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Abstract

In this paper we study an active learning setting where train-
ing samples are adaptively selected to be labeled, and the
learner can only query a set of crowdsourcing workers with
unknown expertise level for label information. We aim to per-
form active sample assignment and active worker selection
jointly. Though the idea is straightforward, we face several
technical challenges towards reaching our goal. First, with-
out knowing worker’s expertise level (and hence the error
rate of the solicited data), design of active learning proce-
dures can be challenging. Secondly, due to the lack of ground-
truth labels, we need a learning framework that helps differ-
entiate workers. Finally, interleaving active sample selection
and active worker selection requires non-trivial effort. We
propose an Upper Confidence Bound (UCB)-alike algorithm
Crowd UCB for selecting the best worker among a candidate
pool, without knowledge of the ground-truth. Then we con-
nect Crowd UCB with a parameter free active learning algo-
rithm. We provide performance guarantees for the proposed
algorithms.

Introduction
With increasing demand for data-efficient learning method-
s, active learning rises as a promising option for spending
label budget more efficiently. The idea is fairly simple: by
carefully collecting labels of data points near the decision
boundary (possibly in a sequential manner), fewer samples
are required to learn a model up to a certain precision. Past
works have developed extensive results on improving classi-
fication performance via active learning (Balcan et al. 2006;
Balcan et al. 2007; Balcan and Long 2013; Wang 2011),
where labels for only a set of selected data samples are col-
lected.

When there is no oracle being available for querying la-
bels, such labeling tasks are often outsourced to crowdsourc-
ing workers (Abraham et al. 2013; Ho and Vaughan 2012;
Liu and Liu 2015). Interestingly the notion of active selec-
tion has also been studied recently in the context of worker
selection in crowdsourcing, where workers may contribute
label information with different qualities. Similar to the idea
of active learning setting where data points are carefully
screened and selected for labeling, in active crowdsourcing
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an algorithm selects different workers to label data samples.
The hope is to collect more consistent labels by exploiting
the heterogeneity of a pool of workers.

In this paper, we consider performing active data sam-
pling and worker selection jointly. In practice, actively
crowdsourcing tasks within an active learning context help-
s save labeling budget, compared to an uniform data as-
signment mechanism (via avoiding labeling non-useful sam-
ples). We also provide an analytical framework to study ac-
tive learning where label queries do not necessarily go to
an oracle or a fixed noisy worker (with either known or un-
known expertise levels). Though the idea is natural, its im-
plementation is highly non-trivial.

On one hand, the presence of several workers with diverse
labeling capabilities significantly affects the active data se-
lection procedure, as naive data selection methods do not
take into account the heterogeneity of workers’ expertise
levels. To make matters even worse, many existing active
learning algorithms would fail without knowing properties
of the noisy labeling oracles (Balcan et al. 2007; Balcan and
Long 2013), which adds difficulties to this “doubly-active”
selection problem. On the other hand, due to the lack of
ground-truth (labels), how to explore or learn the worker-
s’ expertise level is not clear either. Some ideas of using re-
dundant assignments (Karger et al. 2013; Karger et al. 2011;
Abraham et al. 2013; Liu and Liu 2015) were proposed and
studied. But such redundancy will also degrade the learning
performance when facing fixed budget. For example, when
each sample is assigned twice, only half of the budget will
be made effective in the final learning outcome.

In this paper, we propose a novel framework for the dou-
bly active learning problem. We consider the specific prob-
lem of learning a multi-dimensional homogeneous 1 binary
linear classifier under Tsybakov noise conditions by query-
ing a pool of workers (oracles) with varied, yet unknown
levels of accuracy. We propose an Upper Confidence Bound
(UCB)-alike algorithm Crowd UCB for selecting the best
worker among a candidate pool, without knowledge of the
ground-truth. Then we connect Crowd UCB with a param-
eter free margin based active learning algorithm. The pro-
posed algorithm enjoys rigorous guarantees for its perfor-

1A binary linear classifier f is homogeneous if its decision hy-
perplane passes through the origin (Dasgupta 2005).



mance. In addition, for a flipping error worker model, the
performance of our proposed algorithm approximates the
best active learning performance with the best worker in the
worker pool. We believe our model is generally applicable
to many other possible worker models.

Throughout the paper, we assume no prior knowledge on
the quality of each individual worker, which would instead
be estimated on the fly. Proofs of some technical lemmas are
placed in the supplementary material.

Related works
Active learning: As a fast progressing area, it is nearly

impossible to survey all relevant works in active learning.
In the classical active learning setting a learner receives a
pool of unlabeled data points and decides, in a feedback-
driven manner, a small portion of data points whose labels
are requested (Hsu 2010). In most of existing active learn-
ing work only one worker (labeling oracle) is present and
the only worker answers all label requests made. One no-
table exception is (Zhang and Chaudhuri 2015) where both a
strong labeler and a weak labeler are considered at the same
time. In (Zhang and Chaudhuri 2015) the qualities of both
labelers are known a priori and label requests directed to
the weak labeler are unlimited, both are different from our
models. Being aware of noise in imperfect labelers, a rela-
beling based active learning algorithm was proposed in (Lin
and Weld 2016) to gradually remove uncertainties in label-
s. Most relevant to our work is (Yan et al. 2011), where the
idea of active learning with crowd is well executed; yet no
analytical framework nor theoretical guarantees was given.
Instead we provide such a framework and sample complex-
ity results.

Active worker selection: The notion of active worker s-
election has been adopted primarily in a crowdsourcing set-
ting where the worker’s expertise in labeling data differs
from each other and is unknown a-priori. In (Abraham et
al. 2013), an adaptive bandit survey problem is studied and
a stopping time for task assignment when facing crowds of
workers is determined. (Ho and Vaughan 2012) considered
an online task assignment problem in crowdsourcing mar-
ket. (Liu and Liu 2015) proposed an online algorithm that
learns to select the best combination of workers using redun-
dant assignments. Both (Tran-Thanh et al. 2014) and (Ho et
al. 2013) studied active worker selection under different set-
tings (a non-active classification setting and a budget con-
strained setting respectively), assuming access to feedback-
s on workers’ qualities, following each selection. In line of
game theory approaches, (Bhat et al. 2014) studies the issues
of cost-quality balance when workers/labelers are strategic.
In (Liu and Chen 2017), authors proposed a sequential peer
prediction approach to incentivize high quality workers. As
far as we know, none of the active worker selection works
has considered an active learning setting, which turns out to
be a technically challenging task as we will elaborate later.

Proactive learning: The proactive learning setting is de-
signed specifically to relax certain unrealistic assumption-
s (e.g., on noise in labels) made by most active learning
research (Donmez 2010). One particularly interesting case
is when multiple workers (labeling oracles) are available

with varied unknown qualities. Prior research on proactive
learning primarily focuses on heuristics that improve perfor-
mance of practical systems (Donmez and Carbonell 2008;
Donmez 2010), while theoretical analysis is few. (Yang and
Carbonell 2009) derived theoretically sound algorithms for
the setting where workers have different bounded labeling
error. However, bounded noise is a rather strong assumption
and is usually not satisfied in practice.

In all, despite solid theoretical understandings on both of
the active procedures separately, there is a lack of theoretical
foundation for this doubly active learning question, which is
one of our major motivations for carrying out this study.

Problem formulation
We assume data points and their labels (x, y) ∈ X × Y are
drawn from an underlying distribution P jointly over X ⊆
Rd and Y ⊆ R. The objective is to find a classifier f : X →
Y with small generalization error, defined as

err(f) := E(x,y)∼P [l(f(x), y)].

We restrict ourselves to binary classification, in which Y =
{−1,+1} and

l(f(x), y) = 1(y · f(x) > 0)

is the 0/1 loss. The Bayes optimal classifier is then given by

f∗(x) = argmaxy∈{+1,−1}Pr[Y = y|X = x].

We further assume that f∗ is linear; that is, f∗(x) = sgn(w∗·
x) for some w∗ ∈ Rd, ‖w‖2 = 1. It is well-known that
the Bayes optimal classifier f∗ minimizes the generalization
0/1 loss err(f). In addition, for any classifier f we define
its excess error as err(f)− err(f∗). By definition of f∗, the
excess error is always non-negative.

Tsybakov noise condition To facilitate our active learn-
ing analysis, we adopt a Tsybakov low-noise condition (T-
NC) on the noise part of the label distribution Y |X . Similar
conditions were widely adopted in previous work (Balcan
and Long 2013; Castro and Nowak 2008; Ramdas and S-
ingh 2013; Wang and Singh 2016) to demonstrate the power
of adaptation in classification problems. Let

η(x) = Pr[Y = +1|X = x]

denote the conditional label distribution and φ(x,w) =
π
2 − arccos θ(x,w) ∈ [−π2 ,

π
2 ] be the angular distance be-

tween a data point x and the hyperplane orthogonal to a lin-
ear classifier w ∈ Rd. TNC then asserts that

µ · |φ(x,w∗)|
α

1−α ≤ |η(x)− 1/2| , (1)

where 0 < µ < ∞ and α ∈ (0, 1) are parameters that char-
acterize behavior of the noise. Intuitively, larger α implies
slower decay of noise for data points near the hyperplane of
the optimal classifier w∗ and hence worse rates for learning
w∗.



The data request procedure
In our doubly-active learning model, a learner draws a se-
quence of samples {xt} from the marginal distribution PX
of P on X and decides, in a sequential and feedback-driven
manner, whether to request label for a particular sample. If
such a request is made, the learner further decides on a par-
ticular worker the request is sent to from a crowd of candi-
date workers that the learner has no prior knowledge of. In
summary we have the following two active selection prob-
lems:

Active data selection: at time t, the learner obtains an un-
labeled data point xt ∼ PX and decides whether to query
its label yt.

Active worker selection: if a labeling request is made for
xt, the learner further decides on a worker (or a set of work-
ers) to obtain a label yt of xt.

We impose a budget limit T > 0 on the total number of la-
bel requests made. We do not assume that each worker only
stays active for one query, nor that they will stay on-call for
all T queries. For practical concerns, we separate T queries
into E (as a function of T , to be specified later) treatments,
with each of the treatments consisting of exactly T ∗ := T/E
queries. Each treatment k will be assigned to a set of N can-
didate workers denoting by Uk = {k1, k2, · · · , kN}, k =
1, ...., E, each with diverse expertise level and accuracy in
labeling the data points. Here for simplicity we keep the
number of solicited workers to be a fixed numberN . In prac-
tice this number can vary across stages. For readers that are
familiar with active learning literature, above ”separation in-
to treatments” also fits into the framework of margin based
active learning methods, where the learning carries over sep-
arate stages, with each stage having a pre-specified length
(budget, or number of queries) (Balcan and Long 2013;
Wang and Singh 2016).

Worker error models
We consider a “flipping error” model, which has been widely
adopted in crowdsourcing research (Abraham et al. 2013;
Karger et al. 2011; Karger et al. 2013; Liu and Liu 2015):
each worker i ∈ Uk, once assigned a sample x, observes a
signal Y (i) of the ground-truth label Y . The probability of
the observation being correct is

pi := Pr[Y (i) = Y |X = x],

which could differ for each worker. Moreover we assume the
following conditional independence

Pr[Y (i) = Y |Y,X = x] = Pr[Y (i) = Y |Y ].

To simplify matters, we consider the case where pi > 0.5 for
all i ∈ U , meaning that workers perform better than taking a
random guess.

First we prove that this simple (while quite common) flip-
ping error model naturally leads to shared optimal linear
Bayes estimator f∗ and TNC parameter α their label error
distributions among workers. The following lemma solidates
above claim rigorously:
Lemma 1. Suppose the underlying conditional label distri-
bution PrY |X satisfies TNC as in Eqn. (1) with respect to

linear Bayes classifier w∗ and parameters (2pi − 1)µ, α.
Then the Bayes classifier of conditional label distribution
PrY (i)|X is still linear with the same w∗ and furthermore,
PrY (i)|X satisfies the following TNC condition:

(2pi − 1)µ · |φ(x,w∗)|α/(1−α) ≤ |ηi(x)− 1/2|,

where ηi(x) = Pr[Y (i) = +1|X = x] is the conditional
labeling distribution of worker i.

A meta-algorithm for jointly active data
selection/worker selection

In order to combine active data selection and active worker
selection, we first introduce two main recipes for our solu-
tion: a parameter free margin based active learning algorith-
m, and a UCB algorithm tailored for a budget constrained
crowdsourcing setting. Together they consist our meta algo-
rithm. The parameter free active learning is mainly to deal
with the uncertainty in the underlying noise of reported da-
ta, due to the uncertainty in selecting workers, as well as in
workers’ expertise level. The “crowd” UCB algorithm is a
variant of classical UCB, so to combat the issue that when
there is no direct observation/ground-truth.

WS16: Noise-adaptive active learning
We are going to adopt the method presented in (Wang and
Singh 2016) to serve as our background active learning al-
gorithm, which is parameter-free. The main idea of this al-
gorithm is to split the query budget into E = Θ(log T )
iterations and at each iteration, constrained empirical risk
minimization is performed on data points near the decision
boundary to push the estimated classifier ŵk closer to the
Bayes classifier w∗. Through an inspiring “tipping point”
analysis it can be shown that Algorithm 1 with the same pa-
rameterization is capable of adapting to different TNC noise
parameters. Suppose the query distribution satisfied TNC
condition with parameter (µ, α) defined in (1) and the al-
gorithm knows αmin, a lower bound of α. We will refer to
this algorithm as WS16 in this paper.

The above algorithm is useful for our crowdsourcing set-
ting, where none of workers’ expertise levels, or equiva-
lently the noise levels in contributed data, is required to
be known. The following performance guarantee has been
proved in (Wang and Singh 2016) (Theorem 1):
Theorem 1. When PX is log-concave, with TNC parameter
µ, α and budget T , with probability at least 1− δ we have,

err(f̂E)− err(f∗) = Õ
(
µ− 1−α

α · (d+ log(1/δ)

T
)

1
2α

)
. (2)

Crowd UCB: UCB for crowdsourcing feedback
As we discussed earlier, we will treat each stage of our active
learning algorithm as one treatment (each k = 1, ..., E as
in (WS16)) and we will be assigning each treatment k to a
crowd of workers {k1, ..., kN} selectively. Note within this
setting the pool of workers is changing over stages. For each
treatment, the goal is to find the best worker, which we will
refer as the best “option” in a general context.



Algorithm 1 (WS16) Noise-adaptive margin-based active
learning (Wang and Singh 2016)

1: Parameters: dimension d, query budget T , failure prob-
ability δ, r = e−(1−αmin)/αmin ).

2: Initialization: E = 1
2 log T , T ∗ = T/E, β0 = π, ran-

dom ŵ0 with ‖ŵ0‖2 = 1.
3: for k = 1 to E do
4: W = ∅. Set bk−1 = 2βk−1√

d

√
E(1 + log(1/r)) if

k > 1 and bk−1 = +∞ if k = 1.
5: while |W | < T ∗ do
6: Obtain sample x from PX .
7: If |ŵk−1 · x| > bk−1 reject; otherwise request

the label y of x and add (x, y) to W .
8: end while
9: Find ŵk:

ŵk ∈ argminw:θ(w,ŵk−1)≤βk−1

∑
(x,y)∈W

1(yw · x < 0).

Update βk = rβk−1.
10: end for
11: Output: the final estimated classifier f̂E .

Ideally for each stage k, we would like to run a bandit
type algorithm (e.g. UCB (Auer et al. 2002)) for selecting
workers while treating each of them as an arm, in hope that
the selection will converge to selecting the most competitive
workers. A salient challenge here is that for each assignmen-
t, we do not directly observe workers’ labeling quality, as
whether a specific task has been correctly labeled or not is
not clear (missing feedback for explorations). To tackle this
issue, we are going to use redundant assignments (Abraham
et al. 2013; Liu and Liu 2015) towards addressing this issue.
Nevertheless, a direct deployment of such techniques will
significantly reduce the effectiveness of query budgets. This
observation inspires our algorithm Crowd UCB. The basic
idea is that we are going to learn a stopping time for UCB al-
gorithm, that we only try to solicit feedback using redundant
assignment before this point. Suppose to elicit “feedback”
on each arm selection, we run a subroutine Feed Elicit
to obtain an informative feedback – this will be made clear
within specific algorithm settings.

Consider each stage of our active learning algorithm
(WS16)).2 Denote Xi as the random variable for generating
ith arm’s reward statistics (e.g., worker’s labeling accuracy,
or a function of his accuracy). Suppose E[X1] > E[X2] >
... > E[XN ], and denote by ∆i := E[X1] − E[Xi],∀i > 1.
Denote by X̃i(t) the sample mean estimation for option
i based on observed feedbacks. Denote the number of s-
election of each option i up to time t as Ni(t). Define a
confidence function U(t, δ) for any ε ∈ (0, 1) and δ ∈

2The bandit algorithm runs similarly for each stage k, so we
will omit the subscript.

(0, log(1 + ε)/e) as follows ((Jamieson and Nowak 2014)):

U(t, δ) := (1 +
√
ε)

√
(1 + ε) log( log((1+ε)t)

δ )

2t
. (3)

Worker selection follows an index policy:

i∗(t) ∈ argmaxiIi(t) := X̃i(t) + biasi(t), (4)

where biasi(t) is defined as

biasi(t) = (1 + β)U(Ni(t), δ/N),

for some positive constant β > 0. Denote

κ := (
2 + β

β
)2

(
1 +

log(2 log(( 2+β
β )2N/δ))

logN/δ

)
and define the following stopping criteria for Crowd UCB
((Jamieson and Nowak 2014)), and denote by t∗ the stopping
time:
• At time t, denote the arm with highest number of selection

as i∗. Claim YES (Stop) if

Ni∗(t) ≥ κ
∑
i6=i∗

Ni(t).

Claim i∗ as the best option, and select i∗ from t on.
The algorithm is summarized in Algorithm 2. The following
can be proved for Crowd UCB:
Lemma 2. Let X1 − E[X1], X2 − E[X2], ... be i.i.d. sub-
Gaussian random variable with scale parameter σ ≤ 1/2.
W.p. at least 1− δ, when stop (t∗), the best option is identi-
fied. Further:

Ni(t
∗) ≤ 1 +

2γ

∆2
i

log

(
2 log(γ(1 + ε)∆−2

i )

δ/N

)
, ∀i > 1.

for some positive constant γ. Moreover we have

t∗ ≤ (1 + α)(n− 1)(1 +
2γ

∆2
i

log

(
2 log(γ(1 + ε)∆−2

i )

δ/N

)
).

Algorithm 2 (Crowd UCB)
Input T ∗, L. Run UCB over t = 1, 2, ..., T ∗.
• At each t, check the stopping criteria.
• If NO, make selection at (to send query to):

i∗(t) = argmaxiIi(t) := X̃i(t) + biasi(t).

(Crowd UCB)
• Run Feed Elicit to obtain informative feedback

from the crowdsourcing setting.
• If YES, for the rest of stage t, keep selecting the claimed

best option (worker), without running Feed Elicit
nor updating indices.

Denote the number of re-assignments for each sample (in
order to run Feed Elicit) at each step as K. Then the



total number of wasted budget is bounded as follows (due to
redundant assignments):

(K − 1)Ni∗(t
∗) +K

∑
i 6=i∗

Ni(t
∗) = [κ(K − 1) +K]

∑
i6=i∗

Ni(t
∗)

≤ [κ(K − 1) +K]

(
1 +

2γ

∆2
i

log
(2 log(γ(1 + ε)∆−2

i )

δ/N

))
.

Denote above quantity as5T (K,N, δ,∆) (We use ∆ to de-
note the vector of ∆is), which is roughly on the order of
O(
∑
i>1

1
∆2
i

log(1/δ)).

A meta algorithm
With above preparation, we present Algorithm 3, a meta al-
gorithm DAL combing WS16 and Crowd UCB. Algorithm 3
is separated into stages as similarly presented in active learn-
ing studies. On each stage, the selection of samples is con-
trolled by a shrinking margin (Wang and Singh 2016). For
worker selection, we use Crowd UCB. Note to start the al-
gorithm we need to compute T̂ which needs the knowledge
of5T and further ∆i, i > 1s. In fact we only need to know
a lower bound on such ∆s. Intuitively T̂ is the lower bound
on the number of effective data samples we collected from
the best option (or workers). We have the following Lemma
to bound it under (DAL).

Algorithm 3 (DAL) A meta-algorithm framework
1: Parameters: dimension d, query budget T , failure prob-

ability δ, r = e−(1−αmin)/αmin .
2: Find largest T̂ s.t. T̂ +5T (K,N, δ,∆) · 1

2 log T̂ ≤ T .
3: Initialization: E = 1

2 log T̂ , T ∗ = T/E, β0 = π, ran-
dom ŵ0 with ‖ŵ0‖2 = 1.

4: Configure parameters and run WS16with (E, T̂ , β, w0).
5: for k = 1 to E do
6: Run WS16 for sample selection.
7: Run Crowd UCB with Feed Elicit for T ∗

stages for worker selection, when a sample has been de-
cided to query.

8: At the end of each stage, only add the data collected
from the identified best option (worker) for training and
updating in WS16.

9: end for
10: Output: the final estimated classifier f̂E .

Lemma 3. With (DAL), we have the following: T̂ ≥ T −
5T · 1

2 log T − (∆T/2 + 1).

Proof. To see this, first as T̂ ≤ T we know log T̂ /2 ≤
log T/2. Suppose T̂ < T − ∆T · log T/2 − (∆T + 1).
Then we have

T̂ + 1 + ∆T · log(T̂ + 1)/2

≤T̂ + 1 + ∆T · log T̂ /2 + ∆T/(2T̂ )

≤T̂ + 1 + ∆T · log T/2 + ∆T/2

<T.

For the first inequality we used the fact that log(1 + y) ≤
y,∀ 0 ≤ y ≤ 1. But the above contradicts the optimality of
T̂ (T̂ + 1 also satisfies the condition).

Though the solution framework is generally applicable,
for different worker models, the design, analysis, index up-
date for Crowd UCB, as well as the Feed Elicit subrou-
tine differs from one to another.

Best worker selection
Goal: Since we have E stages of active learning (treatmen-
t), we have E crowds of workers. Suppose for each k =
1, 2, ..., E we have p1,k > p2,k > ... > pN,k.Under flipping
errors, following Theorem 1 and Lemma 1, we know when
sending queries to a worker with labeling accuracy p (con-
sistently), the upper bound of error in the model outputted
by the algorithm is inversely proportional to 2p − 1. Since
mink p1,k > mink p2,k > ... > mink pN,k, k = 1, 2, ..., E
we know selecting workers with the highest pi,k for each
stage k minimizes the bound. The objective in this setting is
then to design estimator f̂E that matches the performance of
the one with querying the best worker at each round.

Algorithm description
To complete Algorithm 3, we first propose a matching based
method for feedback elicitation in Algorithm 4.

Algorithm 4 (Feed Elicit)
1: Treat each worker as an arm.
2: Before stop, suppose at time t task xt is assigned to

worker i. Besides worker i, randomly select another
worker to assign the same task. We name this worker
as the reference worker, and we denote this worker for i
by ri(t).

3: We query both workers for the label of xt, and compare
their answers (Y (i)(n), Y (ri(n))(n)) (n-th time worker
i being selected)

4: Define X̃i(t) in the index of Crowd UCB as follows:

X̃i(t) :=

∑Ni(t)
n=1 1(Y (i)(n) = Y (ri(n))(n))

Ni(t)
. (5)

Our intuition for above method is as follows. Denote

qi,k := Pr[Y (i)(n) = Y (ri(n))(n)|Y ],

the probability of observing a match. This quantity closely
relates to pi,k:

qi,k = pi,k ·
∑
j 6=i pj,k

N − 1︸ ︷︷ ︸
agree on correct answer

+ (1− pi,k)(1−
∑
j 6=i pj,k

N − 1
)︸ ︷︷ ︸

agree on wrong answer

.

Denote by p̄k :=
∑
i pi,k/N , we prove that

Lemma 4. When N ≥ 2/(2p̄k − 1),

qi,k > qj,k ⇔ pi,k > pj,k.



Proof. We prove for any k, so we omit the subscript in k.
Note the following holds

qi = pi

∑
j 6=i pj

N − 1
+ (1− pi)(1−

∑
j 6=i pj

N − 1
)

= pi
Np̄− pi
N − 1

+ (1− pi)(1−
Np̄− pi
N − 1

)

= − 2

N − 1
p2
i + (

2Np̄

N − 1
− 1 +

1

N − 1
)pi + 1− N

N − 1
p̄ .

When N ≥ 2/(2p̄ − 1), the optimizer (for above quadratic
equation in pi) happens at:

−
2Np̄
N−1 − 1 + 1

N−1

2(− 2
N−1 )

=
1

2
+
N

4
(2p̄− 1)

≥1

2
+

1

2
= 1.

So qi is increasing at the region of 0 ≤ pi ≤ 1.

Hence in the selection process we can use qi,k to serve as
a surrogate for pi,k, i.e., selecting the worker with highest
qi,k is equivalent with selecting the one with the best pi,k.
Note in this case the number of re-assignments for each data
point at each step is K = 2. The algorithm is summarized in
Algorithm 5.

Algorithm 5 (DAL 1)

1: Run WS16 with (E, T̂ , β, w0). At stage k = 1, ..., E

• At time t = 1, ..., T ∗, once a sample is sent to query,
follow Crowd UCB for worker selection.

• Feed Elicit: If not stopped, re-assign the task to a
randomly selected another worker, and check whether
the two answers match with each other.

• t := t+ 1. Update Ii(t)(Eqn.(4)), if not stopped.
2: k := k + 1, update training data set and margin.
3: Output the final classifier f̂E .

Sample complexity results
In order to apply Lemma 2 to our analysis, we need to check
the sub-gaussian assumption. First we show that

Lemma 5. Any bounded zero mean E[X] = 0 random vari-
able a ≤ X(ω) ≤ b is a sub-Gaussian random variable with
scaling parameter σ ≤ (b− a)/2

√
2.

When b − a ≤
√

2 we know we have σ ≤ 1/2, i.e., the
condition in Lemma 2 will hold. When we take

Xi := 1(Y (i) = Y (ri)),

notice Xi − E[Xi] is a zero random variable, and further

max(Xi(ω)−E[Xi])−min(Xi(ω)− E[Xi])

= (1− qi)− (0− qi) = 1

So indeed this random variable is sub-Gaussian with σ <
1/2 according to Lemma 5. Then we can safely apply Lem-
ma 2 to bound the number of wasted budget on select-
ing sub-optimal workers and redundant assignments. Denote
∆i := mink q1,k − qi,k and p∗ := mink p1,k, we have:
Theorem 2. With (DAL 1), w.p. ≥ 1− δ,

err(f̂E)−err(f∗) = Õ
(
((2p∗−1)µ)−

1−α
α (

d+ log(2/δ)

T̂
)

1
2α

)
,

T̂ ≥ T −5T (K = 2, N, δ/2E,∆) · (log T/2 + 1)− 1.

Proof. First the number of samples N1(t) for claimed best
option is bounded as (with high probability ≥ 1 − δ/2E,
using Lemma 2 and Lemma 3)

N1(t) ≥ T

E
−5T ≥ T̂

E
,

with probability ≥ 1 − δ/2E. Then via union bound (E
number of events with probability δ/2E), with probability
1−δ/2, the number of samples collected from the best work-
er per stage is at least T̂ /E, and the total number of samples
collected from all stages is at least T̂ . Using Theorem 1 we
know (using union bound to composite two δ/2 probability
events) w.p. ≥ 1− δ that

err(f̂E)− err(f∗) = Õ
(
((2p∗ − 1)µ)−

1−α
α (

d+ log(2/δ)

T̂
)

1
2α

)
.

Best combination of workers
In this section we explore how to find a best combination of
workers, instead of targeting the single best ones.

Feedback elicitation
We would like to find a set of workers S that maximizes
the probability of obtaining a correct majority voting answer
over them, which writes as follows

pS := Pr

[
1(
∑
i∈S

Y (i))/|S| ≥ 0.5) = Y

]
.

It is shown in (Liu and Liu 2015) that pS can be written in a
closed-form of pi,k, i ∈ S:

pS =
∑

S′:S′⊆S,|S′|≥d |S|+1
2 e

∏
i∈S′

pi,k ·
∏

j∈S\S′
(1− pj,k)

︸ ︷︷ ︸
Majority wins

+

∑
S′:S′⊆S,|S′|= |S|2

∏
i∈S′ pi,k ·

∏
j∈S\S′(1− pj,k)

2︸ ︷︷ ︸
Ties broken equally likely

.

Not hard to see, we need to learn pi,k accurately in order to
do so.

Our method is again built on checking how often worker-
s’ answers match each other. The difference is that we will



allow self-comparison in that a sample point x can be re-
assigned to the same worker and obtain two independen-
t copies of answers. Then the probability of observing a
matching in such a case becomes

qi,k = pi,k

∑N
j=1 pj,k

N
+ (1− pi,k)(1−

∑N
j=1 pj,k

N
)

:= pi,kp̄k + (1− pi,k)(1− p̄k), (6)
where p̄k denotes the average labeling accuracy. This as-
sumption is reasonable if we can regard each worker’s an-
swer as a collected opinion from a set of workers, instead of
from an individual worker (a similar notion and assumption
adopted in (Abraham et al. 2013)). In fact, this phenomena,
named “crowd within”, has been testified in real human ex-
periments (Vul and Pashler 2008). Sum over all i ∈ Uk in
Eqn.(6) and re-arrange we have∑

i

qi,k = (2p̄k − 1)Np̄k +N(1− p̄k),

which gives us

2p̄2
k − 2p̄k + 1 =

∑
i

qi,k/N.

p̄k can then be solved from above equation, if knowing
q̄k :=

∑
i qi,k/N (through estimating the matching proba-

bility). Further it has a unique solution in the regime [1/2, 1],
where p̄k lies in (as we have assumed pi,k > 0.5,∀i, k). Par-
ticularly the solution has the following format:

p̄k :=
1

2
+

√
1− 2(1− q̄k)

2
.

The above solution is well defined as
q̄k = 2p̄2

k − 2p̄k + 1 ≥ 1/2.

Plug back p̄k to equation Eqn. (6) we can solve for each pi,k,
as a function of qi,k, p̄k:

pi,k =
qi,k + p̄k − 1

2p̄k − 1
.

With estimates of pi,ks, we are able to compute pS with
fine accuracy. This will be our Feed Elicit step. The
above method also inspires us to take each set S as a work-
er, instead of each individuals. Then by Lemma 1, we know
the generated labels from majority voting (can also be re-
garded as a flipping error model) also satisfy TNC condi-
tion. For demonstration purpose, we consider a special case
pi,k=1 = pi,k=2 = ... = pi,k=E ,∀i = 1, 2, ..., N . That is
in practice, at each stage we are able to recruit workers with
roughly the same expertise level. For the rest of the subsec-
tion we will drop the index on k.

Sample complexity results
Based on Lemma 2, when set S is selected for labeling each
sample, redefine T := T/|S| and E = log T/2 we have the
following results (α > 1/2): w.p. ≥ 1− δ:

err(f̂E)− err(f∗)

≤O
(

(
µ

2pS − 1
)

1−α
α (

d+ log(1/δ)

T/|S|
)

1
2α

)
≤O

(
(
|S|µ

2pS − 1
)

1−α
α (

d+ log(1/δ)

T
)

1
2α

)
,

Knowing pi,ks enables us to find the subset of workers who
jointly minimizes the above bound

S∗ = argminS⊆U
|S|

2pS − 1
.

This metric |S|
2pS−1 captures the trade-off between accuracy

and budget loss in redundant assignment. Denote by ∆S the
gap between a sub-optimal set S and the optimal S∗ in above
metric:

∆S :=
2pS − 1

|S|
− 2pS∗ − 1

|S∗|
,∀S 6= S∗,

and define the sample mean term in Crowd UCB as follows:

X̃S(t) :=
2p̃S({p̃i,k(t)}i∈S)− 1

|S|
,

where p̃S({p̃i,k(t)}i∈S) is the estimated pS – note we flip
denominator with numerator to revert the goal from finding
the minima to finding the maxima. Also note that now we
have more than N arms in Crowd UCB. In fact the number
of arms corresponds to the number of worker combination S
– denote this number as NS . First we establish a confidence
bound on X̃S(t):

Lemma 6. With probability at least 1 − δ, there exists a
constant C > 0 s.t.,

|X̃S(t)− 2pS − 1

|S|
| ≤ C · U(Ni(t), δ),

where U(Ni(t), δ) is as defined in Eqn. (3).

Before the algorithm claims a stop, when S is selected,
we need to update the matching probability for each i ∈ S.
This incurs an exploration complexityK = 2|S| ≤ 2N. The
algorithm looks very similar to Algorithm 5, except for the
Feed Elicit step. We state the results, without re-stating
the details.

Theorem 3. With adapting (DAL 1) to above worker com-
bination setting, with probability at least 1− δ that,

err(f̂E)− err(f∗) = Õ
(
((2pS∗ − 1)µ)−

1−α
α (

d+ log(2/δ)

T̂ /|S∗|
)

1
2α

)
,

T̂ ≥ T−5T (K = 2N,NS , δ/2E,∆/C)(log T/2+1)−1.

Conclusion
In this paper we propose a solution for a doubly active learn-
ing problem that performs active learning and active crowd
worker selection (active crowdsourcing) jointly. We propose
an analytical framework for analyzing this doubly active
learning question. Algorithms under flipping worker noise
models are given, and we provide sample complexity results
for them to establish their performance guarantees. Future
work includes relaxation of the log-concave PX assumption
and development of provably correct computational efficient
algorithms for the doubly-active learning problem.
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Supplementary material

Proof for Lemma 1
Proof. First we show minimizing Pr[fi(X) 6= Y ] is equivalent with minimizing Pr[fi(X) 6= Yi]:

Pr[fi(X) 6= Y ] = Pr[Y 6= Yi, Y 6= fi(X)] + Pr[Y = Yi, Y 6= fi(X)]

= Pr]Y 6= fi(X)|Y 6= Yi] · Pr[Y 6= Yi]

+ Pr[Y 6= fi(X)|Y = Yi] · Pr[Y = Yi]

= Pr[Yi = fi(X)|Y 6= Yi](1− pi) + Pr[Yi 6= fi(X)|Y = Yi]pi .

Since we have assumed conditional independence of the two labeling error, i.e., the following two events: {Yi = fi(X)}, {Y =
Yi}, we have

Pr[fi(X) 6= Y ] = (2pi − 1) Pr[Yi 6= fi(X)] + (1− pi) .
Suppose w∗ minimizes LHS, and pi > 0.5, we know w∗ also minimizes Pr]Yi 6= fi(X)] which establishes the claimed
equivalence. Consider ηi(x),

|ηi(x)− 1/2| = | = Pr[Y (i) = +1|X = x]− 1/2|
= |Pr[Y (i) = +1, Y = +1|X = x]

+ Pr[Y (i) = +1, Y = −1|X = x]− 1/2|
= |Pr[Y (i) = +1|Y = 1, X = x) Pr[Y = +1|X = x]

+ Pr[Y (i) = +1|Y = −1, X = x) Pr[Y = −1|X = x)− 1/2|
= |Pr[Y (i) = +1|Y = +1)η(x)

+ Pr[Y (i) = +1|Y = −1)(1− η(x))− 1/2| ,
where the last equality we used the conditional independency that PrY (i)|Y,X = PrY (i)|Y , and the definition of η(x). Then

|ηi(x)− 1/2| = |(2pi − 1)η(x) + 1− pi − 1/2|
= (2pi − 1)|η(x)− 1/2|
≥ (2pi − 1)µ · |φ(x,w∗)|α/(1−α)

= (2pi − 1)|µ · |φ(x,w∗i )|α/(1−α).

This establishes the TNC condition on ηi(x).

Proof for Lemma 2 (Jamieson et al. )
Proof. To prove this lemma, we first introduce a high probability results for MAB with fixed confidence interval. The following
lemma is established in (Jamieson et al. ):

Lemma 7. Let X1, X2, ... be i.i.d. sub-Gaussian random variable with scale parameter σ ≤ 1/2 and mean µi ∈ R. For any
ε ∈ (0, 1) and δ ∈ (0, log(1 + ε)/e) one has with probability at least 1− 2+ε

ε/2 ( δ
log(1+ε) )1+ε that

|
∑t
s=1Xs

t
− µi| ≤ U(t, δ), ∀t ≥ 1,

where U(t, δ) := (1 +
√
ε)

√
(1 + ε) log( log((1+ε)t)

δ )

2t
.

Define the bias term in UCB index as follows:

biasi(t) = (1 + β)U(Ni(t), δ/N),

for some positive constant β > 0. Then define

κ := (
2 + β

β
)2

(
1 +

log(2 log(( 2+β
β )2N/δ))

logN/δ

)
.

Define the following stopping criteria for Crowd UCB:



• At time t, denote the arm with highest number of selection as i∗. Claim YES if

Ni∗(t) ≥ κ
∑
i6=i∗

Ni(t).

Claim i∗ as the best option, and select i∗ starting from t.

With above UCB algorithm with stopping, it is proved in (Jamieson and Nowak 2014) that

Lemma 8. When stop, with probability at least 1− δ,

Ni(t) ≤ 1 +
2γ

∆2
i

log

(
2 log(γ(1 + ε)∆−2

i )

δ/N

)
.

Based on above lemma we know after

t ≥ (1 + κ)(n− 1)(1 +
2γ

∆2
i

log

(
2 log(γ(1 + ε)∆−2

i )

δ/N

)
),

we will be selecting the best option with probability 1− δ.

Proof for Lemma 5
Proof. This can be established following the results from Lemma 2.2, Chapter 2 of (Cesa-Bianchi and Lugosi 2006):

logE[etX ] ≤ tE[X] +
t2(a− b)2

8

⇒ E[etX ] ≤ etE[X]+
t2(a−b)2

8 = e
t2(a−b)2

8 .

Proof for Lemma 6
Proof. To see why this is true, we can first estimate qi, suppose within confidence bound U(Ni(t), δ) with probability at least
1− δ. Then we know

|q̃ − q̄| ≤ U(Ni(t), δ).

Further we show that there exists a constant L1 s.t.,

|p̄est − p̄| ≤ L1U(Ni(t), δ).

To see why this is true, first we can bound the support region when estimating q̄. Suppose p̄ ≥ 1/2 + ε, ε > 0 we have

q̄ = 2p̄2 − 2p̄+ 1 ≥ 2(1/2 + ε)2 − 2(1/2 + ε) + 1 = 2ε2 + 1/2 .

First estimate q̄ and then obtain an estimation of p̄. The estimation error is bounded as follows

|p̄est − p̄| = |
√

1− 2(1− ˜̄q)

2
−
√

1− 2(1− q̄)
2

|

≤ max
p≥2ε2+1/2

1

2
√

1− 2(1− p)
|˜̄q − q̄|

=
1

4ε
|˜̄q − q̄| ,

where the first inequality uses mean value theorem. Using

pi =
qi + p̄− 1

2p̄− 1
,

we can prove that pi is Lipschitz in both qi, p̄:

p̃i =
q̃i − 1 + p̄est

2p̄est − 1
.



Now bound the estimation error for above equation:

|p̃i − pi| = |
q̃i − 1 + p̄est

2p̄est − 1
− q̃i − 1 + p̄

2p̄− 1
|

≤ | q̃i − qi + qi − 1 + p̄est

2p̄est − 1
− qi − 1 + p̄

2p̄− 1
|

≤ | P̃
i
match − P imatch

2p̄est − 1
|+ |P

i
match − 1/2|

2
| 1

p̄est − 1/2
− 1

p̄− 1/2
|

≤ | q̃i − qi
2ε
|+ |qi − 1/2|

2

1

ε2
|p̄est − p̄|

≤ (1/2ε+ |qi − 1/2|/8ε3)|q̃i − qi|
≤ (1/2ε+ 1/16ε3)|q̃i − qi| .

Then

|p̃i,k − pi,k| ≤ L2U(Ni(t), δ) + L3 · L1U(Ni(t), δ)

= (L2 + L1L3) · U(Ni(t), δ).

According to Lemma 7 in (Liu and Liu 2015), we know pS is Lipschitz in p̃i,ks (i ∈ S), so

|p̃S − pS | ≤ L4(L2 + L1L3) · U(Ni(t), δ).

The last step is on establishing a Lipschitz condition of |S|
2pS−1 on pS so we finish the proof. First since pi > 1/2,∀i, denote the

slack by ε such that pi ≥ 1/2 + ε. We can then easily prove for any S, pS ≥ 1/2 + ε. Then according to Lemma 7 in (Liu and
Liu 2015) we know for any subset S

| |S|
2p̃S({q̃i(t)}i∈S)− 1

− |S|
2pS − 1

|

≤|S|
ε2
|p̃S({q̃i(t)}i∈S)− pS |

≤N
ε2

∑
i∈S
|p̃i(t)− pi(t)| ,

where the first inequality is due to mean value theorem, and the boundedness in pS , and the second inequality is due to Lemma
7 in (Liu and Liu 2015).

Argument for ∆/C gap bandit selection
At time t when i 6= 1 is selected we have w.h.p.,(as similarly argued in (Jamieson and Nowak 2014))

− E[Xi] + (2 + β)CU(Ni(t), δ/NS) ≥ X̃i(t) + (1 + β)CU(Ni(t), δ/NS)

≥ X̃1(t) + (1 + β)CU(N1(t), δ/NS) ≥ E[X1] + βCU(N1(t), δ/NS),

from which we see when (2 + β)CU(Ni(t), δ/NS) ≥ ∆i no regret will be incurred.
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