

(3) The main source of uncertainties is from the mixing models of ilmenite. Improvement of the model will be important to this oxygen barometer. At present, the barometer is best applied to assemblages with ilmenite which has X(Fe₂O₃) close to or more than X(MgTiO₃), or X(Fe₂O₃) around 0.1 or 0.7.

Fig. 2. Comparison of calculated Fe³⁺/(Fe³⁺ + Fe²⁺) ratios using microprobe analyses from various laboratories (vertical axis) with the Mössbauer measurements of Virgo et al. [10]. Three samples (ULM 2, Yakutia-Dalnaya No. 1 D-46/79, and ROM 264 IL-41) used in the comparison were provided by D. Virgo. Legend: U M = University of Michigan, ZAF correction; P S U = Pennsylvania State University, Bence-Albee correction; GL-BA = Geophysical Lab, Bence-Albee correction; GL-ZAF = Geophysical Lab, ZAF correction; GL-JEOL-ZAF = Geophysical Lab, JEOL-SEM, ZAF correction. Results of UM microprobe analyses are from this work. Results of other microprobe analyses are from Virgo et al. [10]. The solid line is a 1:1 line. Shown are also 2σ error bars for Mössbauer analyses (3% relative, D. Virgo, pers. commun.) and for repeated microprobe analyses at the University of Michigan.

With the above precautions, the RI oxygen barometer provides a method to characterize redox state of assemblages containing both rutile and ilmenite.

4. Comparison with other oxygen barometers

Comparisons with other oxygen barometers confirm that the RI oxygen barometer for the $P-T-X$ under consideration is accurate to less than 1 log fO_2 unit. The MORID vein in sample JP1-X17 [19] contains rutile, ilmenite, and spinel. The log fO_2 calculated from the RI barometer ($−7.9$) agrees well with that calculated from the spinel–ilmenite oxygen barometer ($−8.0$) (Table 1). The log fO_2 of the host lherzolite (JP1-X17) calculated using olivine–orthopyroxene–spinel oxygen barometer ($−7.9$) is similar to that in the MORID vein.

A vein in a polymict xenolith (BD2394) from the Bultfontein diamond mine, South Africa contains coexisting ilmenite, chromite and rutile [54]. At 50 kbar, the minimum pressure for diamond to be stable at 1500 K [55], the fO_2 calculated from RI ($−6.0$) is in excellent agreement with that from spinel–ilmenite ($−5.9$) (Table 1).

5. Applications

The RI oxygen barometer may be applied to coexisting rutile–ilmenite in MORID vein [19], MARID suites [13,16], eclogitic xenoliths from kimberlite [56,57] and an assemblage from a ‘Granny Smith’ diopside megacryst [58] (Table 1; Fig. 3). For the MORID vein, T and P are estimated to be 1300 K and 36 kbar from two-pyroxene thermometry.
Fig. 3. log f_O^2 (normalized to NNO) vs. T obtained from the RI oxygen barometer for different rutile–ilmenite assemblages. Only for MORID vein [19] can a unique value of f_O^2 be obtained (circle). The range of f_O^2 (shaded area) obtained from MARID assemblages in the literature [13,16] is approximately 1 log unit below to 2 log units above NNO. Ilmenite–rutile from a kimberlitic eclogite [56] and ilmenite–rutile from a ‘Granny Smith’ diopside megacryst [58] show similar f_O^2 to MARID suites. For comparative purposes, 36 kbar, which is estimated from the host assemblage (JP1-X17) of MORID, was used for all samples in the diagram when calculating f_O^2. The assumption of 36 kbar for MARID assemblages is consistent with experiments [14,15,52]. Use of a $\Delta \log f_O^2$ minimizes any variation with pressure. NNO is from [8]. FMQ and EMOD are calculated from thermodynamic data [45].

[59] and orthopyroxene–garnet barometry [59] in the host lherzolite. For MARID suites and other rutile–ilmenite assemblages, no T–P estimates are available. Since the pressure effect on the RI buffer is similar to that on NNO buffer, log f_O^2 relative to NNO is roughly independent of pressure and an arbitrary pressure of 36 kbar is chosen for MARID suites. The uncertainty in T introduces considerable uncertainty in log f_O^2 (Fig. 3). In order to constrain the f_O^2, it is necessary in future work to constrain the equilibrium T for the rutile–ilmenite equilibrium. Without such constraints, we simply use an arbitrary lower temperature limit of 800°C and an upper temperature limit of 1300°C (the solidus of MARID without excess H$_2$O is 1260°C at 30 kbar [52]).

The f_O^2 inferred from MORID vein is slightly more oxidizing than the FMQ buffer ($\Delta \log f_O^2$ (FMQ) = 0.17), more oxidizing than unmetasomatized peridotite xenoliths, and comparable to f_O^2 of metasomatized spinel peridotites [8,11]. The f_O^2 inferred from MARID suites covers two log units at any given T and covers that of MORID, kimberlitic eclogite, and a ‘Granny Smith’ diopside megacryst. Although the large uncertainty in T for MARID assemblages does not allow simple comparisons to be made, the log f_O^2 values of MARID suites (Fig. 3) are generally consistent with metasomatized peridotites [8,11]. Even with allowance of large temperature uncertainty, 17 out of 20 MARID samples have f_O^2 more oxidizing than EMOD (Fig. 3; Table 1). Hence our data on MORID vein and MARID suites support the conclusion that metasomatizing agents are typically more oxidizing than unmetasomatized mantle [8,11].

The oxygen fugacity of the upper mantle strongly...
influences the stability of diamond/graphite, fluids and carbonates. Under reducing conditions, diamond or graphite is stable, while under oxidizing conditions CO₂ or carbonates are stable. The f_{O_2} for diamond in olivine-bearing assemblages must be less than that defined by the enstatite–magnesite–olivine–diamond/graphite (EMOD/EMOG) equilibrium [60]:

$$\text{MgSiO}_3 \text{(enstatite)} + \text{MgCO}_3 \text{(magnesite)} = \text{Mg_2SiO}_4 \text{(olivine)} + C \text{(diamond/graphite)} + O_2$$

(5)

The shift of the above oxygen buffer owing to solid solutions in the minerals is very small in ultramafic rocks. Experimental calibrations of the EMOD buffer published in two abstracts [60,61] show differences of 0.6 log f_{O_2} at 1400 K and 50 kbar. Calculation of EMOD from thermodynamic data [45,46,62] gives values between the two experimental calibrations. The EMOD buffer calculated from Holland and Powell [45] (log $f_{O_2} = 15.28 - 25775/T - 2.08767\log T + 0.0026P + 62P/T$ where T is in K and P is in kbar) is selected to compare with the f_{O_2} obtained from the RI oxygen barometer to evaluate the diamond potential of the Nikos kimberlites, Somerset Island, Northwest Territories, Canada. The MORID vein in the garnet–spinel lherzolite xenolith (JP1-X17) and most MARID assemblages (Fig. 3) yield a more oxidizing f_{O_2} than EMOD; thus, the MORID and MARID fluid or melt would tend to destroy existing diamond or graphite by oxidation, and magnesite should be favored over carbon poly-morphs in these olivine-bearing assemblages.

Acknowledgements

This research was supported by a research fund from the Government of Canada to EJE, C.M. Hall and YZ, EAR-9706107 and 9458368 to YZ, EAR-9117772 and 9526596 to EJE, the Scott Turner Award of the University of Michigan to DZ, and a research grant of Geological Society of America to DZ. We thank A.J. Pell for providing xenolith samples and F. Waters for providing analytical data on the MARID assemblages from her Ph.D. thesis. We are especially grateful to David Virgo for the loan of ilmenite samples. This paper benefited from discussions with Liping Wang, M.S. Ghiorso, R.W. Luth, S.E. Haggerty and an anonymous reviewer are thanked for their comments.

References

[15] F.G. Waters, A suggested origin of MARID xenoliths in
kimberlites by high pressure crystallization of an ultrapotassic rock such as lamproite, Contrib. Mineral. Petrol. 95 (1987) 523–533.

