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Abstract

We analyze an online learning problem that
arises in crowdsourcing systems for users fac-
ing crowdsourced data: a user at each discrete
time step t can choose K out of a total of N
options (bandits), and receives randomly gen-
erated rewards dependent on user-specific and
option-specific statistics unknown to the user.
Each user aims to maximize her expected total
rewards over a certain time horizon through a
sequence of exploration and exploitation steps.
Different from the typical regret/bandit learn-
ing setting, in this case a user may also ex-
ploit crowdsourced information to augment her
learning process, i.e., other users’ choices or re-
wards from using these options. We consider
two scenarios, one in which only their choic-
es are shared, and the other in which user-
s share full information including their choic-
es and subsequent rewards. In both cases we
derive bounds on the weak regret, the differ-
ence between the user’s expected total reward
and the reward from a user-specific best single-
action policy; and show how they improve over
their individual-learning counterpart. We al-
so evaluate the performance of our algorithms
using simulated data as well as the real-world
movie ratings dataset MovieLens.

1 Introduction
We analyze the following learning problem in the context
of crowdsourcing, such as in a recommendation system:
M users face N options, such as those in restaurants,
movies, etc.; in a discrete time setting, at each step a
user chooses K out of the N options, and receives ran-
domly generated rewards, whose statistics depend on the
options chosen as well as the user herself, but are un-
known to the user. The objective of each user is to max-
imize her expected total reward (e.g., overall satisfaction
of watching movies) over a certain time horizon through
an online learning process, i.e., a sequence of exploration
(sampling the return of each option) and exploitation (s-
electing empirically good options) steps. Taken separate-

ly, an individual user’s learning process may be cast as
a standard multi-armed bandit (MAB) problem which
has been extensively studied, see e.g., [Anantharam et
al., 1986; Auer et al., 2002; Lai and Robbins, 1985;
Tekin and Liu, 2012]. Our interest, however, is on
how an individual’s learning process may be affected by
“second-hand learning”, i.e., by observing how others in
the crowd act and what they recommend. The challenge
is that what is considered desirable options for one may
be undesirable for another (consider restaurant choices:
one Yelp user may favor large establishments with exten-
sive menus while another may favor small out-of-the-way
places), and this difference in preference is in general un-
known a priori. Moreover, even when two users happen
to have the same preference (e.g., they agree one op-
tion is better than the other), they may differ in their
absolute valuation of each individual option (again, t-
wo Yelp users may agree restaurant A is better than B,
but one may rate them 5 and 4 stars respectively, while
the other 4 and 3, respectively). Consequently if an in-
dividual wants to take others’ actions into account in
her own learning process, she would need to figure out
whether their preferences are aligned and whether their
valuations are on a similar scale. While it is generally
believed such crowdsourced information is useful, this is
often argued heuristically. A recent study [Goldstein et
al., 2014] shows that crowd wisdom should be selected
carefully to reach its potential. This raises the interest-
ing question on how to harness the power of crowdsourc-
ing, and what type of learning algorithms can effectively
utilize crowdsourced data in addition to one’s direct ob-
servations. This is what we aim to address in this paper.

MAB has been employed to analyze crowdsourcing
problems, with notable successes [Bresler et al., 2015;
Donmez et al., 2009; Ertekin et al., 2012; Ho et al.,
2013]. [Donmez et al., 2009; Ertekin et al., 2012;
Ho et al., 2013] focus on task assignment on a crowd-
sourcing market. Our model analyzes another major
type of crowdsourcing platform, where users crowdsource
their personal experiences such as in a recommendation
system. Our motivation is similar to that of [Bresler
et al., 2015]; however, [Bresler et al., 2015] studies an
item-to-item based collaborative filtering method, while
our model and results are user-centric. Another related



subject is learning with side information or with metric
or spectral structure among arms, see e.g., [chun Wang
et al., 2005; Lu et al., 2010; Langford and Zhang, 2007;
Gentile and Li, 2014; Valko et al., ]; this line of work how-
ever assumes additional statistical information relating
side information to reward observation or continuity on
arms’ reward space, both of which are absent in our case.

Our question on how one user can learn via observing
others data resembles certain similarity to social learning
[Bandura and Walters, 1963; Smith and Sørensen, 2000].
Different from many existing works on agents’ behav-
ioral studies (e.g. herding), we concern how one should
construct such a learning procedure efficiently when fac-
ing crowd information in a bandit setting. [Rosenberg
et al., 2007] also set out to study social learning in a
bandit setting, where a one-arm bandit question is con-
sidered. Our work differs in that agents’ observations are
not necessarily drawn from the same unknown distribu-
tion – this does complicate the learning as users need to
learn to distinguish other users that share similar pref-
erences from those that are not. Also we consider both
cases that users share partial or full information.

We will assume that users are heterogeneous in gen-
eral, i.e., when choosing the same option they obtain re-
wards driven by different random processes. We consid-
er two scenarios and design crowd-learning algorithms in
each case. (1) In the first case users reveal limited infor-
mation, only their choices but not the rewards obtained;
(2) in the second case users crowdsource/exchange full
information, not only their choices but also the reward
outcomes of those choice. Performance is measured in
weak regret, the difference between the user’s total re-
ward and that from a user-specific best single-action
policy (i.e., always selecting the set of options gener-
ating the highest mean rewards for this user). We show
when limited information is available, the improvement
in learning is tied to how much we value others’ opin-
ion compared to our own. When complete information
is shared, we can achieve an M -fold improvement in the
regret bound under certain assumptions on the rewards.
To our best knowledge this is the first attempt to ana-
lyze online learning with crowdsourced data. By apply-
ing our results to the movie ratings dataset MovieLens
[KONECT, 2014], we show our algorithms can be used
as an online (causal) process to make real-time predic-
tions/recommendations. Due to space limitation, proofs
can be found in the full version of our paper.

2 Problem formulation

Consider a network of M users indexed by the set
U = {1, 2, ...,M} and a set of available options (also
referred to as arms following the bandit problem litera-
ture), denoted by Ω = {1, 2, ..., N}. The system works
in discrete time indexed by t = 1, 2, · · · . At each time
step a user can choose up to 1 ≤ K ≤ N options. For
user i an option k generates an IID reward over time de-
noted by random variables {Xi

k(t)}, with a mean reward
given by µik := E[Xi

k]. We will assume that µil 6= µik

for l 6= k, ∀i ∈ U , i.e., different options present distinc-
t values to a user. Denote X ik as the support for Xi

k

and we further assume finite support over Xi
k, i.e., there

are finite positive constants X̄k such that Xi
k(ω) < X̄k,

∀i, k, ω, where ω denotes an arbitrary realization. Notice
for each option k, X ik could differ from each other. For
exmple, one user never rates a restaurant higher than 4
stars, while another one may agree to give out a 5. All
these knowledge on the support set remains unknown to
users a priori. We will denote the set of top K options
(in terms of mean rewards) for user i as N i

K and its com-

plement N
i

K . Denote by ai(t) the set of choices made by
user i at time t; the sequence {ai(t)}t=1,2,··· constitutes
user i’s policy.

Following the classical regret learning framework, we
will adopt the weak regret as a performance measure; this
is the gap between the total reward (up to some time
T ) of a given learning algorithm and the total reward
of the best single-action policy given a priori knowledge
on the average statistics, which in our case is the sum
reward generated by the top K options for a user. This
is formally given as follows for user i adopting policy ai:

Ri,a(T ) = T ·
∑
k∈Ni

K

µik − E[

T∑
t=1

∑
k∈ai(t)

Xi
k]. (1)

The goal of an online learning algorithm, for each user,
is to minimize the above regret measure, whose time-
average should ideally diminish, i.e., it is desirable to
have Ri,a(T ) = o(T ),∀i. In this study we investigate
whether the regret performance can be improved by al-
lowing a user i1 access to observations (or decisions)
made by another user i2, i.e., by letting a user crowd-
source data generated by other distinct users.

We will consider two types of information disclosed
by the users. Under the first type, users disclose partial
information, sharing only their decisions, i.e., the set of
choices they make, at the beginning of each time step,
while withholding the actual observation/reward infor-
mation following the decisions. This models many real
crowdsourcing systems. For example, users check in at a
restaurant without leaving a review. In the second case
the users announce observations following their decision-
s, i.e., the actual rewards received from those options,
such as perceived quality of a movie. Such announce-
ments may be made at the end of each time step, or
may be made periodically at a lesser frequency.

For the partial information scenario we model explicit-
ly the fact that users have different preference orderings
over the N options, by assuming that the M users may
be classified into G distinct groups, indexed by the set
G = {1, 2, ..., G}, with users of the same group (say group
l) having a unique K-preferred set N l

K ; these preference
sets (but not the group membership) are assumed to be
public knowledge1. Note that even with the same pref-
erence set, users may be further distinguished based on

1This is not a restrictive assumption as we can simply
choose G to be the complete K-set with G =

(
N
K

)
.



the actual ordering of these top K options. Our mod-
el essentially bundles these users into the same group,
provided their top K choices are the same. This is be-
cause as a user is allowed K choices at a time, further
distinguishing their preferences within these K option-
s will not add to the performance of an algorithm. In
the full information case we do not further differentiate
users’ preference ordering over the N options as we have
access to their direct observations.

3 Partial Information (CL-PART)
In the partial information case, the main idea behind
our algorithm is to use the shared decision to first ob-
tain any user’s frequency of selecting each option. These
statistics are indicators of a user’s preference, assuming
the user is trying to maximize its own reward over time;
thus decisions of another reveal preferences and may be
exploited. In what follows we first propose a group clas-
sification procedure with performance guarantee to help
a user distinguish similar users and then show how we
can design algorithms using this information.

To differentiate users’ preferences, consider the follow-
ing sample frequency based group identification proce-
dure. Each user keeps the same set of statistics nik(t)
as before: the number of times user i is seen using op-
tion k. Users then estimate each other’s preference by
ordering the statistics: at time t user i’s preference is
estimated to be the set Ñ i

K(t), which contains options
k whose frequency nik(t) is among the K highest of all
i’s frequencies. User i is then put in a preference group
with whose (known) preferred set N l

K(t) is the closest in
distance: assign user i to group gi(t) if

gi(t) = argmaxl∈G D
i,l(t) := argmaxl∈G |Ñ i

K(t) ∩N l
K | ,

with ties broken randomly. The performance of the
above classification step will be analyzed later within
the context of our learning algorithm.

3.1 Algorithm and performance
After differentiation, denote by Ui the set of similar users
for each user i and denote Mi = |Ui|. There are two op-
tions a user can choose to implement an algorithm: (i)
to use information from only those identified as having
the same preferences, i.e., users in set Ui, and (ii) to use
all users’ information. We start with the easier case (i).
Denote by nk,i(t) the total number of times option k has
been selected by the crowd Ui up to time t, i.e., nk,i(t) :=∑
i∈Ui n

i
k(t). Then define βik(t) := nk,i(t)/

∑
l∈Ω nl,i(t)

to denote the frequency at which option k is used by
the group up to time t. This will be referred to as the
group recommendation. Then we rewrite the frequency
parameter to take advantage of crowd learning in the
following way. Based on βik(t) we first order the op-
tions in descending order; their rank denoted by rankk.
Denote by BK(t) the non-top K options based on the
frequency estimate: BK(t) := {k ∈ Ω : rankk > K} .
Define user specific frequency estimate for j ∈ U i as
βik(j; t) = max{1 − log t

log T , n
j
k(t)/t}. The first constraint

1− log t
log T is to regulate the change in β over time. Clearly

βik(j; t) ≤ 1,∀t. With this now we redefine the frequency

parameters as follows: β̃ik(t) := minj∈Ui β
i
k(j; t). With

these definitions, we construct the following algorithm
CL-PART(I), by biasing towards potentially good op-
tions as indicated by the group. Under the CL-PART(I)
algorithm, option k is selected at time t if its index value
defined below is among the K highest:

CL-PART(I): rik(t)− α(t)(1− β̃ik(t))

√
2 log t

nik(t)
+

√
2 log t

nik(t)
,

where α(t) := (1−γ)−ε(t)2, where ε(t) :=
√

Cexplore log t

mink(∆i
k)2t

,

with Cexplore > 0 being a constant. ∆i
k is defined as

∆i
k := µiK − µik. α(t) ∈ [0, 1) is a weighting factor over

the group recommendation capturing how much user i
is valuing recommendation from the group. The con-
vergence term implies with more samples, we are more
confident with the recommendation factor. 0 < γ < 1 is
a constant that can be arbitrarily small. For technical
reason we need α(t) < 1,∀t. γ helps us achieve this.

Define z∗ := 1 −
√

3/4, we have the following result on
the regret performance of CL-PART(I).

Theorem 1 Under CL-PART(I), we have user i’s
weak regret is upper bounded by RiCL-PART(I)(t) ≤∑
k∈Ni

K
d 8

∆i
k

(z∗ + [γ + ε(t) + α(t)
Mi

]2) log te+ const.

The original UCB1 algorithm has a weak regret up-
per bounded by ([Auer et al., 2002]) RiUCB1(t) ≤∑
k∈Ni

K
d8 log t/∆i

ke + const. To compare we see when

t,Mi are large, z∗ + [γ + ε(t) + α(t)
Mi

]2 � 1, and thus a
much better performance can be expected.

3.2 Leveraging more information

We next consider leveraging more user information be-
yond the set Ui. Restricting our attention to Ui pre-
viously ensures that users have the same top-K choic-
es. Removing this restriction means that we may have
N i
K 6= N j

K ; however, it is possible there exists option

k ∈ N i

K ∩ N
j

K , that is two users may not agree on all
option, but on some of them. In this sense, j’s sample
frequency estimation of k can again be utilized by i.

We re-use the index construction as detailed in CL-
PART(I), with the following difference: we discount
choices made by users believed to belong to a different
group, so as not to be overly influenced by users with
different preferences. Specifically, user i assigns the fol-

lowing weight to option k: βik(t) = minj∈Ui(β
i
k(j; t))ω

i,j

,
where weights ωi,j = 1 if i estimates user j to be in the
same group as itself, and ωi,j < 1 otherwise; ωi,j can
also be chosen as a function of the difference between
different preference groups. This modified index leads

2We slightly abuse the notation here as α(t) differs from
user to user by a little.



to algorithm CL-PART(II). We then define the follow-

ing set for each k ∈ N i

K : U ik = {j : j ∈∈ U , k ∈ N j

K}.
And denote M i

k = |U ik|. That is, M i
k records the number

of users who agree k is out of their top choices. Notice
U i ⊆ U ik and thus M i

k ≥ Mi. We can then similarly
prove the following result.

Theorem 2 Under CL-PART(II), at each time t, user
i’s weak regret is upper bounded by RiCL-PART(II)(t) ≤∑
k∈Ni

K
d 8

∆i
k

(z∗ + [γ + ε(t) + α(t)
Mi

k

]2) log te+ const.

Since M i
k ≥Mi we have achieved a strictly better bound

compared to the one in Theorem 1.

4 Full Information (CL-FULL)

In this case users disclose the reward Xi
k(t) for each op-

tion they chose at the end of a time step. The technical
challenge here is that the statistics driving the rewards
generation is not identical for all users even when us-
ing the same option. We note that a user’s (say user
i) own observed reward of any option k can be general-
ly related to another’s (user j) disclosed reward by the

following: Xi
k
d
= T i,jk (Xj

k), where T i,jk could be an ar-

bitrary function. In this definition, T i,jk captures the
potential difference in users i, j’s belief over option k, as
well as possible discrepancies intentionally introduced by
mis-reporting from malicious users (either i or j). For
example if a user i learns that whenever she likes an
item k and gives it rating higher than 4 (on the scale of
{1,2,3,4,5}), a malicious user j always rates the item a
2 or below either or mislead or out of belief, user i can
safely convert it as if she observed it directly by choosing
T i,jk such that T i,jk : {1, 2} → {4, 5}. It follows that if

we are able to estimate T i,jk , then one user’s sample can
be safely converted to another. A natural way for esti-
mating such a function is through the Taylor expansion

: Xi
k ≈

∑D
n=0 b

i,j
k,n · (X

j
k)n , where D is the degree of esti-

mation. When D =∞ the equality holds in distribution.
As long as we can estimate the bk,ns, we will similarly be
able to convert a sample from one user to another. How-
ever, there is generally no closed form characterization
of the solutions to bk,ns. We thus limit our attention to
the following simplified and tractable model.

Log-Linear model Consider the case where the re-
wards received/disclosed by two users from the same

option are given by a log-linear relationship: Xi
k

d
=

(Xj
k)δ

i,j
k ,∀i 6= j ∈ U , k ∈ Ω,where δi,jk is a constant3 and

unknown scaling factor also referred to as the distortion
or distortion factor between two users. This relationship
implies that one user’s perception of a given option is
statistically identical to another’s to a constant power.

This simplification gives us significant computational
advantage – as long as we can learn a single parameter

3This assumption can be relaxed to the case that δi,jk is
generated with certain randomness (e.g., noise) , instead of
being fixed as a constant.

between any pair of users over each option, we will be
able to map samples from one to another. While certain-
ly a simplification, this concrete model leads to closed-
form characterizations of the regret bounds, which sheds
light on the effect of various problem parameters, and it
proves to work well with the real dataset MovieLens. It’s
also worth noting that this log-linear relationship applies
to exponential family distributions such as Log-normal,
Pareto, and Weibull, when used to model user obser-
vations. Also it is worth noting that the above model
is chosen to solve more challenging scenarios when X ik
has a large state space or even infinite space (continuous
random variable).

4.1 Crowd-Learning with Full Information

For simplicity of presentation, we normalized allXi
k,∀i, k

onto the support (0, 1], i.e., X ik ⊆ (0, 1]. Consider two
users i and j, and option k. Up to time t, all quantities
{Xi

ai(t)(t)}t are not only available to user i, but also to

all other users j ∈ U\{i} due to the full information dis-
closure, and vice versa. Denote by r̂ik(t) the sample mean
of log-reward {logXi

k(t)}t collected by i from option k.
Considering continuous support for each observation, s-
ince logXi

k(t) = logXj
k(t) ·δi,jk , user i then estimates the

distortion between herself and user j by calculating the
following δ̃i,jk (t) = r̂ik(t)/r̂jk(t) ,∀i 6= j ∈ U , k ∈ Ω . With
the above quantity we then make the following simple
modification to the well-known UCB1 algorithm [Auer
et al., 2002]. In the original UCB1 (or rather, a trivial
multiple-play extension of it), user i’s decision ai(t) at
time t is entirely based on her own observations. Specif-
ically, denote by nik(t) the number of times user i has
selected option k up to time t. The original UCB1 then
selects option k at time t, if its index value given below is
among the K highest: rik(t) +

√
2 log t/nik(t). Our mod-

ified algorithm takes this index as a baseline and makes
the following changes: option k is selected at time t if its
index is among the K highest CL-FULL index:

rik(t) · nik(t) +
∑
j 6=i Λi,j(rjk(t)) · njk(t)∑

j∈U n
j
k(t)

+

√
2 log t∑
j∈U n

j
k(t)

,

where the operator Λi,j(rjk(t)) is defined as: Λi,j(rjk(t)) =∑t
s=1(Xj

k(s))δ̃
i,j
k (t) · 1{k ∈ aj(s)}/njk(t) .

4.2 Performance analysis of CL-FULL

By default δi,ik = 1, and we denote δi,∗k :=

maxj∈U δ
i,j
k , δi,∗ := maxk∈Ω δ

i,∗
k , X̄k = maxi,ωX

i
k(ω).

The following series of results characterize the perfor-
mance of CL-FULL. They are organized based on the
nature of δi,jk . We shall start with the simplest case

when δi,jk is option independent: δi,j1 = δi,j2 = ... = δi,jK ,

followed by k-dependent δi,jk s.

Option independent δi,j In this case, for user i to
estimate δi,j , she can simply choose the option that has
the largest number of collected samples (by users i and



j) for the purpose of calculation. We assume in this sec-

tion for each pair of (i, j) we have N i
K ∩ N

j
K 6= ∅. This

mild assumption is to ensure for any pair of users (i, j)
we can find a common good option. This assumption
can be removed by ignoring the users j 6= i for each user
i such that N i

K ∩ N
j
K = ∅. This can be done via fre-

quency counting and matching (For details please refer
to Section 3). Practically if a user found another shar-
ing no option in her top K preferred set, she may have a
strong reason to believe this user’s data may not be use-
ful for her and will then discard. We have the following
theorem characterizing the performance of CL-FULL.

Theorem 3 Under CL-FULL, ∃C1 > 0 such that us-
er i’s weak regret is upper bounded by: RiCL-FULL(t) ≤∑
k∈Ni

K
d 8∆i

k

M ·[∆i
k−2X̄2

kεk(t)]2
log te + const. where εk(t) =

2δi,∗k /(ck − 2
√

log t
C1t

) ·
√

log t/C1t, and 0 < ck ≤ 1 is

an option dependent constant.

Compare with the bound in original UCB1, we note
that in our result, the term 2δi,∗k /(ck − 2

√
log t/C1t) ·√

log t/C1t → 0 at approximately the rate of

O(
√

log t/t); if we ignore this term the constant in front
of log t becomes 8/M ·∆i

k which shows a M -fold perfor-
mance improvement.

4.3 Option dependent δi,jk

With option dependent δi,jk , we need to bound the er-

ror ε in estimating δi,jk for each option k. We have the
following result.

Theorem 4 Under CL-FULL, user i’s weak regret is
upper bounded by, RiCL-FULL(t) ≤

∑
k∈Ni

K
d 8

∆i
k

(M−1/2 +

2
√

2X̄2
kδ

i,∗
k

ck
)2 log te+ const.

A joint estimation of δi,jk Note the extra learning
error in the bound of Theorem 4 is independent of M ,
which does not decrease when the number of users in-
creases; this is a potentially worrisome bottleneck. Be-
low we examine ways to mitigate this. We start by ex-
plaining why we do not have an M -fold scaling in this ad-
ditional error term. Statistically speaking, since we use
the converted samples to estimate the sample mean of
each option, there areM -fold number of samples (though
noisy) compared to individual learning. However, this is
not true when learning the δs, as we need to use a user’s
own data to make such pairwise calculations (one-fold for
each pair). This motivates us to consider using all sam-
ples to estimate δ simultaneously to achieve an M -fold
speed-up. Specifically, instead of pair-wise estimation,
δi,jk can be estimated as follows:

δ̃i,jk = (r̂ik(t) +
∑
l 6=i

r̂lk(t)δ̃i,lk )/(r̂jk(t) +
∑
l 6=j

r̂lk(t)δ̃j,lk ) .

which is a quadratic equation of δi,jk s. Denote Φk :=

[δ̃i,jk ]i,j , we have the following Quadratic Matrix Equa-
tion (QME) whose solution leads to solutions for δ:

M∑
i=1

M∑
j=1

Ej,i(Φk)TEj,iΦkÃkEi,j − ΦkÃk = 0 , (2)

where Ej,i(q, l) = 0 when (q, l) 6= (j, i), and Ej,i(j, i) =

1, and some Ãk. When the solution for such a QME
satisfies certain perturbation bounds, we prove:

Theorem 5 Under CL-FULL, ∃ a constant C3 > 0 s.t.
user i’s weak regret is upper bounded by RiCL-FULL(t) ≤∑
k∈Ni

K
d 8

∆i
k

(1 + 2
√

2X̄2
kδ
i,∗
k C3)2/M log te+ const.

5 Numerical Experiment
In our simulation we have ten users with five option-
s; each user targets the top three options at each time,
i.e., M = 10,K = 3, N = 5. Furthermore, for each op-
tion the reward is given by a truncated exponentially
distributed random variable (bounded). The distortion
factor between each pair of users for each option is gen-
erated according to a Gaussian random variable with
mean 1 and variance 1. We use “crowd regret” to de-
note the sum of regrets from all users. The regret results
are averaged over 50 sample realizations.

The performance of CL-PART is compared to UCB-
IND under different parameter γ in Figure 1. We see
that CL-PART consistently outperforms UCB-IND. A
smaller γ gives better performance, which confirms our
analytical results. Also, as we noted in our analysis and
see here, a smaller K results in less regret. Also we
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Figure 1: Performance of CL-PART. Left: with different
γ parameters. Right: CL-PART(I) v.s. CL-PART(II)

compare CL-PART(I) and CL-PART(II). From results in
Figure 1:Right we observe that with more appropriately
designed algorithm and leveraging more data, a (much)
better performance can be achieved.

We do performance evaluation for CL-FULL. From
Figure 2 we see with full information exchange the crowd
learning algorithm significantly outperforms individual
learning. Moreover, its performance is comparable to
a centralized scheme (denoted as UCB Centralized in
the figure), whereby the M users are centrally controlled
and coordinated in their learning using UCB1, allowing
simultaneous selection of the same options by multiple
users, and each receiving MK samples at each time step.
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Figure 2: CL-FULL v.s. UCB-IND v.s. UCB Central.

6 An Empirical Study Using MovieLens

We now apply the idea of crowd-learning to the Movie-
Lens data [KONECT, 2014] collected via a movie recom-
mendation system. We will use MovieLens-1M dataset.
Obviously the decision aspect of the learning algorithm
cannot be verified using this dataset as we have no infor-
mation on the users’ actual decision process. Thus our
goal is to use the MovieLens data to verify whether our
crowd-learning algorithm can help us predict how a user
is going to rate movies (indexes in our algorithm) in the
future given this and other users’ reviews in the past.

6.1 Experiment design

We explain the experiment in the context of this dataset.
We first note that in this case time is no longer discrete,
as reviews arrive as an arbitrary arrival process in con-
tinuous time. Therefore the discrete time steps used in
the algorithm is replaced by a clock driven by this arrival
process, i.e., one tick for each arrival.

Secondly, the reviews tend to arrive in clusters upon
new movie releases, and it may be hard to find any re-
view for a movie that was released some time ago. This
means that if we are to treat each movie as a separate op-
tion (or arm) then these options are not simultaneously
available at all times as movies come and go, and along
with them their corresponding reviews. We thus bundle
these movies into categories so that over a long period
of time there are always reviews available for a genre.
Adopting the classification given in [KONECT, 2014],
we will bundle movies by their genres, e.g., Action, Ad-
venture, Comedy, etc., resulting in 18 categories/genres;
each is regarded as an option/arm for our algorithm.

6.2 Online prediction result

The prediction performance is measured by the average
error EA(T ) and squared error ES(T ) (of our predicted
rating), both averaged over the number of samples in
the data. We start by plotting EA(T ) as a function of
T ; this is shown in Figure 4 where we have used K = 3,
i.e., a user’s top 3 preferences (unordered) determine her
similar group. The data suggests that a user rarely re-
views more than 6 different categories of movies, thus the
choice of K = 3 is a reasonable trade-off between too re-
strictive a definition of similarity group (a large K and a
very small similarity group) and an overly liberal one (a
small K and a very large similarity group). As expect-
ed we see a downward trend as the prediction becomes

more accurate with more past samples and crowd learn-
ing clearly outperforms individual learning. This trend
is not exactly monotonic primarily because the arrival-
s of new movies which can give rise to increased error
within the corresponding category.
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Figure 3: Convergence of regret in time.

Cate. k 1 2 3 4 5 6

Indv. 0.4853 0.6343 0.6620 0.6868 0.7134 0.7278
FULL (K = 3) 0.4618 0.5173 0.5356 0.6371 0.6551 0.6529
FULL (K = 6) 0.4826 0.6249 0.6543 0.6776 0.7084 0.7263

Indv. 0.5376 0.7367 0.8251 0.6551 0.7503 0.7574
FULL (K = 3) 0.6002 0.7195 0.7997 0.7933 0.8648 0.8389
FULL (K = 6) 0.7071 0.8438 0.8773 0.9276 0.9685 0.9997

Table 1: EA(T ) (top 3 rows) and ES(T ) (bottom 3)

Furthermore, to see more clearly the effect of the pa-
rameter choice K, we compare the error performance by
categories. Specifically, we measure the prediction error
of each user for movies in her most preferred category
and average this over all users in Tables 2. For each user
the preference ordering of categories is determined using
her average rating for each category over the entire data
trace. Due to our choice of K = 3, we see a clear degra-
dation in the average error performance under the crowd
learning algorithm when we go from k = 3 to k = 4, al-
though the latter still outperforms individual learning.
This is to be expected because in making prediction for
one’s top 3 categories we have the advantage of using
the similarity group for help; this may not apply to the
next 3 categories as members of the similarity group may
not share the same preference over the these 3. We also
added the performance when choosing K = 6: the pre-
diction gap between the top 3 and latter categories goes
away.

7 Conclusion

In this paper we considered a crowd-learning problem
in the context of online crowdsourcing systems, and an-
alyzed two cases, where users share partial or full in-
formation respectively. We constructed UCB1-like in-
dex algorithms and derived bounds on their weak re-
gret. These bounds reveal interesting insights that are
helpful for algorithm/policy design, and generally see a
multi-fold improvement due to crowdsourcing and learn-
ing. Numerical experiments include both synthetic data
and the MovieLens 1M dataset. In the latter case we



show that our algorithm can achieve an improvement in
movie recommendation quality in an online manner.
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