Bandit in Crowdsourcing

Yang Liu
Harvard University

ACK: This tutorial received a lot of information from CJ
Disclaimer

• This is *not* intended to be
 – either a technical lecture
 – or a systematic review of results

• What this tutorial is trying to provide?
 – several pointers to interesting challenges
Crowdsourcing

“Crowdsourcing, a modern business term coined in 2005,[1] is defined by Merriam-Webster as the process of obtaining needed services, ideas, or content by soliciting contributions from a large group of people, especially an online community, rather than from employees or suppliers”

[Wiki]
Bandit (Multi-armed Bandit, MAB)

- MAB is a decision making & learning framework,
 - Make a sequence of decision on selections, when facing multiple options with unknown statistics.
 - \textbf{Q}: which one to select next
 - \textbf{Goal}: Maximize total payoff or minimize regret
Formulation

• N options, with unknown reward
 – Observe one sample if pulled once
 $$X_1, \ldots, X_N \text{ with mean } \mu_1 > \ldots > \mu_N$$
 – IID sequence (existing results also cover MC samples).
 – Select: $a(1), \ldots, a(t), \ldots$

• Weak regret:
 $$R(T) = T \cdot \mu_1 - \sum_{t=1}^{T} \mathbb{E}[X_{a(t)}]$$

• Goal: $R(T) = o(T)$
Upper Confidence Bound 1 [Auer et al 2002]

- Initialization: for $t \leq N$, play arm/choice t, $t = t + 1$

- When $t > N$:
 - for each choice k, calculate its sample mean:
 \[
 \bar{X}_k(t) = \frac{X_k(1) + \ldots + X_k(n_k(t))}{n_k(t)}
 \]
 - its index
 \[
 I_k(t) = \bar{X}_k(t) + \sqrt{\frac{L \log t}{n_k(t)}}, \forall k.
 \]
 - play the arm with the highest index; $t = t + 1$.
Why it works

• Regret bound: \(R(T) \leq O(\log T) \)

\[
\text{w.h.p., } \bar{X}_1(t) + \sqrt{\frac{L \log t}{n_1(t)}} \geq \mu_1
\]

\[
\text{w.h.p., } \bar{X}_k(t) + \sqrt{\frac{L \log t}{n_k(t)}} \leq \mu_k + 2\sqrt{\frac{L \log t}{n_k(t)}}
\]

When \(2\sqrt{\frac{L \log t}{n_k(t)}} \) < \(\mu_1 - \mu_k \) \(\Rightarrow \) no regret.
• Applications in crowdsourcing
Application I: decision makings in crowdsourcing

• Who to send our request to? [Ho and Vaughan 12, Tran-Thanh et al. 14, Abraham et al. 13, Liu and Liu 15]
 – Unknown performance
• How much should we offer (pricing, contracts)? [Singla and Krause 13, Chawla et al. 15, Ho et al. 16]
 – Unknown incentives
• Which option is better? [Li et al. 10, Massoulié et al. 15, Bresler et al.15]
 – Unknown preference
Application II: Long term incentives

- Inducing high quality contribution from crowdsourcing
 - One-shot payment (scoring rule, e.g.)

- User-generated content, crowdsourced labels, ... etc
 - Unknown effort
• What about future job opportunities? [Ghosh and Hummel 13, Liu and Chen 16]
 – You will be selected in future, if you do well.
 – Reputation => Index, future job => bandit selection
In applying bandit ... challenges (outline)

• Large space (metric bandit)
• Budget constraints (Knaps. Bandit)
• Incentivize exploration (Strategic exploration)
• Partial information (dueling bandit)
• Bandit w/o ground-truth
 - Decision making
• Long term incentive (endogenous bandit)
 - Incentives & Reputations
• Decision making
 – Full information
 – Strategic information
 – Partial information
Full information

• Setting is similar to classical bandit setting
 – E.g., for each offered price, we observe workers’ action in accepting or not.

• Additional challenge in crowdsourcing
 – Larger exploration space (price, contextual information)
 – Budget constraints (budget)
Large exploration space: metric bandit

• Intuitions:
 – The payoffs of “nearby” arms could be similar
 – Each pull learns the payoffs of nearby arms
 – Need only focus on more promising regions of arms

• Payoff structures:
 – Lipschitz condition [Kleinberg et al. 08, Bubeck et al. 08]
 – Tree structures [Slivkins 11, Munos 11]
 – Uncertain but learnable structure [Ho et al. 16]
Budget constraints: bandit with knapsacks

• Example: Knapsack bandit [Tran-Thanh et al. 12, Badanidiyuru et al. 13]
 – A stochastic version of knapsack problem.
 – Each arm pull consumes resources.
 – Exploration-exploitation under budget constraints
 \[
 \sum_{t=1}^{T} c_i(t) \leq B_i, \forall i.
 \]

• Intuition:
 – Calculate the UCB value of the arm payoff
 – Estimate the “unit cost” of the arms via the dual problem
 – Select the arm with the maximum “bang-per-buck” index
Incentivizing explorations: BIC-MAB

- Decide to sample option k [Mansour et al. 15, Mansour et al. 16]
- E.g., Google wants to know ratings of restaurant k
 - Want to ask a user to “sample”
 - User can choose a different option.

- Randomize exploration with exploitation, to take advantages of workers’ limited belief.
 - As a user: not sure about whether I’m being explored, or this is indeed the best option.
Partial information

• More likely for a crowdsourcing setting.
• E.g.1, you don’t observe the sample realization $X_i(\omega)$
 – but you observe
 \[1(X_i(\omega_i) > X_j(\omega_j))\]
 – Common in
 • recommendation elicitation (which movie to recommend)
 • ranking elicitation (which one to vote)

• E.g.2, learner wants to explore a diverse crowd of workers
 – Assign tasks, and get back with the labels,
 – but how well do they perform? (or how to update index)
Pairwise comparison: Dueling bandit

- Choose two options each step
- Goal: target the best option via comparisons [Yue et al. 12, Zoghi et al 15, Zoghi et al. 15]
 - Condorcet winner
 \[p_{i,j} := \Pr(X_i > X_j) > 1/2, \forall j \neq i \]
 - Copeland winner
 \[\arg\max_i \sum_{j \neq i} 1(p_{i,j} > 1/2) \]
- E.g., Copeland Confidence Bound [Zoghi et al. 15]
 - Confidence bounds over preference matrices
 - Choose from a likely winner set, and an adversary from a likely “discreditor” set
Missing ground-truth

- Infer the ground-truth [Abraham et al. 13, Liu and Liu 15]
- Repeated test over labels & aggregate (sequential hypothesis testing, “crowd within”), e.g.,

\[
1\left(\sum_{t=1}^{T} X(t)/T \geq 0.5\right)
\]

- Serve as a noisy ground-truth.
- Surrogate index.
So far

• Indeed, bandit can be applied to various decision making problems in crowdsourcing
• Unique challenges
 – Full information
 – Partial information
 – Strategic information
• Long term incentive/reputation system
Information elicitation for ML

- Information elicitation when its quality depends on endogenous variables
 - E.g., quality of works depends on *effort*, which is not directly observable.
 - w/ or w/o ground-truth: one step payment often suffices. (*scoring rule, peer prediction, etc*)
 - What about future job opportunity?
Basic idea: endogenous arms

• Form a bandit on quality of works [Ghosh and Hummel 13, Liu and Chen 16]
 • Each worker is now an arm.

• Full observation
 – Index policy (reputation score)
 – $Q_i(t|e) + \text{Rad}_i(t)$ (Empirical quality + confidence)
 – Selection \Leftrightarrow Future job opportunity
 – Form a competition
Partial observation (no ground-truth)
 – Peer prediction aided index rule
 \[S_i(t|e_i, e_{-i}) + \text{Rad}_i(t) \]
 – Each arm’s reward distribution depends also on others’ action
 – More convoluted argument
Looking forward...

- Online learning with limited feedbacks
 - Fundamental limit of crowd wisdom in a bandit setting?
- What is the best worker behavior model (arm)?
- Incentive compatible bandit?
- Gossiping..
- Other novel applications of bandit.
-
References

References (cont.)

References (cont.)