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Information Elicitation without Veri!cation (IEWV) is a classic problem where a principal wants to truthfully
elicit high-quality answers of some tasks from strategic agents despite that she cannot evaluate the quality
of agentsÕ contributions. "e established solution to this problem is a class of peer prediction mechanisms,
where each agent is rewarded based on how his answers compare with those of his peer agents. "ese peer
prediction mechanisms are designed by exploring the stochastic correlation of agentsÕ answers. "e prior
distribution of agentsÕ true answers is o#en assumed to be known to the principal or at least to the agents.

In this paper, we consider the problem of IEWV for heterogeneous binary signal tasks, where the answer
distributions for di$erent tasks are di$erent and unknown a priori. A concrete se%ing is eliciting labels for
training data. Here, data points are represented by their feature vectorsxÕs and the principal wants to obtain
corresponding binary labels! Õs from strategic agents. We design peer prediction mechanisms that leverage not
only the stochastic correlation of agentsÕ labels for the same feature vectorx but also the (learned) correlation
between feature vectorsxÕs and the ground-truth labels! Õs. In our mechanism, each agent is rewarded by how
his answer compares with a reference answer generated by a classi!cation algorithm specialized for dealing
with noisy data. Every agent truthfully reporting and exerting high e$ort form a Bayesian Nash Equilibrium.
Some bene!ts of this approach include: (1) we do not need to always re-assign each task to multiple workers
to obtain redundant answers. (2) A class of surrogate loss functions for binary classi!cation can help us design
new reward functions for peer prediction. (3) Symmetric uninformative reporting strategy (pure or mixed)
is not an equilibrium strategy. (4) "e principal does not need to know the joint distribution of workersÕ
information a priori. We hope this work can point to a new and promising direction of information elicitation
via more intelligent algorithms.

CCS Concepts:¥Information systems! Incentive schemes; ¥�eory of computation! Algorithmic
mechanism design; ¥Computing methodologies! Supervised learning by classi�cation;

1 INTRODUCTION
Information Elicitation without Veri!cation (IEWV) [25] is a classic problem where a principal
wants to truthfully elicit high-quality answers of some tasks from strategic agents despite that she
cannot evaluate the quality of agentsÕ contributions. "e lack of veri!cation is either due to the
subjective nature of the answers or because verifying answers is too costly to be practical. For
example, a principal may be interested in knowing whether people !nd each of a set of restaurants
as a desirable place for ValentineÕs Day dinner. Or the principal may want to !nd out whether each
of a set of websites contains adult content.

A class of mechanisms, collectively calledpeer prediction [4, 5, 13, 15, 17, 22], has been proposed
for the IEWV problem. "e high-level idea of these peer prediction mechanisms is to take advantage
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of the stochastic correlation of agentsÕ answers for the same (or sometimes di$erent) tasks and
reward an agent based on how his answers compare with those of some peer agents. "e reward
functions of peer prediction mechanisms are designed in a way such that all agents truthfully
reporting their answers (or exerting e$ort to obtain high-quality answers and then truthfully
reporting them) forms a Bayesian Nash equilibrium (BNE). "is is quite marvelous to achieve given
the lack of direct veri!cation.

One major bene!t of being able to elicit high-quality information from strategic agents without
direct veri!cation is that it can serve as a way to collect training samples for machine learning. In
fact, ge%ing training data from crowd workers (e.g., to label images and to collect personal data for
social studies) has become a popular practice for machine learning [12, 21]. For instance, the above-
mentioned principal may want to train a classi!er on elicited data to help her predict whether a new
restaurant is ValentineÕs Day friendly or whether a new website contains adult content. Because
people are error-prone and/or strategic, techniques on learning from crowd-generated training
samples have been developed to innovatively handle the noise of the training data [2, 12, 16, 20].

"e above brief overview of the current status quo of solutions to the IEWV problem and
how crowd-generated data are used to train machine learning algorithms reveals one interesting
observation. We can view the tasks (e.g. restaurants and websites) that a principal wants to elicit
information about as feature vectorsxÕs and the desirable information about these tasks as their
corresponding labels! Õs. "en, the reward functions of existing peer prediction mechanisms are
designed by leveraging the correlations of! Õs, because such correlation gives a way to accurately
predict the true label for a particular feature vector and the prediction can be used as a benchmark
to evaluate the elicited label for the feature vector, while machine learning algorithms trained on
the elicited data aims to learn the correlation betweenxÕs and! Õs. Since the learned structural
relationship betweenxÕs and! Õs can also o$er a good prediction on the true label of any given
feature vector, this suggests that we may take advantage of the correlation betweenxÕs and! Õs,
in addition to the correlation of! Õs, to design peer prediction mechanisms that are possibly more
e&cient at eliciting information from strategic agents for heterogeneous tasks for IEWV and may
have be%er incentive properties. "is is the approach that we take in this paper.

More speci!cally, we design peer prediction mechanisms for eliciting binary labels from strategic
agents for a set of heterogeneous tasks. Agents observe labels of tasks with errors (i.e. agentsÕ
observed labels sometimes are di$erent from the true labels) and they can strategically decide
whether to truthfully reveal their observed labels or not. "e exact error rates are unknown to the
principal. Our mechanism trains a classi!er using the collected data, this classi!er can generate
a prediction on the label of a given feature vector and this prediction is then used as a machine-
generated reference report in a scoring function to evaluate a reported label for this feature vector.
We !nd that if the structural relationship betweenxÕs and the corresponding true! Õs is ÒlearnableÓ
in the sense that there exists a concept classF with bounded VC-dimension such that the optimal
classi!er f ⇤ 2 F has performance that is be%er than random guessing, which is a rather weak
requirement for classi!cation problems, then we can use the above described approach to design
a peer prediction mechanism such that all agents truthfully reporting their observed labels is a
BNE. In an e$ort sensitive model where agents can incur a costly e$ort to reduce the error of their
observed labels, this result generalizes to induce a BNE where all agents exert the e$ort and then
truthfully report their observed labels.

"e advantages of this machine-learning inspired approach and our designed mechanism include:
(1) Our mechanism is more Òe&cientÓ in the sense that we do not need to assign every task to
multiple agents to obtain redundant labels, while almost all existing peer prediction mechanisms
depend on such redundant assignments. (2) Our mechanisms have be%er incentive properties.
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Everyone always reporting the same label or the same distribution of labels independent of the
observed label or everyone always reporting a !xed permutation of observed labels is not an
equilibrium in our mechanism, while these are equilibria in existing peer prediction mechanisms.
(3) Our mechanism allows the principal and the agents to have less knowledge about agentsÕ
observations. "e principal and the agents do not need to know the error rates of the agent
observations a priori and hence do not know the prior distribution of agentsÕ labels. Many peer
prediction mechanisms require that the principal knows the joint distribution of agentsÕ labels to
operate the mechanisms [9, 10, 15]. Most peer prediction mechanisms require agents know this
joint distribution for the equilibrium results to hold [4, 9, 10, 15, 22]. (4) Our mechanism is especially
suitable for heterogeneous tasks, while existing multi-task peer prediction mechanisms [4, 13, 22]
have been designed for homogeneous tasks, with the exception of [14]. (5) A class of surrogate loss
functions for binary classi!cation can help us design reward functions for peer prediction.

At the technical level, our approach is built upon a set of machine learning techniques, o#en
referred as learning with Ònoisy dataÓ [16]. "is set of techniques helps to learn a classi!er, using
training data withknown error, that converges to the optimal classi!er as if it is trained on data
without error. It o$ers a way to counter the noise of the data to generate a good prediction on
the true label of a feature vector. Our se%ing has additional challenges in that the error of agentsÕ
observations is unknown and the reported labels are a result of agentsÕ strategic decisions.

"e rest of the work is organized as follows. We survey related work in the rest of this section. Our
problem is formulated in Section2. Section3 introduces our approach, and reviews preliminaries
on machine learning techniques that we build our results on. Our main results are discussed
in Section4. "en we discuss how we overcome the challenge of not knowing the errors of
agentsÕ observations in Section5. In Section6, we show how our mechanism can be adapted so
that uninformative strategies do not form an equilibrium. A simple output agreement type of
mechanism is then presented in Section7. We show the extension of our results to e$ort-sensitive
workers in Section8. Section9 concludes the paper. Full version with appendix of this paper can
be found on arXiv and the authorsÕ websites.

1.1 Related work
Our work is an addition to an already large literature onpeer prediction [4, 9, 10, 15, 17, 18, 27, 28].
"e term peer prediction was coined up byMiller et al. [2005] who showed that anystrictly proper
scoring rule [7] for truthfully eliciting information about events with (future observable) ground
truth can be turned into a scoring function for truthfully eliciting information for the IEWV problem
if the principal knows the joint distribution of private signals and this distribution is common
knowledge to all agents. "e mechanism ofMiller et al. [2005] has truthful reporting as a BNE.
But it also has uninformative BNEs where all agents play a strategy that is independent of their
observed signal. Moreover, agents receive higher payo$ at the uninformative BNEs than at the
truthful BNE. One year prior to the publication ofMiller et al. [2005], Prelec[2004] proposed
Bayesian Truth Serum (BTS), an elegant mechanism for IEVW that achieves truthful reporting as a
BNE for a large enough population of agents by asking each agent to report not only his observed
signal but also a prediction on the distribution of othersÕ reports. While BTS still requires agents to
know the joint distribution of private signals for the truthful BNE to hold, the principal in BTS
doesnÕt need to know this distribution to operate the mechanism. BTS also admits uninformative
equilibria. A sequence of follow up work has been done to relax the assumptions made by these
mechanisms [18, 27, 28] and to make the truthful reporting equilibrium more focal [10]. More
recently,Witkowski et al. [2013] andDasgupta and Ghosh[2013] formally studied an e$ort sensitive
model for eliciting binary signals for IEWV. In particular,Dasgupta and Ghosh[2013] proposed a
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multi-task peer prediction mechanism that ensures a desirable BNE where every agent !rst exerts
maximum e$ort to obtain a high-quality signal and then truthfully reports it. Moreover, among
all BNEs, this equilibrium gives the highest payo$ to all agents.Shnayder et al. [2016] and Kong
and Schoenebeck[2016] then extended the results to non-binary signal elicitation. However, in all
existing mechanisms, there exists BNEs where agents play an uninformative reporting strategy,
although such equilibrium leads to lower agent payo$ than the truthful equilibrium in the recent
mechanisms ofDasgupta and Ghosh[2013], Shnayder et al. [2016] and Kong and Schoenebeck
[2016]. Furthermore, agents reporting a !xed permutation of signals is also a BNE in existing
mechanisms and this equilibrium o$ers the same payo$ to agents as the truthful equilibrium.
Our mechanism in this paper removes both the uninformative equilibria and the permutation
equilibrium.

Our mechanism uses a ÒmachineÓ prediction as a reference answer. "is has some resemblance
to the notion of creating a reference answer from a modelÕs output. Several studies focused on
using models that aggregate answers from di$erent agents [6, 11, 19]. "ese studies didnÕt consider
a machine learning se%ing like us, and didnÕt establish equilibrium behavior.

From a di$erent angle, our work !ts into the notion oflearning with strategic data sources,
which concerns machine learning systems when either their training data or incoming test data or
both come from strategic agents. For example, several recent results have focused on optimally
training regression models via incentivizing high-quality training data, when they are collected
from strategic agents who are either e$ort sensitive [2] or privacy sensitive [3, 8]. Our work focuses
on classi!cation problems.

In machine learning, how to learn appropriately with non-strategic, yet biased data has received
quite a bit of a%ention in recently [16, 20]. We demonstrate yet another novel application of these
methods for information elicitation. In some sense, our work completes this line of research by
demonstrating that a method for learning from noisy training data can also be made Bayesian
incentive compatible for eliciting the training data.

2 PROBLEM FORMULATION
A principal has a set of data{xi }Ni=1, where eachxi 2 RM can be viewed as anM-dimensional
feature vector. "e space ofxiÕs isX. "is set of data has corresponding (binary) labels,{yi }Ni=1
where! i 2 {�1,+1}, that are unknown to the principal.{(xi ,! i )}Ni=1 are drawn i.i.d. according to
an unknown joint distributionD. "e prior probabilities for the +1 and the�1 labels areP+ and
P� respectively. "e principal knows P+ andP�. She can ask a set of agents (e.g. crowd workers)
to label the data. Without knowing the true labels, she cannot directly verify the elicited labels.
"e principal would like to design reward mechanisms so that she can obtain high-quality labels
from the agents.

2.1 Agent model
"e principal recruits T � N agents (workers). Each workeri is assigned exactly one data point,
denotedxi (with a bit abuse of notation), and is asked to report a labelö! i . Each data point is
assigned to one worker and sometimes more.1 "e re-assigned tasks are randomly selected, and
if selected the task will be re-assigned once (so assigned twice in all, for details please refer to
Section5). DenoteU as the set that contains each independent task exactly once, so|U | = N .
We consider two worker observation models in this paper: ane�ort insensitive model where each
worker exogenous observes a label with noise and ane�ort sensitive model where a worker can
choose to exert costly e$ort to improve the accuracy of his observation. We introduce the e$ort

1Note with redundant assignments, we may havexi = xj , i , j, i, j = 1, ...,T .
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insensitive model below. Our analysis in the next few sections will focus on this model. "en, we
will introduce the e$ort sensitive model and extend our main results to it in Section8.

E�ort insensitive worker observation model: Each worker observes a signal (which is the workerÕs
observed label) once a task is assigned. Denote workeriÕs observation for dataxi as ÷! i . Worker
observations areconditionally independent (on ! i ) and follow a two-coin 'ipping-error model:
Pr( ÷! i = �1|! i = +1) = p+ and Pr( ÷! i = +1|! i = �1) = p�,wherep+ andp� satisfy:

(i) p+ + p� < 1, that is, the sum of the error rates for the two classes is less than 1.

"is assumption requires that a workerÕs observation is informative with respect to the true
label in the sense that the probability for the worker to observe labels is higher when the true
label iss than when the true label is�s, i.e.Pr( ÷! i = s |! i = s ) > Pr( ÷! i = s |! i = �s ), 8s 2 {�1,+1}.
It is a necessary and su&cient condition so that Bayesian updating increases oneÕs belief that the
observed label is the true label. "is is formally stated in Lemma2.1.

L���� 2.1. Pr(! i = s | ÷! i = s ) > Ps ,8s 2 {�1,+1}, if and only if p+ + p� < 1.

Similar assumptions are made for agent belief models in the peer prediction literature [4, 22].

(ii) p�,p+ � " > 0 where 0< " < 1/2. "at is, workers do not have perfect information.

We assume that the error models are common knowledge to both the workers and the principal.
"e prior on true labels, P+ andP�, are common knowledge too. But the principal and the workers
do not necessarily know the values ofp+ andp�. Most of our discussion in this paper focuses on
homogeneous workers that have the samep+ andp�, but we discuss the possibility of extending to
the case with heterogeneous workers in the Appendix.

A#er observing the signals, each workeri decides on which label to report. A pure reporting
strategy of an agent is a mapping from the agentÕs observation to a report:ri ( ÷! i ) : {�1,+1} !
{�1,+1}. In the case of mix strategies, the mapping is to a distribution on the two possible
reports{�1,+1}. For example, a truthful reporting strategy corresponds to the case that an agent
truthfully reports his observation, and an uninformative strategy, pure or mixed, has the same report
distribution for all signals. We then de!neöpi,+ := Pr( ö! i = �1|! i = +1,ri ( ÷! i )) =

P
s 2 {�1,+1} Pr( ÷! i =

s |! i = +1) Pr(ri ( ÷! i ) = �1| ÷! i = s ) and öpi,� := Pr( ö! i = +1|! i = �1,ri ( ÷! i )) =
P

s 2 {�1,+1} Pr( ÷! i =
s |! i = �1) Pr(ri ( ÷! i ) = +1| ÷! i = s ) as the 'ipping error rates of agentiÕs report when he plays
strategyri ( ÷! i ). Workers can be incentivized via payment, and they would like to maximize their
expected payment.

2.2 The principal’s design objective
"e principal wants to design a reward mechanismM to incentivize agents to contribute high-
quality labels. Under the e$ort insensitive model, this means that the principal would like the
agents to truthfully report their observed labels. Under the e$ort sensitive model, the principal
wants agents to exert e$ort to obtain more accurate labels and then truthfully report them. Since
the principal cannot directly verify the contributed labels, the mechanism can only reward agents
based on the data and the reported labels collected from theT agents, i.e.{xi , ö! i }Ti=1. "e principal
would like to achieve the above high-quality elicitation at a Bayesian Nash equilibrium (BNE) and
ideally remove other BNE where the elicited labels are of lower quality. In this paper, we focus on
symmetric BNEs where agentsÕ strategiesri ( ÷! i ) are the same.
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3 OUR APPROACH
In this section we !rst describe our approach toward designing the principalÕs mechanism. "en,
we brie'y introduce a set of machine learning techniques, learning with Ònoisy dataÓ (when the
rates of 'ipping errors are known), that our approach is built upon.

3.1 Design of scoring function and reference answer using Machine Learning
In designing a mechanismM, the principal needs to choose a scoring functionS ((xi , ö! i ), {(xj , ö! j )}j,i )
to determine the reward for agenti. LetK�i denotes{(xj , ö! j )}j,i . In this paper, we consider a
smaller design space where the mechanismÕs scoring function for each agenti is of the form:

S ( ö! i , f AK�i (xi )) : R2! R. (1)

where f AK�i (·) : RM ! R is a function obtained by training algorithmA on datasetK�i , that is,

f AK�i (·) = A (K�i ). F is the concept class that algorithmA maps into and hencef AK�i (·) 2 F .
In other words, we consider mechanisms that reward a worker based on how his reported label
compares to that of a prediction of a learning algorithm, where the algorithm is trained on the data
and the reported labels of other agents. Hence, a mechanismM in this paper is a tuple(S ,A).

As mentioned earlier, the principal would like to obtain high-quality labels at a BNE. Denote
P ({(xj , ÷! j )}Tj=1|(xi , ÷! i )) as agentiÕs belief about the realized labels of all agents a#er agenti has
observed his own label. "en a mechanismM = (S ,A) induces a (strictly) truthful BNE if

EP ( {(xj , ÷! j ) }Tj=1 |(xi , ÷! i ))[S ( ÷! i , f AK�i (xi ))] > EP ( {(xj , ÷! j ) }Tj=1 |(xi , ÷! i ))[S ( ö! i , f
A
K�i (xi ))] (2)

for all i, ÷! i and ö! i , ÷! i .
In the rest of the paper, weÕll writeS ( ö! i , f AK�i (xi )) asS ( ö! i , f (xi )) for notation simplicity, but a

reader should understand the dependency off on algorithmA and training datasetK�i .
"e scoring function ( 1) resembles those designed in the peer prediction literature for the IEWV

problem in the sense that it scores an agentÕs report against a benchmark that is based on other
agentsÕ reports. But it has some fundamental di$erences. Existing peer prediction mechanisms
use scoring functions that are completely de!ned over agentsÕ reports:S ( ö! i , {ö! j }j,i ) : RT ! R.
"e second argument of the scoring function for many peer prediction mechanisms is simply the
report from a random peer agent for thesame task. In some more recent mechanisms, this second
argument includes agentsÕ reports on other tasks but still needs to contain reports from peer agent
for the same tasks [4, 22]. In contrast, the scoring function in (1) incorporates the feature vectors
xiÕs. It doesnÕt require that we have to have redundant reports for the same task (except for a small
number of selected re-assigned tasks). Instead, we seek to learn a machine predictorf from a
heterogeneous set of data to generate the second argument in the scoring functionS.

Our approach toward designing a mechanism to induce a truth-telling BNE takes two-steps. First,
assuming agents reports truthfully, we focus on designing an algorithmA such that, although it is
trained on data with 'ipping errors, it outputs a functionf that converges to the optimal classi!er
f ⇤ 2 F as if it is trained on data without 'ipping errors. "e algorithm A ÒcountersÓ the noise
in the reported data. "is guarantees that if everyone else report truthfully, the reference report
f (xi ) for agenti is an accurate prediction of the true label! i when the number of data is large.
Second, we design the scoring functionS such that truth-telling is the best action for agenti if
the agent knows that his reference report is an accurate prediction of the true label! i . Now, the
agentÕs observed label has noise as a result of the 'ipping errors, but the reference report does
not in expectation. When designing the scoring function, we engage a similar Ócounter-noiseÓ
technique as the machine learning algorithm does in the previous step. "ese two steps together
ensure that truth-telling is a BNE in the resultant mechanism(S ,A).
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At the technical level, our approach is built on a set of machine learning techniques, o#en
referred as learning with Ònoisy dataÓ [16]. If 'ipping errors öp+ and öp� of training data areknown
to the principal, this set of techniques can learn anf that converges to the optimal classi!erf ⇤

in classi!cation risk from the noisy training data. In our se%ing, however, the principal does not
know the 'ipping-error rates in the reported data due to lack of knowledge of bothp+ andp� and
agentsÕ strategies. "is poses additional challenge of !nding such anf . We will defer the details on
learning the 'ipping-error rates to Section5.

3.2 Learning with noisy labels
We now introduce the techniques for learning with noisy lables, which our mechanisms will build
upon. "ough there are clear di$erences between di$erent methods for learning with noisy labels,
the basic idea tends to build on !nding surrogate loss functions that can compensate the bias in
training data, when evaluating a functionf 2 F . We brie'y survey a particular algorithm and its
results fromNatarajan et al. [2013], in hope of delivering the idea on how learning can be done in
face of biased data.
Preliminaries: Denote the 0-1 loss off asRD ( f ) = E(x,! )⇠D [ ( f (x) , ! )] , and a generall

loss asRl,D ( f ) = E(x,! )⇠D [l ( f (x),! )]. Denote the minimum risk over the concept class asR⇤ :=
minf 2F RD ( f ) andR⇤l := minf 2F Rl,D ( f ) respectively. We further denotef ⇤ := argminf 2F RD ( f )
and f ⇤l := argminf 2F Rl,D ( f ).

"e setup of Natarajan et al. [2013] assumes that the 'ipping-errors of the reports are the same
across all agents, that isöp+ := öp1,+ = ... = öpN ,+ and öp� := öp1,� = ... = öpN ,�, and öp+ + öp� < 1.
Furthermore, the principalknows the values oföp+ and öp�. ("is can be viewed as a special case of our
se%ing where the principal knowsp+ andp� and every agent truthfully reports his observed signal.)
Suppose the principal has collectedN i.i.d. training samples{(xj , ö! j )}Nj=1, indexed from 1 toN . "e
naive approach of directly minimizing empirical 0-1 loss over reported data not only is technically
di&cult but also would give a biased classi!er that may not converge to the optimal classi!er.
Natarajan et al. [2013] tackle this problem by !rst !nding a convex andclassi�cation-calibrated (CC)
loss functionl (t ,! ) (with prediction t and label! as the inputs), where CC is de!ned as follows:

De�nition 3.1 (Classi�cation-Calibrated (CC)). l is CC if9 a convex, invertible, nondecreasing
transformation#l with #l (0) = 0 s.t.#l (RD ( ÷f ) � R⇤)  Rl,D ( ÷f ) �minf Rl,D ( f ).

"e introduce of a convex loss functionl helps to remove the computational challenge in
minimizing 0-1 loss directly. Classi!cation-calibration helps us control the 0-1 loss via controlling
the l-loss, i.e., if we !nd a classi!er that converges to the optimal one inl-loss, its 0-1 loss also
converges. It is generally possible to assume the existence of such anl [1, 16]. Particularly it is
shown in byBartle% et al. [2006] that, if the loss function can be wri%en asl (t ,! ) = $ (! t ) where$
is convex and di$erentiable at 0 with$ 0(0) < 0, thenl is classi!cation-calibrated. Following above
assumptions, we assume such anl exists for now.

Natarajan et al. [2013] then further de!ne an”un-biased” surrogate loss functions overl to help
ÓremoveÓ noise, whenöp+ + öp� < 1:

%(t ,! ) :=
(1� öpsgn(�! ) )l (t ,! ) � öpsgn(! )l (t ,�! )

1� öp+ � öp�
, (3)

wheresgn(·) is a sign function thatsgn(+1) = +,sgn(�1) = �. "e surrogate loss %is de!ned such
that when a prediction is evaluated against a noisy label using this surrogate loss function, the
prediction is as if evaluated against the ground-truth label usingl in expectation. Hence the loss of
the prediction is ÓunbiasedÓ in expectation. "is is formally stated in Lemma3.2below.
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L���� 3.2 (L���� 1 [16]). 8 prediction t , E ÷! [%(t , ÷! )] = l (t ,! ), where ÷! is the report from non-
strategic workers with known �ipping errors, and ! is the ground-truth label.

Natarajan et al.[2013] proceeds to !nd a classi!er via minimizing the empirical risk w.r.t.%(·):

÷f ⇤" = argminf 2F öR" ( f ) :=
1
N

NX

j=1

%( f (xj ), ö! j ). (4)

"e performance guarantee for ÷f ⇤" is given by the following lemma.

L���� 3.3 (T������ 3 [16]). With probability at least 1�&,

Rl,D ( ÷f ⇤" )  min
f 2F

Rl,D ( f ) + 4Lp<(F ) +

r
log 1/&

2N
, (5)

where Lp  2L/(1� öp+ � öp�). <(F ) is the Rademacher complexity of function class F .

Sine the VC dimension of the concept classF is !nite [ 23], we have a converging<(F ) =
O
⇣ p

logVCDim(F )/N
⌘
. Also asl is classi!cation calibrated, this lemma guarantees that the 0-1

risk of ÷f ⇤" converges to that ofR⇤. It also implies that the smalleröp+, öp� are, the faster the error
convergence is.

Other successful examples in de!ning surrogate loss functions for dealing with biased training
data includelabel dependent cost surrogate loss [16, 20]. "e idea is to scale up the loss function
di$erently for di$erent labels; e.g., the following one was also studied byNatarajan et al.[2013]:

%(t ,! ) := (1� ' ) (! = +1) · l (t ,! ) + ' (! = �1) · l (t ,! ), ' = 1� öp+ + öp�
2

. (6)

4 MECHANISM AND RESULTS FOR ELICITING TRUTHFUL REPORTS
In this section, we will establish that a class of surrogate loss functions can both serve to train a
classi!er to provide an accurate reference answer and be used as peer prediction scoring functions
for eliciting truthful reports. "en we show that our mechanism no longer admit the undesirable
permutation equilibrium.

To be%er deliver the intuition of our mechanism, we will present our mechanism and results
assuming everything is ÒlearnableÓ in this section. Particularly we will assume that the principal
can estimate the 'ipping error rates of the reported data and the optimal classi!er to arbitrary
accuracy. While this is obviously too strong to assume without investigation, this assumption
allows us to focus on establishing the equilibrium results of our mechanism, given that we have
access to such accurate estimates. Later in Section5, we will show how to obtain such accurate
estimates from the reported data if agents are playing some symmetric strategies.

4.1 When a distribution is elicitable via Machine Learning?
While we seek to use machine learning (ML) to help data elicitation, asking ML methods to help
eliciting arbitrarily distributed data is likely over demanding. A#er all, we are hoping that the
learned structural relationship betweenx and! can provide a good prediction of! for any given
x and this prediction is then used as a reference answer for scoring a reported label for thisx. If
the structural relationship cannot be learned, we shouldnÕt hope that this approach can help us to
achieve be%er elicitation. We formalize this idea asML elicitability:

De�nition 4.1 (ML elicitability). (x,! ) ⇠ D is ML elicitable, if there exists a mechanismM =
(S ,A) that satis!es Eqn. (2), that is,M induces a (strictly) truthful BNE for workers who have
been assigned tasks drawn fromD.
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ML elicitability intends to capture when the structural relationship betweenx and! is ÒlearnableÓ
so that a machine prediction can be used in peer prediction scoring to induce the truthful reporting
BNE. Classic peer prediction has an analogous concept: most existing peer prediction mechanisms
admit the truthful BNE only when signals of agents arestochastic relevant [15, 29], a condition that
essentially captures when the correlation of agentsÕ signals are strong enough so that peer reports
can be used in scoring to induce the truthful reporting BNE.

We now introduce a set ofML elicitability conditions. We will design mechanisms in Section4.2
that induce the truthful reporting BNE when these conditions are satis!ed.

ML elicitability conditions:

(1) "ere exists a concept classF , with each decision functionf 2 F mapping a feature
vector x 2 X to a prediction on label! (i.e. f : X ! { � 1,+1}), that has a bounded
Vapnik-Chervonenkis (VC) dimension [23], VCDim(F ) < 1.

(2) Denotef ⇤ := minf 2F E(x,! )⇠D [ ( f (x) , ! )]. "en E(x,! )⇠D [ ( f ⇤ (x) , ! )] < 0.5.
(3) E(x,! )⇠D |! [ ( f ⇤ (x) , ! )]  0.5 for ! 2 {�1,+1}.

From a learning perspective, these ML elicitability conditions are rather weak learnability
conditions. All they require is that there exists af ⇤ that comes from a concept class with bounded
VC dimension (learnable in !nite samples), and it can separate the data from one class to another
with its 0-1 prediction performance being strictly be%er than random guess. Condition (3) states that
the optimal classi!erf ⇤ does not perform worse than random guess on both classesÕ conditional
distributions. "roughout this paper, we assume for the data distribution of interest, the principal
is aware of such anF (but not f ⇤). Denote its VC dimension asd := VCDim(F ).

4.2 Main Mechanism
With the above preparation, we now construct a mechanism that induces the truthful BNE when
the ML elicitability conditions are satis!ed.

MECHANISM 1: ML Prediction (MLP)
For each workeri:

1. Assign tasks, and estimate 'ipping errors÷p�i,+, ÷p�i,� based on reported data from workersj , i
(Mechanism2).

– When returned solution satis!es÷p�i,+ + ÷p�i,� , 1, continue.
– Otherwise trigger exception handler (Mechanism4), and stop.

2. De!ne ÷%(·) using ( ÷p�i,+, ÷p�i,�). Train a classi!er ÷f ⇤÷" ,�i :
÷f ⇤÷" ,�i = argminf 2F

1
N�1
P
j 2U\{i } ÷%( f (xj ), ö! j ).

3. If ÷p�i,+ + ÷p�i,� > 1, 'ip them: ÷p�i,+ := 1� ÷p�i,+, ÷p�i,� := 1� ÷p�i,�. De!ne ÷%unbias(·) using
( ÷p�i,+, ÷p�i,�).

4. Score each workeri usingS ( ö! i , ÷f ⇤÷" ,�i ) := � ÷%unbias( ÷f ⇤÷" ,�i , ö! i ) (or any a&ne transformation of it).

"e basic recipes of the mechanism are as follows. First, for each agenti, assuming that other
agents play a symmetric strategy, the principal estimates the 'ipping-error rates of other agentsÕ
reports (denote the estimates as÷p�i,+ and ÷p�i,�). "en, an estimated surrogate loss function÷%(·)
(any surrogate loss function that can learn from noisy data, e.g., the ones in Eqn.(3) and (6)) de!ned
using ÷p�i,+ and ÷p�i,� allows the principal to train a classi!er÷f ⇤÷" ,�i , with its prediction performance
converging to the optimal one. "en we use this classi!er to make prediction on workeriÕs assigned
data, to serve as a Òmachine predictionÓ instead of Òpeer predictionÓ. Finally, we construct a reward
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function for each agenti using surrogate loss function÷%unbias:

÷%unbias(t ,! ) :=
(1� ÷p�i,sgn(�! ) )l (t ,! ) � ÷p�i,sgn(! )l (t ,�! )

1� ÷p�i,+ � ÷p�i,�
,

as de!ned in Eqn. (3), with ( ö! i , ÷f ⇤÷" (xi )) being its inputs.
When ÷p�i,+ + ÷p�i,� = 1, the assumptions made in existing learning with noisy data methods will

be violated, in that both the surrogate loss function and its training steps are not well de!ned. We
handle this exception case in Section6.

WeÕd like to focus on the equilibrium analysis of our proposed mechanism in this section, thus
for now, we assume that the principal can accurately learn the error rates in the reported data if
the reported data are generated from either a symmetric truthful reporting strategy or a symmetric
permutation strategy, and hence the principal can approximate the surrogate loss functions de!ned
using these error rates and the optimal classi!er well.

A��������� 1 (I�������). When either all agents j , i play the truthful reporting strategy or they
all play a permutation strategy, the principal can obtain arbitrarily accurate estimates ÷p�i,+, ÷p�i,�, ÷%,
and ÷f ⇤÷" ,�i . �at is, there exist positive constants ( ,( 1,&1,( 2, and &2 s.t.

(1) | ÷p�i,+ � öp�i,+ |  ( , | ÷p�i,� � öp�i,� |  ( .
(2) For the surrogate loss function de�ned using ÷p�i,+, ÷p�i,�1, with probability at least 1� &1,
| ÷%(t ,! ) �%(t ,! ) |  ( 1, 8t ,! .

(3) With probability at least 1�&2, RD ( ÷f ⇤÷" ,�i ) � R⇤  ( 2.

All terms ( ,( 1,&1,( 2, and &2 can be made arbitrarily small with increasing number of samples N .

"is assumption is made entirely for the sake of presentation. Particularly, Assumption1 will be
used in place of Steps 1 and 2 of Mechanism1. Later in Section5, we will show how to estimate the
error rates of the reported data to satisfy this assumption.

Assuming workers have perfect knowledge of the mechanism, and know that ML elicitability
conditions are satis!ed. Our next theorem shows thatS (·) := � ÷%unbias(·), along with the Assumption
1 induces strictly truthful BNE.

T������ 4.2. Suppose that ML elicitability conditions are satis�ed. Under Assumption 1, when the
error terms in Assumption 1 approach 0 (small enough, decreasing as functions of N ), (MLP) induces
strictly truthful BNE for all workers.

Intuition: Proving above theorem hinges on the following facts: !rst when agents truthfully
report, we know their score is going to converge to�E[l ( f ⇤ (x),! )], negative of the minimuml-loss,
due to the fact that the surrogate loss function calibrates the noise in agentÕs report. "en we show
that deviating to other strategies will introducel ( f ⇤ (x),�! ) term into the expected score. "is
leads to higher surrogate loss, due to the fact thatl ( f ⇤ (x),�! ) = l (�f ⇤ (x),! ) and informativeness
of f ⇤ w.r.t. the ground-truth label! . For easiness of presentation we will omit theunbiassubscript
in %, and when we use%we meant the un-bias surrogate loss function de!ned in Eqn. (3). Also we
will short hand f ⇤ (x) as f ⇤.

P����. (Sketch) Consider agenti. Denote the reporting strategy as follows:ö! i = ÷! i ·(�1)r ( ÷! i ) ,r ( ÷! i ) 2
{0,1}, i.e., based on the observation÷! i , the agent can decide whether to truthfully report (r ( ÷! i ) =
0), or revert the answer (r ( ÷! i ) = 1). All together the agent has four possible pure strategies:
{�1,+1} ⇥ {0,1}. It is straightforward to argue that any other strategy can be wri%en as a linear
combination of the four, i.e., these four strategies form the basis of the strategy space. "erefore
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we only need to check that truth telling is strictly proper among the four strategies.2 First note

E[S ( ÷! i (�1) ÷! i , ÷f ÷" ,�i (xi ))] ! �E[psgn(! i )%( f
⇤ (xi ),! i (�1)r (! i ) ) + (1�psgn(! i ) )%( f

⇤ (xi ),! i (�1)r (�! i )] .

"e above convergence is due to Assumption1, as well as the fact that we consider the case agents
j , i are truthfully reporting, so thatöp�i,+ = p+, öp�i,� = p� . We will then reason with this clean
case with(%, f ⇤), as we can always bring down the approximation error via increasingN .

By truthfully reporting r ( ÷! i ) ⌘ 0, agentiÕs expected utility is:

E(x,! )⇠D [S ( ÷! i , ÷f ÷" ,�i (xi ))] ! �E[l ( f ⇤ (x),! )] .

"en we !rst prove the following fact: Rl,D ( f ⇤) � Rl,D (�f ⇤) < 0, which is essentially sayingf ⇤

performs strictly be%er than�f ⇤ in l-loss. "is will help us prove non-pro!tability for the case
that r ( ÷! i ) ⌘ 1, that is the agent always reverts the answer. In this case we have (replacing(xi ,! i )
pair with (x,! ) in notation)

E[%( f ⇤,�÷! i )] = E[psgn(! )%( f ⇤,! ) + (1� psgn(! ) )%( f ⇤,! )] , (7)

and we prove that conditional on each label! 2 {�1,+}
E· |! =+1[psgn(! )%( f ⇤,! ) + (1� psgn(! ) )%( f ⇤,�! )] � E· |! =+1l ( f

⇤,+1), (8)

E· |! =�1[psgn(! )%( f ⇤,! ) + (1� psgn(! ) )%( f ⇤,�! )] � E· |! =�1l ( f
⇤,�1), (9)

and thusE[%( f ⇤,�÷! )] � E[l ( f ⇤,! )]. Yet the two inequalities in Eqn. (8) and (9) cannot hold
simultaneously, as otherwise we will haveE[l ( f ⇤,! )] = E[l (�f ⇤,! )] , contradicting the fact
Rl,D ( f ⇤) � Rl,D (�f ⇤) < 0. "us we have proved that reverting is strictly dominated by truthfully
reporting.

Consider the case that agents only revert one observation: denote' + := 1�p�
1�p+�p� , ' � := 1�p+

1�p+�p� .

• Whenr (+1) = 1,r (�1) = 0:E[%( f ⇤, ÷! i · (�1)r ( ÷! i ) )] = ' �E[l ( f ⇤,�1)] + (1� ' �)E[l ( f ⇤,+1)]
• Whenr (+1) = 0,r (�1) = 1:E[%( f ⇤, ÷! i · (�1)r ( ÷! i ) )] = ' +E[l ( f ⇤,+1)] + (1� ' +)E[l ( f ⇤,�1)]

We will then prove that

E[%( f ⇤,�÷! i )] >max{' �E[l ( f ⇤,�1)] + (1� ' �)E[l ( f ⇤,+1)] ,

' +E[l ( f ⇤,+1)] + (1� ' +)E[l ( f ⇤,�1)] }. (10)

Since the sum of the expected surrogate loss for cases of reporting÷! ,�÷! is the same as the sum for
the other two reporting strategies that only revert ÓhalfÓ of the observations, we have

E[%( f ⇤,�÷! i )] + E[%( f ⇤, ÷! i )] = (' +E[l ( f ⇤,+1)]

+ (1� ' +)E[l ( f ⇤,�1)] ) + (' �E[l ( f ⇤,�1)] + (1� ' �)E[l ( f ⇤,+1)] ). (11)

SinceE[%( f ⇤,�÷! i )] > E[%( f ⇤, ÷! i )] and the fact that Eqn.(10) holds, we must have both terms on
the RHS of Eqn. (11) being larger thanE[%( f ⇤, ÷! i )] Ð so their negatives (reward) are smaller than
truthful reporting. ⇤

We can also similarly show that, (MLP) doesnÕt admit a permutation equilibrium.

T������ 4.3. Suppose that ML elicitability conditions are satis�ed. Under Assumption 1, when
the error terms in Assumption 1 approach 0 (small enough, decreasing as functions of N ), everyone
playing a �xed permutation strategy is not a BNE in (MLP).

2Similar argument can be found in [4]. For completeness we give details in the full version.
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Almost all existing peer prediction mechanisms[4, 13, 22, 26] have a permutation BNE. Intuitively,
when workers reach an agreement on permuting their reports according to a !xed order, itÕs di&cult
for the the principal to tell the day from night. While Assumption1 assumes this di&culty away, in
Section5, weÕll show that we can still correctly estimate the error rates of the reported data (hence
can tell the day from night) even if agents all permute their reports. It may be noticed that in this
case÷p�i,+ + ÷p�i,� > 1, which violates the assumption for surrogate loss function based learning we
introduced in Section3.2. However we will show that plugging this pair of true error rates into the
surrogate loss functions will help revert the surrogate loss function back to the one as if workers
are truthfully reporting (Eqn.16). So in training, it is as if we are reverting the label back. "us the
learning part will still go through.

In practice, how to select the number of samples so to make the error terms in Assumption1
small enough depends on how faster the trained classi!er converges, which can be quanti!ed using
our analysis in Section5. O#en the large enough quantity is a function of the following parameters:
(d ,1/2� R⇤,&p ,�), which control the di&culties of learning.

It may be noticed that in order to run Mechanism1, we need to train a classi!er for each worker
to provide a reference answer, which raises computational concerns. Practically we only need to
train two classi!ers. Consider separating the group of workers into two groups with equal sizes,
completely randomly and uniformly; letÕs call these two groups asGA andGB . Each of the group
has size|GA |, |GB | � bN /2c. "en train classi!ers ÷f ⇤÷" ,�GA

, ÷f ⇤÷" ,�GB
using data from groupGB and

GA respectively. For workeri in groupGA, reward him usingS ( ö! i , ÷f ⇤÷" ,�GA
(xi )). Similarly we will

reward a worker from groupGB using ÷f ⇤÷" ,�GB
. "is signi!cantly reduces the e$ort for re-training.

5 LEARNABILITY OF ERROR RATES, AND SURROGATE LOSS FUNCTIONS
In our se%ing, the principle doesnÕt know the 'ipping-error rates in agentsÕ reported data. In this
section we discuss the challenges for the learning due to unknown 'ipping errors and how we
address them. We note that many, if not all, of the surrogate loss function based methods that we
are aware of for solving the learning with noisy labels problem, e.g. the ones de!ned in Eqn.(3) and
(6), require the knowledge of the error rates of the noisy input data. In practice, however, this is
hardly the case. In this section, we discuss the concept of learnability oföp�i,+, öp�i,� for each agent
i, and further the surrogate loss. WeÕll show that our learning process satis!es Assumption1 when
all other agents play either the truthful or a permutation strategy.

We assume that the principal knows the lower bounds of the following quantities:� := 1/2� R⇤
and&p := 1� (p+ +p�). "e principal would need such knowledge to decide the number of training
samplesN to be elicited such that the learning of the error rates converges.

First we demonstrate how to estimateöp�i,+, öp�i,�, and prove a couple of consistency results under
noisy labels. Assuming agents play a symmetric strategy, our method starts with estimating the
following two quantities that can be computed from the collected/reported data directly:

(i) Matching probability: this is the probability when a task is assigned to two di$erent workers,
the chance of the outputs match each other. Denote this quantity asq. In order to evaluate the
matching on the same task, we need to re-assign the tasks. First we separate the tasks into two sets:
we will randomly selectK (to ensure enough samples for an accurate estimation) tasks to re-assign
to one more worker3. Denote the set of re-assigned tasks asU r . SupposeT = K + N . Estimate for

3WhenN is large enough, takingK = O
⇣
logN

⌘
o#en su&ces. Also note, if the principal knowsp+ andp�, we donÕt even

need to obtain redundant labels.
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worker j , i:

÷q�i :=
1

|U r \{i}|
X

n2Ur \{i }
(there is a match on taskn). (12)

(ii) Fraction of +1/-1 labels that we observe from workersÕ contributionP+,P�; denote ÷P�i+ , ÷P
�i
� as

the corresponding estimations for workersj , i:

÷P�i� :=
1

|U\{i}|
X

n2U\{i }
(taskn has label -1). (13)

MECHANISM 2: Estimation oföp+, öp�
1. Assign data; randomly selectK of the tasks to re-assign once; estimate÷q�i , ÷P�i� as in Eqn. (12) and (13).
2. Solve the following set of equations.

(I):P+[ ÷p2
�i,+ + (1� ÷p�i,+)2] + P�[ ÷p2

�i,� + (1� ÷p�i,�)2] = ÷q�i ,

(II):P+ ÷p�i,+ + P� (1� ÷p�i,�) = ÷P�i� .

Denote the solution(s) as÷p�i,+, ÷p�i,�.
3. When there are more than one solution, call Mechanism3.
4. Return the selected root, or no solution to Mechanism1.

We propose Mechanism2 for learning ÷p�i,+, ÷p�i,�. "e set of equations set up in Mechanism2
aims to estimate the error rates in agentsÕ reported data when agents play a symmetric strategy.
When workers are arbitrarily reporting, the solution for the system of equations in Mechanism
2 leads to meaningless numbers, or simply there does not exist a solution. When workers are
reporting according to symmetric strategies4, the !rst equation characterizes the probability of
observing a matching signal, while the second one characterizes the fraction of observed negative
samples. Note that the second equation is also equivalent withP+ (1� ÷p�i,�) + P� ÷p�i,� = ÷P�i+ , i.e.,
the equation for probability of observing a positive signal. Readers may also notice that there may
exist more than one pair of solutions from the system of equations we have formed ((I) & (II)),
due to its quadratic form. Nevertheless the following result holds, which will help remove this
ambiguity.

L���� 5.1. When there are two pairs of solutions from Mechanism 2, only one pair of them satis�es
that ÷p�i,+ + ÷p�i,� < 1.

When agents are truthfully reporting, the above estimation algorithm is ready to give us the
right 'ipping error rate if we choose the pair s.t.÷p�i,+ + ÷p�i,� < 1 a#er step 2 and terminate without
going into step 3. But this wonÕt give us the right solution if agents play a permutation strategy.
Mechanism3 makes the estimation robust to permutation strategies.

MECHANISM 3: Root selection
WhenP+ � P� > 0, return the solution÷p�i,+, ÷p�i,� s.t.,

{ ÷p�i,+, ÷p�i,�} := argmax{ ÷p�i,+, ÷p�i,� } ÷p�i,�/÷p�i,+ , (14)

WhenP+ � P� < 0, return the solution÷p�i,+, ÷p�i,� s.t.,

{ ÷p�i,+, ÷p�i,�} := argmax{ ÷p�i,+, ÷p�i,� } ÷p�i,+/÷p�i,� . (15)

"e basic implication of Mechanism3 is that when there is ambiguity in root selection, we select
the solution with ÷p�i,�, ÷p�i,+ being further away from each other in ratio. Note (1) our solution does
not cover the caseP+ = P�. (2) In the above selection, when agents truthfully report, the solution
4"e estimation approach in the current form works only for symmetric strategies.
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satisfying ÷p�i,+ + ÷p�i,� < 1 will be selected (see proof in our full version). (3) When agents report a
permutation of their signals, the solution captures the actual 'ipping error rates in the reports, i.e.
÷p�i,+ approaches to 1� p+ and ÷p�i,� approaches to 1� p�.

We thus have the following consistency results in estimating the error rates in the reported data
using Mechanism2.

L���� 5.2. When agents j , i are either all truthfully reporting or all reporting permuted signals,
and when K ,N are large enough, w.p. � 1� &1(K ,N ),1� &2(K ,N ) respectively: | ÷p�i,+ � öp�i,+ | 
( 1(K ,N ), | ÷p�i,� � öp�i,� |  ( 2(K ,N ). &1(·),&2(·),( 1(·),( 2(·) are diminishing in K ,N uniformly, s.t.
8) > 0, there exists K ,N such that 0  &1(K ,N ),&2(K ,N ),( 1(K ,N ), ( 2(K ,N )  ) .

"is can be established based on our estimation of÷q�i , ÷P�i� , followed by perturbation analysis on
solving the quadratic equations in Mechanism2.

Denote by ÷%(, ) the noisy surrogate loss function de!ned using estimated (÷p�i,+, ÷p�i,�)s. With
above consistency results, we de!ne Òlearnable surrogate loss functionÓ:

De�nition 5.3 (Learnable surrogate loss function). A surrogate loss function%(, ) is learnable in
öp�i,+, öp�i,�, if for any &,( > 0, there exists a(K ,N ) pair such that with probability at least 1�&, we
have | ÷%(t ,! ) �%(t ,! ) |  ( ,8t ,! .

For example, consider the un-biased surrogate loss function proposed in [16]. Recall in this case
we will have

÷%(t ,! ) :=
(1� ÷p�i,sgn(�! ) )l (t ,! ) � ÷p�i,sgn(! )l (t ,�! )

1� ÷p�i,+ � ÷p�i,�
.

Using Lemma5.2, we prove the following (following notations in Lemma5.2)

L���� 5.4. When agents j , i are either all truthfully reporting or all reporting permuted signals,
and whenK ,N are large enough s.t. ( 1(K ,N )+( 2(K ,N )  &p/2., with probability at least 1�&1(K ,N )�
&2(K ,N ), | ÷%(t ,! ) �%(t ,! ) |  ( est (K ,N ), where ( est (K ,N ) := 2l⇤ (4+&p )&�2

p (( 1(K ,N ) + ( 2(K ,N )).

So the%is indeed learnable for this case. "is claim is generally not uncommon for the others, but
the analysis is rather ad-hoc. In this paper we focus on surrogate loss functions that are learnable.

With the same set of training data{xi , ö! i }Ni=1 as we assumed in Section3.2, denote ÷f ⇤÷" =

argminf 2F öR ÷" ( f ) as the optimal classi!er trained using the learned surrogate loss function. Denote
the distribution over(x, ÷! ) ( workersÕ observed labels) asD#.

When agents truthfully report such thatöp+ + öp� < 1, using sample complexity bound, we can
prove that with probability at least 1� &, maxf 2F |R" ,D! ( f ) � öR" ( f ) |  ( (<(F ),N ,&,p+,p�)
(proved in [16]), where( (·) ! 0 asN increases. SupposeRl,D ( f ) = cAR" ,D! ( f ) + cB for some
constants(cA,cB ): using the surrogate loss function de!ned in Eqn.(3) we havecA = 1, while for
Eqn. (6) we havecA =

1� öp+� öp�
2 . We assert that this is also true when agentsÕ permute their signal

s.t. öp+ = 1� p+, öp� = 1� p� and öp+ + öp� > 1. Consider the following fact

(1� öpsgn(�! ) )l (t ,! ) � öpsgn(! )l (t ,�! )
1� öp+ � öp�

=
psgn(�! )l (t ,! ) � (1� psgn(! ) )l (t ,�! )

p+ + p� � 1
=%(t ,�! ), (16)

where%(t ,�! ) denotes the surrogate loss de!ned over the error ratesp+,p� when workers truthfully
report. So in training, it is as if we are reverting the label back. "erefore the trained classi!er will
be converging to the optimal one, instead of its opposite.

"e following lemma shows that the estimation error in surrogate loss function wouldnÕt a$ect
the learning results by much (&,( as in De!nition 5.3).
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L���� 5.5. W.p. � 1� 2&Rl,D ( ÷f ⇤÷" )  minf 2F Rl,D ( f ) + 2c�1
A · (( (<(F ),N ,&,p+,p�) + ( ).

Above lemma, along with the classi!cation calibration property ofl , let us know that training
with ÷%(·), despite the noise, will let us converge to the optimal classi!erf ⇤:

L���� 5.6. For any (( ,&) > 0 pair, there exists large enough K ,N such that with probability at
least 1�&, RD ( ÷f ⇤÷" ) � R⇤  ( .

6 UNINFORMATIVE STRATEGIES
We show the above mechanism can help eliminate undesirable uninformative equilibria that exist
in peer prediction literature. "ough we are not really comparing two agentsÕ outputs (may it
be simple output agreement, or more sophisticated ones) for sending payment, it is possible that
workers reporting the same labels leads to trivial reference answers that favor collusion. We show
that with the call to Mechanism4, agents reporting a symmetric uninformative strategy is not a
BNE in our mechanism.

T������ 6.1. In Mechanism 1, (1) reporting symmetric uninformative pure signal is not an equi-
librium. (2) Reporting symmetric uninformative mixed signal with randomization probability p , 1/2
is also not an equilibrium.

We !rst observe that when agents report according to uninformative strategies, we will have
÷p�i,+ + ÷p�i,� = 1. "us Mechanism 1will trigger a call to Mechanism4. When the de-bias technique
cannot be applied, we will randomly select another workerÕs report as a reference answer, and
plug it into the scoring function, which creates a penalty for agreement. When there doesnÕt exist
solution for ÷p�i,+, ÷p�i,�, we will score agent a su&ciently small value to ensure that truth-telling
returns higher payment. Knowing only bounds onp+,p� would allow us the estimate a lower
bound formin�%unbias(·). In practice, a#er we shi# the score in Mechanism1 to be positive (use
a&ne transformation, for individual rationality), the payment for this case can be set to 0.

MECHANISM 4: Exception handler

When ÷p�i,+ + ÷p�i,� = 1:
1. Set ÷p�i,+ := min{1, ÷p�i,+ + " }, ÷p�i,� := min{1, ÷p�i,� + " }.
2. Randomly select another agentÕs reportö! j , j , i.
3. Score each workeri: � ÷%unbias( ö! i , ö! j ).

When there doesnÕt exist solution for÷p�i,+, ÷p�i,�: Score agent a su&ciently small value that is less than
min�%unbias(·) (the minimum value of�%unbias(·)).

P����. W.l.o.g., we consider the case workers contribute uninformative signals by always
reporting label -1. Consider workeri. According to our estimation Eqn.(12) and (13), we have
÷q�i = 1 (always match),÷P�i� = 1. Plug back in Mechanism2:

(I):P+ ( ÷p2
�i,+ + (1� ÷p�i,+)2] + P� ( ÷p2

�i,� + (1� ÷p�i,�)2] = 1, (II):P+ ÷p�i,+ + P� (1� ÷p�i,�) = 1 .

SinceP+ ÷p�i,+  P+, P� (1 � ÷p�i,�)  P�, andP+ + P� = 1, we know the only possible case
that equation (II) holds is when both of the equalities hold. So we are led to the solution that
÷p�i,+ = 1, ÷p�i,� = 0. Not hard to validate the above solution also satis!es Equation (1). According
to Mechanism4, we reset÷p�i,� := " > 0. "en the scoring function for agenti becomes:5

� ÷%( ö! i ,! = �1) := � (1�
÷p�i,+)l ( ö! i ,�1) � ÷p�i,�l ( ö! i ,+1)

1� ÷p�i,+ � ÷p�i,�
= �l ( ö! i ,+1)

5For simplicity of presentation, we drop the subscript and use" to denote" unbias.
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So to maximize the score it is pro!table for agenti to report ö! i = +1) workers contributing the
same uninformative signal is not an equilibrium. ⇤

"e case with mixed uninformative strategy can be argued in a similar 'avor (see full version).

7 A SIMPLE MACHINE OUTPUT AGREEMENT MECHANISM
We have established the fact that a class of surrogate loss functions, combined with the classi!er
trained with it, can serve as a peer prediction scoring function that induces strictly truthful BNE.
Likely there exist many other scoring functions that can also incorporate the machine prediction
in peer prediction scoring. Probably the most intuitive mechanism under a peer prediction se%ing
is the Output Agreement (OA) [24] mechanism. However, (OA) does not induce a truthful BNE if
some agents know that they have received a minority signal. Yet in our mechanism, each agentÕs
signal will be scored by an ÓinformativeÓ prediction given by the trained classi!er, thus a truthful
BNE will be induced. In this section we demonstrate the existence of a very simple Machine OA
(MOA) mechanism that induces truthful BNE when ML elicitability conditions are satis!ed.

MECHANISM 5: Machine Output Agreement(MOA)

For each workeri:
1. Train a classi!er ÷f ⇤÷" ,�i as similarly done in Mechanism1.

2. Pay workeri: Cp · ( ÷f ⇤÷" ,�i (xi ) = ö! i ), for someCp > 0.

"e idea is simply to check whether agentÕs report matches the classi!er prediction. Denote
by &R := 1� RD |! =+1( f ⇤) � RD |! =+1( f ⇤) (which we will prove to be positive later) and assume
workers have perfect knowledge of the mechanism. We have the following results (where we use
Const(·) to denote a constant that depends only on its inputs):

T������ 7.1. With (MOA), when K � Const1(&p ,&R ,�,N ), N � Const2(&p ,&R ,�), and Cp is set
appropriately, every worker truthfully reporting is a BNE.

For concise presentation, we only provide some intuitive reasoning on why the mechanism
works and how we obtain the results: !rst we show thatRD |! =+1( f ⇤) + RD |! =+1( f ⇤) < 1. "e
implication of this result is not unlike thep++p� < 1 one, in that the optimal classi!erÕs prediction is
informative under Bayesian updates. Particularly similar to Lemma2.1, we can show this condition
is equivalent withPr(! i = s | f ⇤ (xi ) = s |) > Ps , 8s 2 {+1,�1}. So in short,f ⇤ is ÒinformativeÓ in a
posterior way. When the number of training samples is large enough, the trained classi!er÷f ⇤÷" ,�i is
also going to be informative. Asö! i is compared to an informative answer, workeri is be%er o$
truth telling, due to Bayesian informativeness of his own observation proved in Lemma2.1.

8 EFFORT SENSITIVE WORKERS
We extend our model and results to the case when workers are e$ort sensitive: once given a task,
each workeri can choose to exert e$ortei = 1 to improve the quality of his label, or he can shirk
from doing so (ei = 0). Exerting e$ort incurs costc > 0, and this is common knowledge to all
workers and the principal. A#er making decision on e$ort exertion, each worker observes a signal
(label) ÷! i . We assume that di$erent e$ort levels lead to di$erent 'ipping-error rates:

Pr( ÷! i = �1|! i = +1,ei ) = p+ (ei ), Pr( ÷! i = +1|! i = �1,ei ) = p� (ei ).

Not exerting e$ort leads to an uniform random observation, while exerting e$ort returns an
informative observation with less error: that is, we assumep+ (0) = p� (0) = 1/2 andp+ (1)+p� (1) <
1. Workers would like to maximize their net payment (i.e. payment minus cost of e$ort). A workerÕs
strategy now has two components: an e$ort exertion decision and a reporting decision.
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"e principalÕs goal is to design a mechanismM = (S ,A) to induce a strict BNE where every
worker exerts e$ort and truthfully reports his observed signal. DenoteP ({(xj , ÷! j )}Tj=1|{ej }Tj=1) as
an agentÕs belief about the realized labels of all agents when e$ort levelsejÕs are selected. "en a
mechanismM induces such a BNE if forK�i = {(xj , ÷! j )}j,i ,

EP ( {(xj , ÷! j ) }Tj=1 | {ej=1}Tj=1)
[S ( ÷! i , f AK�i (xi ))] > EP ( {(xj , ÷! j ) }Tj=1 | {ei , {ej=1}j,i })[S ( ö! i , f

A
K�i (xi ))] ,

for all i, either thatei , 1 or ö! i , ÷! i , or both.
We show that we can again design mechanisms using surrogate loss functions to incentivize

both e$ort and truth-telling. "e truth telling part can be similarly established as for the e$ort
insensitive case, but a slightly di$erent argument is needed for eliciting e$ort.

T������ 8.1. When K ,N are large enough, S ( ö! i , ÷f ÷" ,�i (xi )) = �a · ÷%unbias ( ÷f ÷" ,�i (xi ), ÷! i ), along with
the algorithm detailed in (MLP), induce a strict BNE for workers to exert e�ort and report truthfully,
with an appropriately selected scaling factor a > 0.

P����. (Sketch) Again for easiness of presentation we will omit theunbiassubscript in%.
According to "eorem 4.2, we know if all other workers exert e$ort and report truthfully, if worker
i decides to exert e$ort, he will report truthfully. "e only case we need to consider is when agent
i chooses not to exert e$ort. When agenti setsei = 0, the negative of his expected utility is6

E[%( f ⇤, ö! i ) |ei = 0] = 1
2 (E[%( f ⇤,! i )] + E[%( f ⇤,! i )] ), regardless of his reporting strategy. We show

the di$erence between above and the case with exerting e$ort and truthfully reporting is negative,
which can be proved via using the fact that�E[%( f ⇤, ÷! i ) |ei = 1] > �E[%( f ⇤,�÷! i ) |ei = 1] (truth
telling is be%er than reverting):

E[%( f ⇤, ÷! i ) |ei = 1]�E[%( f ⇤, ö! i ) |ei = 0] = E[ (psgn(! i )�1/2)%( f ⇤,�! i )+(1/2�psgn(! i ) )%( f
⇤,! i )] > 0.

Scaling up (�a ·%( f ⇤, ö! i )) will cover costc so to make it incentive compatible to exert e$ort. ⇤

9 DISCUSSIONS AND CONCLUSION
We have introduced a new approach that connects information elicitation without veri!cation
with machine learning. We now summarize the practical advantages of this approach. First our
mechanism does not heavily rely on obtaining redundant labels by assigning a task to multiple
workers. Hence, we can save learning budget to more e&ciently train a classi!er as the performance
of classi!ers ties closely to the number of unique training data. Second, we remove the requirement
of knowing the joint distribution of workersÕ signals; rather such statistics is learned through
workersÕ reports (via learning workersÕ error rates). "ird, our mechanism can easily handle (and
are specialized for) heterogeneous tasks. Finally, our mechanism no long have the undesirable
uninformative and permutation equilibria that most other peer prediction mechanisms have.

Our mechanism is also robust when a small number of agents deviate from the equilibrium: this
can be established by using the robustness of the training procedure. When a sublinear (inN )
N $ ,0 < * < 1 number of agents deviate, this will create aO (N $/N ) = O (N $�1) bias in the learned
surrogate loss function, as well as in the empirical loss de!ned over training data. According
to Lemma5.5, the resultant classi!er will still converge to the optimal one, with this additional
converging error (inN ). Also agentÕs report will be evaluated against an accurate scoring function.
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