An Online Learning Approach to Improving the Quality of Crowd-Sourcing

Yang Liu
(Joint work with Mingyan Liu)

Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, MI

June 2015
The power of crowdsourcing

Data collection: participatory sensing, user-generated map:
Recommendation: rating of movies, news, restaurants, services:

![Recommendation Image]

Congratulations! Movies we think You will love.

Add movies to your Queue, or Rate ones you've seen for even better suggestions.
Social studies: opinion survey, the science of opinion survey:
Crowd-sourcing market

Data processing: image labeling, annotation

- Paid workers perform computational tasks.
- Hard to measure and evaluate quality objective: competence, bias, irresponsible behavior, etc.
One step further: Use the wisdom of crowd

- Redundant assignment.
- Label aggregation.
Our vision:

- Labeler selection. (first step)
- Adaptive learning. (second step)
- A weighted version of selection. (one more step)
Our objective

To make the most effective use of the crowdsourcing system

- Cost in having large amount of data labeled is non-trivial
- Time constrained machine learning tasks.

A sequential/online learning framework

- Over time learn which labelers are more competent, or whose reviews/opinion should be valued more.
- Quality control rather than random assignment
- Closed-loop, causal.
Multiarmed bandit (MAB) framework

A sequential decision making and learning framework:

- **Objective**: select the best of a set of choices ("arms")
- **Principle**: repeated sampling of different choices ("exploration"), while controlling how often each choice is used based on their empirical quality ("exploitation").
- **Performance measure**: "regret" – difference between an algorithm and a benchmark.
Challenges and key ideas

Main challenge in crowdsourcing: ground truth

- True label of data remains unknown
- If view each labeler as a choice/arm: unknown quality of outcome (“reward”).

Key features:

- Mild assumption on the collective quality of the crowd; quality of an individual is estimated against the crowd.
- Online learning: Learning occurs as data/labeling tasks arrive.
- Comparing against optimal static selections.
Outline of the talk

Problem formulation

Online solution

▶ Simple/weighted majority voting

Extensions and discussions

Experiment results

▶ Numerical results & Results on AMT data

Conclusion and on-going works
Labeler selection

M labelers; labelers i has accuracy p_i (can be task-dependent).

- No two exactly the same: $p_i \neq p_j$ for $i \neq j$, and $0 < p_i < 1$, $\forall i$.
- Collective quality: $\bar{p} := \sum_i p_i / M > 1/2$.
- Probability that a simple majority vote over all M labelers is correct: $a_{\min} := P(\sum_i X_i / M > 1/2)$.
 - If $\bar{p} > 1/2$ and $M > \frac{\log 2}{\bar{p} - 1/2}$, then $a_{\min} > 1/2$.

Unlabeled tasks arrive at $t = 1, 2, \ldots$.

- User selects a subset S_t of labelers for task at t.
- Labeling payment of c_i for each task performed by labeler i.
Labeler selection

\(M \) labelers; labelers \(i \) has accuracy \(p_i \) (can be task-dependent).

- No two exactly the same: \(p_i \neq p_j \) for \(i \neq j \), and \(0 < p_i < 1 \), \(\forall i \).
- Collective quality: \(\bar{p} := \frac{\sum_i p_i}{M} > 1/2 \).
- Probability that a simple majority vote over all \(M \) labelers is correct: \(a_{\text{min}} := P(\sum_i X_i/M > 1/2) \).
 - If \(\bar{p} > 1/2 \) and \(M > \frac{\log 2}{\bar{p} - 1/2} \), then \(a_{\text{min}} > 1/2 \).

Unlabeled tasks arrive at \(t = 1, 2, \ldots \).

- User selects a subset \(S_t \) of labelers for task at \(t \).
- Labeling payment of \(c_i \) for each task performed by labeler \(i \).
Labeling outcome/Information aggregation

Aggregating results from multiple labelers:

- A task receives a set of labels: $\{L_i(t)\}_{i \in S_t}$.

- Use simple majority voting to compute the label output: $L^*(t)$. (extensible to weighted majority voting)
Probability of correct labeling outcome: $\pi(S_t)$.

- Optimal set of labelers: S^* that maximizes $\pi(S)$.

\[
\pi(S_t) = \sum_{S: S \subseteq S_t, |S| \geq \lceil \frac{|S_t|+1}{2} \rceil} \prod_{i \in S} p_i \cdot \prod_{j \in S_t \setminus S} (1 - p_j)
\]

Majority wins

\[
+ \sum_{S: S \subseteq S_t, |S| = \frac{|S_t|}{2}} \prod_{i \in S} p_i \cdot \prod_{j \in S_t \setminus S} (1 - p_j)
\]

Ties broken equally likely
Assuming known \(\{p_i\} \), \(S^* \) can be obtained using a linear search.

Theorem

Under the simple majority voting rule, \(|S^| \) is an odd number.* Furthermore, \(S^* \) is monotonic: if \(i \in S^* \) and \(j \notin S^* \), then we must have \(p_i > p_j \).
Assuming known \(\{p_i\} \), \(S^* \) can be obtained using a linear search

Theorem

Under the simple majority voting rule, \(|S^| \) is an odd number. Furthermore, \(S^* \) is monotonic: if \(i \in S^* \) and \(j \notin S^* \), then we must have \(p_i > p_j \).*
Objective of our online solution

Labeler expertise p_is being unknown a priori

- Goal: Gradually learn labelers’ quality and make selections adaptively

Performance measure:

- Comparing with the optimal selection (static):

\[
R(T) = T \pi(S^*) - E\left[\sum_{t=1}^{T} \pi(S_t)\right]
\]
Outline of the talk

Problem formulation

Online solution

- Simple/weighted majority voting

Extensions and discussions

Experiment results

- Numerical results & Results on AMT data

Conclusion and on-going works
An online learning algorithm

Interleaving explorations of MAB and Crowd-sourcing: Double exploration

▶ There is a set of tasks $E(t) \sim \log t$ used for testing purposes.

▶ These or their independent and identical variants are repeatedly assigned to the labelers $\sim \log t$. \(^1\)

\(^1\)More discussions follow later on independence.
Two types of time steps:

- **Double exploration**: all M labelers are used. Exploration is entered if (1) the number of testers falls below a threshold ($\sim \log t$), or if (2) the number of times a tester has been tested falls below a threshold ($\sim \log t$).

- **Exploitation**: the estimated \tilde{S}^* is used to label the arriving task based on the current estimated $\{\tilde{p}_i\}$.
Three types of tasks:

▶ Testers: those arriving to find (1) true and (2) false. These are added to $E(t)$ and are repeatedly used to collect independent labels whenever (2) is true subsequently.

▶ Throw-aways: those arriving to find (2) true. These are given a random label.

▶ Keepers: those arriving to find both (1) and (2) false. These are given a label outcome using the best estimated set of labelers.
Accuracy update

- Estimated label on tester k at time t: majority label over all test outcomes up to time t.
- \tilde{p}_i at time t: the % of times i’s label matches the majority vote known at t out of all tests on all testers.
Regret

Main result:

\[R(T) \leq \text{Const}(S^*, \Delta_{\text{max}}, \Delta_{\text{min}}, \delta_{\text{max}}, \delta_{\text{min}}, a_{\text{min}}) \log^2(T) + \text{Const} \]

- \(\Delta_{\text{max}} = \max_{S \neq S^*} \pi(S^*) - \pi(S) \), \(\delta_{\text{max}} = \max_{i \neq j} |p_i - p_j| \).
- First term due to exploration; second due to exploitation.
- Can obtain similar result on the cost \(C(T) \).
Weighted majority voting

- Each labeler i’s decision is weighed by $\log \frac{p_i}{1-p_i}$.

Theorem

Under the weighted majority vote and assuming $p_i \geq 0.5, \forall i$, the optimal set S^ is monotonic, i.e., if we have $i \in S^*$ and $j \not\in S^*$ then we must have $p_i > p_j$.***
Main results on weighted majority voting:

- \(R(T) \leq O(\log^2 T) \), but with strictly larger constants.
- Have to account for additional error in estimating the weights when determining label outcome.
- A larger constant: slower convergence to a better target.
Outline of the talk

Problem formulation

Online solution

▶ Simple/weighted majority voting

Extensions and discussions

Experiment results

▶ Numerical results & Results on AMT data

Conclusion and on-going works
Re-assignment of the testers

IID noise insertion

Random delay

- Commonly adopted in survey methodology to ensure valid responses.
- Bounded delay τ_{max} leads to τ_{max}-fold regret.
Other extensions

Prior knowledge on several constants

- Exploration length depends on several system parameters.
- Sub-logarithmic remedy without knowing prior knowledge.

Improve the bound by improving a_{min}: weed out bad labelers.

- Ranking based on counting of disagreement.
- Start the weeding out from the end of list.
- Requires only $O(\log T)$ samples to achieve a bounded regret.
Other extensions cont.

Labelers with different type of tasks

- Finite number of types: Similar results.
- Infinite number of types.
 - Continuous MAB.
 - Sub-linear regret bound.

With delayed arrival of ground-truth

- $O(\log T)$ regret time uniformly.
Outline of the talk

Problem formulation

Online solution

- Simple/weighted majority voting

Extensions and discussions

Experiment results

- Numerical results & Results on AMT data

Conclusion and on-going works
Experiment I: simulation with $M = 5$

Accumulative regret & Average regret $R(T)/T$

Effect of a_{min}: higher a_{min} leads to much better performance.
Performance comparison

labeler selection v.s. full crowd-sourcing (simple majority vote)
Comparing weighted and simple majority vote

![Graph showing comparison between simple and weighted majority voting](image)

<table>
<thead>
<tr>
<th>M</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full crowd-sourcing (majority vote)</td>
<td>0.5154</td>
<td>0.5686</td>
<td>0.7000</td>
<td>0.7997</td>
</tr>
<tr>
<td>Majority vote w/ LS.OL</td>
<td>0.8320</td>
<td>0.9186</td>
<td>0.9434</td>
<td>0.9820</td>
</tr>
<tr>
<td>Weighted majority vote w/ LS.OL</td>
<td>0.8726</td>
<td>0.9393</td>
<td>0.9641</td>
<td>0.9890</td>
</tr>
</tbody>
</table>

Table: Average reward per labeler: there is a clear gap between with and without using LS.OL.
Experiment II: on a real AMT dataset

The dataset

- Contains 1,000 images each labeled by the same set of 5 AMTs.
- Labels are on a scale from 0 to 5, indicating how many scenes are seen from each image.
- A second dataset summarizing keywords for scenes of each image: use this count as the ground truth.

Counting number of disagreement (online):

<table>
<thead>
<tr>
<th></th>
<th>AMT1</th>
<th>AMT2</th>
<th>AMT3</th>
<th>AMT4</th>
<th>AMT5</th>
</tr>
</thead>
<tbody>
<tr>
<td># of disagree</td>
<td>348</td>
<td>353</td>
<td>376</td>
<td>338</td>
<td>441</td>
</tr>
</tbody>
</table>

Table: Total number of disagreement each AMT has
Performance comparison

(L) AMT 5 was quickly weeded out; eventually settled on the optimal set of AMTs 1, 2, and 4 for most of the time.

(R) CDF of all images’ labeling error at the end of this process.
Conclusion

We discussed a quality control problem in labeler market

- How to select the best set of labelers over a sequence of tasks.
 - An algorithm that estimates labeler’s quality by comparing against (weighted) majority vote; new regret bound.

Currently under investigation

- Lower bound on the regret in the labeler selection problem.
- Hypothesis testing & coupling argument.
Q & A

Thank you. Any question?

http://www.umich.edu/~youngliu