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ABSTRACT

The theory of solute transfer and deposit growth in evaporating sessile drops on a

plane substrate is presented. The main ideas and the principal equations are formu-

lated. The problem is solved analytically for two important geometries: round drops

(drops with circular boundary) and pointed drops (drops with angular boundary).

The surface shape, the evaporation rate, the flow field, and the mass of the solute

deposited at the drop perimeter are obtained as functions of the drying time and the

drop geometry. In addition, a model accounting for the spatial extent of the deposit

arising from the non-zero volume of the solute particles is solved for round drops.

The geometrical characteristics of the deposition patterns as functions of the drying

time, the drop geometry, and the initial concentration of the solute are found ana-

lytically for small initial concentrations of solute and numerically for arbitrary initial

concentrations of solute. The universality of the theoretical results is emphasized,

and comparison to the experimental data is made.

xii



CHAPTER 1

INTRODUCTION

The problem of the so-called “coffee-drop deposit” has recently aroused great inter-

est. The residue left when coffee dries on the countertop is usually darkest and hence

most concentrated along the perimeter of the stain. Ring-like stains, with the so-

lute segregated to the edge of a drying drop, are not particular to coffee. Mineral

rings left on washed glassware, banded deposits of salt on the sidewalk during win-

ter, and enhanced edges in water color paintings are all examples of the variety of

physical systems displaying similar behavior and understood by coffee-drop deposit

terminology.

Understanding the process of drying of such solutions is important for many sci-

entific and industrial applications, where ability to control the distribution of the

solute during drying process is at stake. For instance, in the paint industry, the pig-

ment should be evenly dispersed after drying, and the segregation effects are highly

undesirable. Also, in the protein crystallography (1; 2), attempts are made to assem-

ble the two-dimensional crystals by using evaporation driven convection, and hence

solute concentration gradients should be avoided. On the other hand, in the pro-

duction of nanowires (3) or in surface patterning (4) perimeter-concentrated deposits

may be of advantage. Recent important applications of this phenomenon related to

DNA stretching in a flow have emerged as well (5). For instance, a high-throughput

automatic DNA mapping was suggested (6), where fluid flow induced by evaporation

is used for both stretching DNA molecules and depositing them onto a substrate.

Droplet drying is also important in the attempts to create arrays of DNA spots for

gene expression analysis.

Ring-like deposit patterns have been studied experimentally by a number of groups.

1
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Difficulties of obtaining a uniform deposit (7), deformation of sessile drops due to a

sol-gel transition of the solute at the contact line (8; 9), stick-slip motion of the

contact line of colloidal liquids (10; 11), and the effect of ring formation on the evap-

oration of the sessile drops (12) were all reported. The evaporation of the sessile drops

(regardless of solute presence) has also been investigated extensively. Constancy of

the evaporation flux was demonstrated (13; 14), and the change of the geometrical

characteristics (contact angle, drop height, contact-line radius) during drying was

measured in detail (15; 16; 17; 18).

The most recent and complete experimental effort to date on coffee-drop deposits

was conducted by Robert Deegan et al. (19; 20; 21; 22). Most experimental data

referred to in this work originate from observations and measurements of this group.

They reported extensive results on ring formation and demonstrated that these could

be quantitatively accounted for. The main ideas of the theory of solute transfer in

such physical systems have also been developed in their work (19). It was observed

that the contact line of a drop of liquid remains pinned during most of the drying

process. While the highest evaporation occurs at the edges, the bulk of the solvent is

concentrated closer to the center of the drop. In order to replenish the liquid removed

by evaporation at the edge, a flow from the inner to the outer regions must exist inside

the drop. This flow is capable of transferring all of the solute to the contact line

and thus accounts for the strong contact-line concentration of the residue left after

complete drying. The idea of this theory is very robust since it is independent of the

nature of the solute and only requires the pinning of the edge during drying (which can

occur in a number of possible ways: surface roughness, chemical heterogeneities etc).

This theory accounts quantitatively for many phenomena observed experimentally;

among other things, we will reproduce its main conclusions in this work.

Mathematically, the most complicated part of this problem is related to determin-
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ing the evaporation rate from the surface of the drop. An analogy between the diffu-

sive concentration fields and the electrostatic potential fields was suggested (23; 24),

so that an equivalent electrostatic problem can be solved instead of the problem of

evaporation of a sessile drop. Important analytical solutions to this equivalent elec-

trostatic problem in various geometries were first derived by Lebedev (23). A number

of useful consequences from these analytical results were later reported in Ref. (25).

In this work, we discuss the theory of solute transfer and deposit growth in evap-

orating sessile droplets on a substrate and provide quantitative account for many

observed phenomena and measurement results. Chapter 2 discusses the main ideas

and the general theory; all principal equations are derived in that chapter. While

most of its equations have been reported previously, the derivation presented here is

original and deals with some mathematical issues never fully addressed before in the

context of the current problem. Chapter 2 is the basis for all the following chapters

of this work, and its content is required for all the other chapters.

While the principal equations are fully derived and presented in Chapter 2, their

solution depends heavily on the geometry of the drop. The flow pattern discussed in

this work is a type of hydrodynamic flow that is sensitive to the perimeter shape, i.e.

the shape of the contact line. Mathematically, solution to the differential equations

depends on the boundary conditions. Chapters 3 and 4 discuss the analytical solution

to this problem in two important geometries. The two geometries are the drops

with circular boundary (round drops) and the drops with angular boundary (pointed

drops). The choice of these two geometries is not accidental. An arbitrary boundary

line can be represented as a sequence of smooth segments, which can be approximated

by circular arcs, and fractures, which can be approximated by angular regions. Thus,

knowledge of analytical solution for both circular (Chapter 3) and angular (Chapter 4)

boundary shapes fills out the quantitative picture of solute transfer and deposit growth
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for an arbitrary drop boundary.

The case of the round drops is the most important from the practical point of

view and the easiest to deal with mathematically. This case allows for a full analytical

solution, and this solution has been obtained earlier. Here, in Chapter 3, we reproduce

concisely the earlier results and report some new ones. Its content is a prerequisite

to Chapter 5, but is not essential for understanding Chapter 4 (although it is used

for drawing some parallels and for comparison of the results in the two geometries).

The case of the pointed drops (Chapter 4), while also important, is much more

complicated mathematically than the round-drop solution is. Presence of the vertex

of the angle introduces a singularity at this vertex in addition to the weaker singularity

at the contact line. Singularities govern the solutions to differential equations, and

thus presence of the angle and its vertex changes the results substantially. Also, an

angular region, as a mathematical object, is infinite, while a circular region is always

bounded. The real drops with a fracture must always have a third (the furthest from

the vertex) side of its contact line, and therefore the overall solution depends on the

shape of that furthest part of the boundary. At the same time, we are interested

only in the universal features of the solution that are independent of that furthest

part. Keeping in mind this lust for universality and the mathematical complexity

mentioned above, we specify only one boundary of the drop (the vertex and the two

sides of the angle) leaving the remainder of the boundary curve unspecified. Such an

approach turns out to be sufficient to determine the universal features of the solution,

and it allows us to find all the important singularities as power laws of distance from

the vertex of the angle. Most of the results of Chapter 4 were originally obtained

in our earlier works (26; 27). Chapters 4 and 5 are completely independent of each

other.

Chapters 2–4 address the issue of the deposit mass accumulation at the drop
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boundary, however, they treat the solute particles as if they do not occupy any volume,

and hence all the solute can be accommodated at the one-dimensional singularity of

the contact line. In reality, the solute deposit accumulated at the perimeter of a

drying drop has some thickness, for instance, the shape of the solute residue in a

round drop is more like a ring rather than an infinitely thin circumference of the

circle. We attribute this finite volume of the solute deposit simply to the finite size of

the solute particles, i.e. we assume the particles do occupy some volume and hence

cannot be packed denser than certain mass per unit volume. A model accounting

for the finite size of the deposit and determining its geometric characteristics (height,

width) is considered in Chapter 5. The model is solved for the simplest case of circular

geometry, and its results are compared to the zero-volume results of Chapter 3 and

to the experimental results of Refs. (21; 22). Both the analytical and the numerical

solutions are provided, and both compare well with the experimental data (and with

each other). Results of Chapter 5 are presented for the first time. A chapter of

conclusions completes this work.

Before proceeding to the main matter, we would like to point out some features

common to all our results and giving rise to the title of this work. Flows found here

are capable of transferring 100% of the solute to the contact line, and thus account for

the strong perimeter concentration of the solute in all cases. Many quantities scale as

power laws; some others follow different functional dependencies. However, both the

exponents of the power laws and any elements of the other functional dependencies

turn out to be universal within our model. They do not depend on any parameters of

the system other than the system geometry. Within the range of applicability of our

theory, there are no fitting parameters, no undetermined constants, and no unknown

coefficients. Thus, for instance, exponents of the power laws are as universal as the

exponent of distance −2 in the Coulomb’s law. We view this universality as one of
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the main advantages and one of the most exciting features of this theory.



CHAPTER 2

MAIN IDEAS AND GENERAL THEORY OF SOLUTE

TRANSFER AND DEPOSIT GROWTH IN

EVAPORATING DROPS

In this chapter we will present the general theory of solute transfer to the contact line

that will subsequently be solved analytically for two important geometries.

2.1 System, geometry, coordinates, and assumptions

We consider a sessile droplet of solution on a horizontal surface (substrate). The

nature of the solute is not essential for the mechanism. The typical diameter of the

solute particles in Deegan’s experiments was of the order of 0.1–1 µm; we will assume

a similar order of magnitude throughout this work. For smaller particles diffusion

becomes more important compared to the hydrodynamic flows of this work. For

larger particles sedimentation may become important when particles exceed certain

size.

The droplet is bounded by the contact line in the plane of the substrate. The

(macroscopic) contact line is defined as the common one-dimensional boundary of

all three phases (liquid, air and solid substrate). We will not specify the shape of

the contact line in this chapter; in the later chapters we will make this selection and

describe the two qualitatively different limits — circular drops and angular drops.

As we explained in the introduction, these shapes account for the smooth and frac-

tured segments of an arbitrary contact line. Main equations are not sensitive to the

particular geometry, only the boundary conditions are.

We assume that the droplet is sufficiently small so that the surface tension is

7
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dominant, and the gravitational effects can be safely neglected. Mathematically, this

is controlled by the Bond number Bo = ρgRhmax/σ, which accounts for the balance

of surface tension and gravitational force on the surface shape. Here ρ is the density

of fluid, g is the gravitational constant, R is a typical size of the drop in the plane

of the substrate, hmax is the maximal height of the drop at the beginning of the

drying process, and σ is the surface tension at the liquid-air interface. For the typical

experimental conditions the Bond number is of the order of 0.02–0.05, and thus gravity

indeed is unimportant and surface shape is governed mostly by the surface tension.

At the same time, we do not assume that the contact angle θ between the liquid-

air interface and the plane of the substrate is constant along the contact line on

the substrate, nor do we assume it is constant in time. To achieve a prescribed

boundary shape (other than a perfect circle on an ideal plane), the substrate must

have scratches, grooves or other inhomogeneities (sufficiently small compared to the

dimensions of the droplet), which pin the contact line. A strongly pinned contact line

can sustain a wide range of (macroscopic) contact angles. The contact angle is not

fixed by the interfacial tensions as it is on a uniform surface (Fig. 2.1). Throughout

this work we will deal with small contact angles (θ � 1) as is almost always the case

in the experimental realizations (typically, θmax < 0.1–0.3); however, the general

equations of this chapter do not rely on the smallness of the contact angle.

We will use the cylindrical coordinates (r, φ, z) throughout this work, as most

natural for both geometries of interest. Coordinate z is always normal to the plane of

the substrate, and the plane itself is described by z = 0, with z being positive on the

droplet side of the space. Coordinates (r, φ) are the polar radius and the azimuthal

angle, respectively, in the plane of the substrate. The origin is chosen at the center

of the circle in the circular geometry and at the vertex of the angle in the angular

geometry. The geometry of the problem is quite complicated despite the visible
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Liquid 
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Figure 2.1: Illustration of the possibility of a wide range of contact angles in the
presence of a groove or another inhomogeneity.

simplicity. In both geometries of interest, we consider an object, whose symmetry

does not match the symmetry of any simple orthogonal coordinate system of the three-

dimensional space. For instance, solution of the Laplace equation (needed below)

requires introduction of the special coordinate systems (the toroidal coordinates and

the conical coordinates) with heavy use of various special functions. Similar difficulties

related to the geometry arise in the other parts of the problem as well.

We describe the surface shape of the drop h(r, φ) by local mean curvature K

that is spatially uniform at any given moment of time, but changes with time as

droplet dries. Ideally, the surface shape should be considered dynamically together

with the flow field inside the drop. However, as we show below, for flow velocities

much lower than the characteristic velocity v∗ = σ/3η (where σ is surface tension and

η is dynamic viscosity), which is about 24 m/s for water under normal conditions,

one can consider the surface shape independently of the flow and use the equilibrium

result at any given moment of time for finding the flow at that time. Another way of

expressing the same condition is to refer to the capillary number Ca = ηṽ/σ (where

ṽ is the characteristic value of the flow velocity of the order of 1–10 µm/s), which is

the ratio of viscous to capillary forces. This ratio is of the order of 10−8–10−7 under

typical experimental conditions, clearly demonstrating that capillary forces are by far
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the dominant ones in this system and that surface shape is practically equilibrium

and depends on time adiabatically.

We consider slow flows, i.e. flows with low Reynolds numbers (also known as

“creeping flows”). This amounts to the neglect of the inertial terms in the Navier-

Stokes equation. As all the conditions above are, this is well justified by the real

experimental conditions. We also employ the so-called “lubrication approximation”.

It is essentially based on the two conditions reflecting the thinness of the drop and

resulting from the separation of the vertical and horizontal scales. One is that the

pressure inside the drop p does not depend on the coordinate z normal to the sub-

strate: ∂zp = 0. The other is related to the small slope of the free surface |∇h| � 1,

which is equivalent to the dominance of the z-derivatives of any component ui of flow

velocity u: ∂zui � ∂sui (index s refers to the derivatives with respect to any coor-

dinate in the plane of the substrate). The lubrication approximation is a standard

simplifying procedure for this class of hydrodynamic problems (28; 29; 30).

Before proceeding to the main section of this chapter and formulating the main

ideas of the theory, we will make a brief note on evaporation rate.

2.2 On evaporation rate

In order to determine the flow caused by evaporation, one needs to know the flux

profile of liquid leaving each point of the surface by evaporation. This quantity will

be seen to be independent of the processes going on inside the drop and must be

determined prior to considering any such processes.

The functional form of the evaporation rate J(r, φ) (defined as evaporative mass

loss per unit surface area per unit time) depends on the rate-limiting step, which

can, in principle, be either the transfer rate across the liquid-vapor interface or the
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yes no 

Figure 2.2: The rate-limiting process for evaporative mass loss. It is the diffusion of
saturated vapor just above the interface rather than the transfer across the interface.

diffusive relaxation of the saturated vapor layer immediately above the drop. We

assume everywhere that the rate-limiting step is diffusion of liquid vapor (Fig. 2.2)

and that evaporation rapidly attains a steady state. Indeed, the transfer rate across

the liquid-vapor interface is characterized by the time scale of the order of 10−10 s,

while the diffusion process has characteristic times of the order of R2/D (where D

is the diffusion constant for vapor in air and R is a characteristic size of the drop),

which is of the order of seconds for water drops under typical drying conditions. Also,

the ratio of the time required for the vapor-phase water concentration to adjust to

the changes in the droplet shape (R2/D) to the droplet evaporation time tf is of the

order of (ns − n∞)/ρ ≈ 10−5, where ns is the density of saturated vapor just above

the liquid-air interface and n∞ is the ambient vapor density (25). Thus, indeed, vapor

concentration adjusts rapidly compared to the time required for water evaporation,

and the evaporation process can be considered quasi-steady.

As the rate-limiting process is the diffusion, the density of vapor above the liquid-

vapor interface n obeys the diffusion equation. Since diffusion rapidly attains a steady

state, this diffusion equation reduces to the Laplace equation

∇2n = 0. (2.1)
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This equation is to be solved together with the following boundary conditions de-

pendent on the geometry of the drop: (a) along the surface of the drop the air is

saturated with vapor and hence n at the interface is the constant density of saturated

vapor ns, (b) far away from the drop the density approaches the constant ambient

vapor density n∞, and (c) vapor cannot penetrate the substrate and hence ∂zn = 0

at the substrate outside of the drop. Having found density of vapor, one can obtain

the evaporation rate J = −D∇n, where D is the diffusion constant.

This boundary problem is mathematically equivalent to that of a charged conduc-

tor of the same geometry at constant potential if we identify n with the electrostatic

potential and J with the electric field. Moreover, since there is no component of J

normal to the substrate, we can further simplify the boundary problem by considering

a conductor of the shape of our drop plus its reflection in the plane of the substrate

in the full space instead of viewing only the semi-infinite space bounded by the sub-

strate (Fig. 2.3). This reduces the number of boundary conditions to only two: (a)

n = ns on the surface of the conductor, and (b) n = n∞ at infinity. The shape of the

conductor (the drop and its reflection in the substrate) is now symmetric with respect

to the plane of the substrate. This plane-symmetric problem of finding the electric

field around the conductor at constant potential in infinite space is much simpler than

the original problem in the semi-infinite space, and this will be the problem we will

actually be solving in order to find the evaporation rate for the two geometries of

interest. Particular solution in each of the geometries will be presented in the next

two chapters.

Having formulated physical assumptions intrinsic to the theory, we are now in

position to state its main ideas.
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Figure 2.3: Illustration of analogy between evaporation rate J for a liquid drop and
electric field E for a conductor. Consideration of the drop (or conductor) and its
reflection in the plane of the substrate significantly simplifies the boundary problem.

2.3 The full system of equations for hydrodynamic flow:

conservation of mass, Darcy’s law, and Young-Laplace

equation

The essential idea behind the theory has been developed in works of Deegan et al. (19;

20; 21). It is an experimental observation that the contact line of a drop of liquid is

pinned during most of the drying process. While the highest evaporation occurs at

the edges, the bulk of the solvent is concentrated closer to the center of the drop. In

order to replenish the liquid removed by evaporation at the edge, a flow from the inner

to the outer regions must exist inside the drop. This flow is capable of transferring

all of the solute to the contact line and thus accounts for the strong contact-line

concentration of the residue left after complete drying. Thus, a pinned contact line

entails fluid flow toward that contact line. The “elasticity” of the liquid-air interface

fixed at the contact line provides the force driving this flow.

To develop this idea mathematically, we ignore for a moment any solute in the

liquid. Once the flow is found, one can track the motion of the suspended particles,

since they are just carried along by the flow. The purpose of this section is to describe
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a generic method for finding the hydrodynamic flow of the liquid inside the drop,

which is a prerequisite to knowing the details of solute transfer.

We define depth-averaged flow velocity by

v =
1

h

∫ h
0

us dz, (2.2)

where us is the in-plane component of the local three-dimensional velocity u. Then

we write the conservation of fluid mass in the form

∇ · (hv) +
J

ρ

√
1 + (∇h)2 + ∂th = 0, (2.3)

where t is the time, ρ is the density of the fluid, and each of the quantities h, J and v is

a function of r, φ and t. (We will drop the (∇h)2 part of the second term everywhere

in the following since it is always small compared to unity, as will be seen below.)

This equation represents the fact that the rate of change of the amount of fluid in a

volume element (column) above an infinitesimal area on the substrate (third term) is

equal to the negative of the sum of the net flux of liquid out of the column (first term)

and the amount of mass evaporated from the surface element on top of that column

(second term); Fig. 2.4 illustrates this idea. Thus, this expression relates the depth-

averaged velocity field v(r, φ, t) to the liquid-vapor interface position h(r, φ, t) and

the evaporation rate J(r, φ, t). However, this is only one equation for two variables

since vector v has generally two components in the plane of the substrate. Moreover,

while the evaporation rate J is indeed independent of flow v, the free-surface shape

h should in general be determined simultaneously with v. Thus, there are actually

three unknowns to be determined together (h and two components of velocity, say, vr

and vφ), and hence two more equations are needed. These additional equations will
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Figure 2.4: Conservation of mass: the liquid-vapor interface lowers exactly by the
amount of fluid evaporated from the surface plus the difference between the outflow
and the influx of fluid from the adjacent regions.

be of the hydrodynamic origin.

We start with the Navier-Stokes equation with inertial terms omitted (low Rey-

nolds numbers):

∇p = η∇2u, (2.4)

where p is the fluid pressure, η is the dynamic viscosity, and u is the velocity. Applying

lubrication-approximation conditions ∂zp = 0 and ∂zui � ∂sui, we arrive at the

simplified form of this equation

∇s p = η ∂zzus, (2.5)

where index s again refers to the vector components along the substrate. From now on

we will suppress the subscript s at the symbol of nabla-operator, and will assume for

the rest of this work that this operator refers to the two-dimensional vector operations

in the plane of the substrate. Solution to the above equation with boundary conditions

us|z=0 = 0 and ∂zus|z=h = 0 (2.6)



16

(no slip at the substrate and no stress at the liquid-air interface) yields

us =
∇p
η

(
z2

2
− hz

)
, (2.7)

or, after vertical averaging (2.2),

v = −h
2

3η
∇p. (2.8)

This result is a variant of the Darcy’s law (30; 31). Note that since a curl of a gradient

is always zero and η is a constant, the preceding equation can be re-written as

∇×
(

v

h2

)
= 0. (2.9)

This condition is analogous to the condition of the potential flow (∇ × v = 0), but

with a quite unusual combination of the velocity and the surface height v/h2 in place

of the usual velocity v.

Relation (2.8) provides the two sought equations in addition to the conservation

of mass (2.3). However, it contains one new variable, pressure p, and hence another

equation is needed. This last equation is provided by the condition of the mechanical

equilibrium of the liquid-air interface (also known as the Young-Laplace equation)

relating the pressure and the surface shape:

p = −2Kσ + patm. (2.10)

Here patm is the atmospheric pressure, σ is the surface tension, and K is the mean

curvature of the surface, uniquely related to the surface shape h by differential geom-

etry. Note that this expression is independent of both the conservation of mass (2.3)
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and the Darcy’s law (2.8). Thus, the complete set of equations required to fully

determine the four dynamic variables h, p, vr, and vφ consists of four differential

equations (together with the appropriate boundary conditions at the contact line,

which are dependent on the particular geometry of the drop): one equation of the

conservation of mass (2.3), two equations of the Darcy’s law (2.8), and one equation

of the mechanical equilibrium of the interface (2.10). They provide all the necessary

conditions to solve the problem at least in principle.

In practice, however, solution of these four coupled differential equations is not

possible in most geometries of practical interest. At the same time, under normal

drying conditions the viscous stress is negligible, or, equivalently, the typical velocities

are much smaller than v∗ = σ/3η ≈ 24 m/s (for water under normal conditions). As

we show in the Appendix, the four equations decouple under these conditions. As

a result, one can employ the equilibrium result for the surface shape h at any given

moment of time, and then determine the pressure and the velocity fields for this

fixed functional form of h. Mathematically, the original system of equations can be

rewritten as:

2K = −∆p

σ
, (2.11)

∇ · (h3∇ψ) = −J
ρ
− ∂th, (2.12)

v = h2∇ψ, (2.13)

where ∆p = p0−patm, ψ = −εp1/3η, and p0 and p1 are the leading and the first-order

terms in the expansion of pressure p = p0 + εp1 + · · · in a small parameter ε inversely

proportional to v∗ (see the Appendix for details). Note that p0 is independent of (r, φ),

although it does depend on time (this time dependence will be determined later in this

work). Therefore, there is a profound difference between equations (2.10) and (2.11):
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the former is a local statement, with the right-hand side depending on the coordinates

of a point within the drop, while the latter is a global condition of spatial constancy

of the mean curvature throughout the drop. Equation (2.11) defines the equilibrium

surface shape for any given value of p0 at any given moment of time, and moreover,

can be solved independently of the other equations. Thus, the procedure for finding

the solution becomes significantly simplified: first find the equilibrium surface shape h

from condition (2.11) and independently specify the functional form of the evaporation

rate J from an equivalent electrostatic problem, then solve equation (2.12) for the

reduced pressure ψ, and finally obtain the flow field v according to prescription (2.13).

The next two chapters will be devoted to the particular steps of this procedure for

the two geometries of interest.

In the next section, we will describe how knowledge of flow inside the drop allows

one to find the rate of solute transfer to the contact line and determine the laws of

deposit growth.

2.4 Solute transfer and deposit growth

With the velocity field inside the drop in hand, we can compute the rate of the deposit

growth at the contact line. We assume that the suspended particles are carried along

by the flow with velocity equal to the fluid velocity. Integrating the velocity field:

dr

r dφ
=
vr(r, φ)

vφ(r, φ)
, (2.14)

we find the streamline equation r(φ) or φ(r), i.e. the trajectory of each particle

as it moves with the fluid. This streamline equation is independent of the overall

intensity of evaporation [since both vr and vφ depend on it as a multiplicative factor
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dropping out of Eq. (2.14)], and thus the shape of the streamlines is universal for each

geometry of the drop. Physically, this indicates that solute particles move along the

same trajectories independently of how fast evaporation occurs and hence how fast

the flow is.

Given the shape of the streamlines, we can compute the time it takes an element

of fluid (having started from some initial point (ri, φi) and moving along a streamline)

to reach the contact line. This time can be found by integrating both sides of either

vr(r, φ, t)dt = dr or vφ(r, φ, t)dt = r dφ with known dependences of vr or vφ on the

variables and known relation between r and φ on the streamline. The integrations

are to be conducted from ri or φi (at time 0) to rf or φf (at time t), respectively,

where (rf , φf ) is the terminal endpoint of the trajectory on the contact line. Thus,

the initial location of particles that reach the contact line at time t is characterized by

(ri, φi). First, only particles initially located near the contact line reach that contact

line. As time goes by, particles initially located further away from the contact line

and in the inner parts of the drop reach the contact line. Finally, particles initially

located in the innermost parts of the drop (e.g. at the center of a round drop or near

the bisector of an angular drop) reach the contact line as well. The more time elapsed,

the more particles reached the contact line and the larger the area is where they were

spread around initially. One can view this process as inward propagation of the inner

boundary of the set of initial locations of the particles that have reached the contact

line by time t. As is easy to understand, the velocity of this front is equal to the

negative of the vector of fluid velocity at each point (the fluid and the particles move

towards the contact line while this front moves away from it, hence a minus sign).

Within the time computed in the preceding paragraph all the solute that lays

on the way of an element of fluid as it moves toward the contact line becomes part

of the deposit. Now, we use our knowledge of the initial distribution of the solute,
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namely, that the solute has constant concentration c everywhere in the drop at time

t = 0, and compute the mass of the deposit accumulated at the contact line by that

time. The mass of the deposit dm accumulated at the contact-line element of length

dl can be found by integrating h(r, φ, 0) over area dA between two infinitesimally

close streamlines (terminating dl apart on the contact line) swept by the infinitesimal

element of fluid on its way to the contact line and multiplying the result by the initial

concentration c of the solute:

dm = c
∫

dA
h(r, φ, 0) rdrdφ. (2.15)

Obviously, this mass will depend of the initial location (ri, φi) of the element of fluid.

Thus, both the time elapsed from the beginning of the drying process (t) and the

deposit mass accumulated at the contact line (dm) depend on the initial coordinates

of the arriving element of fluid (only one of the coordinates is actually an independent

variable — the other is constrained by the streamline equation). Eliminating these

coordinates from the expressions for time and mass, one can finally obtain the deposit

mass accumulated at the contact line as a function of time elapsed from the beginning

of the drying process.

Thus, the procedure described allows one to find the rate of solute transfer and

the laws of deposit growth. Since we use depth-averaged velocity throughout this

work, we implicitly assume that there is no vertical segregation of the solute.



CHAPTER 3

DEPOSIT GROWTH FOR ZERO-VOLUME PARTICLES

IN CIRCULAR EVAPORATING DROPS

In this chapter we will provide the full solution to the problem of solute transfer

in the case of round drops. In this geometry, the contact line is the circumference

of a circle (and the origin of the cylindrical coordinates is located at the center of

that circle). This case is of most importance from the point of view of practical

applications and at the same time is the easiest to treat analytically. Most results

can be derived in a closed analytical form, and many of them have been obtained in

earlier works (19; 25). Some of them, however, are presented for the first time, and

some correct earlier expressions.

3.1 Surface shape

We will follow the procedure explained in great detail in the preceding chapter. First,

one needs to determine the equilibrium shape of the liquid-air interface. In circular

geometry this task is particularly easy. Let R be the radius of the circular projection

of the drop onto the plane of the substrate and θ be the (macroscopic) contact angle.

Then the solution to Eq. (2.11) with boundary condition h(R, φ, t) = 0 is just a

spherical cap. In cylindrical coordinates function h(r, φ, t) is independent of φ and

can be written as

h(r, t) =

√
R2

sin2 θ
− r2 −R cot θ, (3.1)

21
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where the radius of the footprint of this cap R and the contact angle θ are related

via the right-hand side of Eq. (2.11):

R =
2σ

∆p
sin θ. (3.2)

Both θ and σ/∆p change with time during drying process; however, the radius of

the footprint R stays constant. In most experimental realizations θ � 1 and the

preceding expression takes even simpler form:

h(r, t) =
R2 − r2

2R
θ(t) +O(θ3). (3.3)

Thus, for small θ, quantity ∇h is indeed small (since r < R) and can be safely

neglected with respect to unity (i.e. the free surface of the drop is nearly horizontal)

as was asserted in the preceding chapter.

Knowledge of the surface shape allows one to find all the necessary geometrical

characteristics of the drop, for instance, its volume

V =
∫ R

0
h(r, t) 2πrdr = πR3V̄ (θ) (3.4)

or the total mass of the water (or any other fluid the drop is comprised of)

M = ρV = πρR3V̄ (θ), (3.5)

where ρ is the density of the water and V̄ (θ) is a function of the contact angle:

V̄ (θ) =
cos3 θ − 3 cos θ + 2

3 sin3 θ
=
θ

4
+O(θ3) (3.6)
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(the last equality is an expansion in limit θ � 1).

3.2 Evaporation rate

The other prerequisite to determining the flow inside the drop is the evaporation

rate from the free surface of the drop. This task involves solution of the equivalent

electrostatic problem (the Laplace equation) for the conductor of the shape of the

drop plus its reflection in the plane of the substrate (kept at constant potential, as

a boundary condition). In the case of the round drop the shape of this conductor

resembles a symmetrical double-convex lens comprised of two spherical caps. The

system of orthogonal coordinates that matches the symmetry of this object (so that

one of the coordinate surfaces coincides with the surface of the lens) is called the

toroidal coordinates (α, β, φ), where coordinates α and β are related to the cylindrical

coordinates r and z by

r =
R sinhα

coshα− cos β
, z =

R sin β

coshα− cos β
, (3.7)

and the azimuthal angle φ has the same meaning as in cylindrical coordinates. Solu-

tion to the Laplace equation in toroidal coordinates involves the Legendre functions

of fractional degree and was derived in a book by Lebedev (23). The expression for

the electrostatic potential or vapor density in toroidal coordinates obtained in that

book is independent of the azimuthal angle φ and reads

n(α, β) = n∞ + (ns − n∞)
√

2(coshα− cos β)×

×
∫ ∞

0

cosh θτ cosh(2π − β)τ

cosh πτ cosh(π − θ)τ P−1/2+iτ (coshα) dτ. (3.8)
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Here ns is the density of the saturated vapor just above the liquid-air interface (or

the potential of the conductor), n∞ is the ambient vapor density (or the value of the

potential at infinity), and P−1/2+iτ (x) are the Legendre functions of the first kind

(despite the presence of iτ in the index, these functions are real valued). The surface

of the lens is described by the two coordinate surfaces β1 = π − θ and β2 = π + θ,

and the β derivative is normal to the surface. Evaporation rate from the surface of

the drop is therefore given by

J(α) = D
1

hβ
∂βn(α, β)

∣∣∣
β=2π+β1

= D
coshα− cos β

R
∂βn(α, β)

∣∣∣
β=3π−θ , (3.9)

where D is the diffusion constant and hβ = R/(coshα−cos β) is the metric coefficient

in coordinate β. [Note that an incorrect expression for J with a plus sign in the metric

coefficient was used in Eq. (A2) of Ref. (19).] Carrying out the differentiation, one

can obtain an exact analytical expression for the absolute value of the evaporation

rate from the surface of the drop as a function of the polar coordinate r:

J(r) =
D(ns − n∞)

R

[
1

2
sin θ +

√
2 (coshα + cos θ)3/2×

×
∫ ∞

0

cosh θτ

cosh πτ
tanh [(π − θ)τ ]P−1/2+iτ (coshα) τdτ

]
, (3.10)

where the toroidal coordinate α and the polar coordinate r are uniquely related on

the surface of the drop:

r =
R sinhα

coshα + cos θ
. (3.11)

Thus, expression (3.10) provides the exact analytical expression for the evaporation

rate J as a function of distance r to the center of the drop for an arbitrary contact

angle θ. This expression also corrects an earlier expression of Ref. (25) [Eq. (28)]
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where a factor of
√

2 in the second term inside the square bracket is missing.

The expression for the evaporation rate is not operable analytically in most cases,

as it represents an integral of a non-trivial special function (which, in its turn, is

an integral of some simpler elementary functions). In most cases, we will need to

recourse to an asymptotic expansion for small contact angles θ in order to obtain any

meaningful analytical expressions. However, there is one exception to this general

statement (not reported in the literature previously). An important quantity is the

total rate of water mass loss by evaporation dM/dt, which sets the time scale for all

the processes. This total rate can be expressed as an integral of the evaporation rate

(defined as evaporative mass loss per unit surface area per unit time) over the surface

of the drop:

dM

dt
= −

∫

A
J(r, φ)

√
1 + (∇h)2 rdrdφ = −

∫ R

0
J(r)

√
1 + (∂rh)2 2πrdr, (3.12)

where the first integration is over the substrate area A occupied by the drop. This

expression actually involves triple integration: one in the expression above as an

integral of J(r), another in expression for J(r) as an integral of the Legedre function

of the first kind, and the third as an integral representation of the Legendre function

in terms of elementary functions. However, one can significantly simplify the above

expression and reduce the number of integrations from three to one. Substituting
√

1 + (∂rh)2 = 1/
√

1− (r sin θ/R)2 and evaporation rate (3.10) into Eq. (3.12) and

changing variables and integration order a few times, one can obtain a substantially

simpler result:

dM

dt
= −πRD(ns − n∞)

[
sin θ

1 + cos θ
+

+4
∫ ∞

0

1 + cosh 2θτ

sinh 2πτ
tanh [(π − θ)τ ] dτ

]
. (3.13)
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[Note: Eq. (2.17.1.10) of Ref. (32) was used in this calculation.] This result together

with the time derivative of expression (3.5) for total mass

dM

dt
= πρR3V̄ ′(θ)

dθ

dt
=

πρR3

(1 + cos θ)2

dθ

dt
(3.14)

provides a direct method for finding the time dependence of θ for an arbitrary value

of the contact angle. Combining the last two equations, one can obtain a single

differential equation for θ as a function of time t:

dθ

dt
= −D(ns − n∞)

ρR2 (1 + cos θ)2

[
sin θ

1 + cos θ
+

+4
∫ ∞

0

1 + cosh 2θτ

sinh 2πτ
tanh [(π − θ)τ ] dτ

]
. (3.15)

Having determined the dependence θ(t) from this equation, one can obtain the time

dependence of any other quantities dependent on the contact angle, for instance, the

time dependence of mass from relation (3.5), or any other geometrical quantities of

the preceding section.

In practice, however, we will always use the limit of small contact angles in all

the analytical calculations of this and the subsequent chapters. This is the limit of

most practical importance, and the usage of this limit will help us keep the physical

essence of the problem clear from the unnecessary mathematical elaborations. While

for numerical purposes our exact expressions are absolutely adequate, the analytical

calculations in a closed form cannot be conducted any further for an arbitrary contact

angle.

Expanding the right-hand side of Eq. (3.15) in small θ, we immediately obtain that
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the contact angle decreases linearly with time in the main order of this expansion:

θ = θi

(
1− t

tf

)
, (3.16)

where we introduced the total drying time tf defined in terms of the initial contact

angle θi = θ(0):

tf =
πρR2θi

16D(ns − n∞)
. (3.17)

In the main order, the total rate of water mass loss is constant and water mass also

decreases linearly with time:

M =
πρR3θi

4

(
1− t

tf

)
. (3.18)

This linear time dependence during the vast majority of the drying process was di-

rectly confirmed in the experiments (21; 22); see Fig. 5.5. The dependence of the

evaporation rate on radius (linearity in R) was also confirmed experimentally and is

known to hold true for the case of the diffusion-limited evaporation (33).

Before we entirely switch to the case of the small contact angles for the rest

of this chapter, it is instructive to compare the small-angle analytical asymptotics

of the preceding paragraph to the exact arbitrary-angle numerical results based on

Eqs. (3.13) and (3.15). In Figs. 3.1 and 3.2, we plot the numerical solutions for θ(t) and

M(t), respectively, for several values of the initial contact angle and compare them to

the small-angle asymptotics of Eqs. (3.16) and (3.18). In these figures, θi and Mi are

the initial contact angle and the initial mass of water in the drop, respectively. Note

that in these graphs tf is not the total drying time for each θi; instead, it is just the

combination of the problem parameters defined in Eq. (3.17), which coincides with

the total drying time only when θi → 0. As is clear from these graphs, the total drying
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Figure 3.1: Numerical results: Dependence of contact angle θ on time t. Different
curves correspond to different initial contact angles; values of parameter θi are shown
at each curve. The analytical result [Eq. (3.16)] in limit θi → 0 is also provided (the
solid curve).

time increases with the increasing initial contact angle. However, it does not increase

linearly as prescribed by the asymptotic expression (3.17); instead, it grows faster

(Fig. 3.3). Fig. 3.3 demonstrates that the small-angle approximation works amazingly

well up to the angles as large as 45 degrees (this can also be seen in Figs. 3.1 and 3.2).

Therefore, working in the limit of small contact angles for the rest of this chapter,

we will not loose any precision or generality for the typical experimental values of

this parameter. Lastly, we note that the large-angle corrections may be responsible

for the observed non-linearity of the experimentally measured dependence M(t), as

is clear from the comparison of Fig. 3.2 (theory) and Fig. 5.5 (experiment).

Expression for the evaporation rate (3.10) becomes particularly simple in the limit

of small contact angles. Employing one of the integral representations of the Legendre

function in terms of elementary functions [Eq. (7.4.7) of Ref. (23)], taking limit θ → 0

and conducting a number of integrations, it is relatively straightforward to obtain the
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following result:

J(r) =
D(ns − n∞)

R

2

π
cosh

α

2
(θ → 0), (3.19)

which, upon identification coshα = (R2 + r2)/(R2 − r2) for θ = 0, can be further

reduced to

J(r) =
2

π

D(ns − n∞)√
R2 − r2

(θ → 0). (3.20)

Thus, for thin drops the expression for the evaporation rate reduces to an extremely

simple result featuring the square-root divergence near the edge of the drop. The

same result could have been obtained directly if we solved an equivalent electrostatic

problem for an infinitely thin disk instead of the double-convex lens. It is particularly

rewarding that after all the laborious calculations the asymptotic of our result is in

exact agreement with elementary textbook’s predictions [see Ref. (34) for the deriva-

tion of the one-over-the-square-root divergence of the electric field near the edge of

a conducting plane in the three-dimensional space]. Eq. (3.20) will be widely used

below for all thin drops of circular geometry.

For the sake of completeness, it is also interesting to note the opposite limit of the

expression (3.10), when the surface of the drop is a hemisphere (θ = π/2). In this

limit, a similar calculation can be conducted [also employing Eq. (7.4.7) of Ref. (23)

and a couple of integrations], and the following simple result can be obtained:

J(r) =
D(ns − n∞)

R
(θ → π/2). (3.21)

Thus, a uniform evaporation rate is recovered. Again, this result is in perfect agree-

ment with the expectations; the same result could have been obtained if we directly

solved the Laplace equation for a sphere (the hemispherical drop and its reflection in
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the substrate). The uniform evaporation rate is a result of the full spherical symmetry

of such a system. Similar exact results can also be obtained for a few other discrete

values of the contact angle (e.g. for θ = π/4).

3.3 Flow field

With h and J in hand, we are in position to find the flow inside the drop according

to prescription (2.12)-(2.13). In circular geometry this task is particularly easy, since,

due to the symmetry, there is no φ component of the velocity (i.e. the flow is directed

radially outwards) and vr is independent of φ. Equations (2.12) and (2.13) can be

combined to yield

vr(r, t) = − 1

rh

∫ r
0

(
J

ρ
+ ∂th

)
rdr (3.22)

for the radial component of the velocity. Plugging Eqs. (3.3), (3.16), and (3.20) into

the above equation, one can obtain the following expression for the flow inside the

drop under assumption of small contact angle:

vr(r, t) =
R2

4(tf − t)r




1√
1−

(
r
R

)2
−
[
1−

(
r

R

)2
]

 . (3.23)

This is the final expression for the velocity that we were looking for.

The velocity diverges near the edge of the drop with a one-over-the-square-root

singularity in (R−r) at the contact line. This could have been deduced directly from

the conservation of mass (2.3), where the divergent evaporation rate must be com-

pensated by the divergent velocity (since the free-surface height is a regular function

of coordinates and, moreover, vanishes near the contact line). Physically, change of

volume near the edge becomes increasingly smaller as the contact line is approached
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and hence the outgoing vapor flux must be matched by an equally strong incoming

flow of liquid.

In addition, the velocity diverges at the end of the drying time. Since the amount

of liquid removed by evaporation from the immediate vicinity of the contact line of

a thin drop remains approximately constant, the amount of incoming fluid must also

stay approximately constant over the drying time. This flux to the region in the

vicinity of the contact line is proportional to vrh, and hence velocity must scale as

1/h in terms of its time dependence. Therefore, since the height decreases linearly

with time (in the main order in θ), time dependence 1/(tf − t) is to be expected for

the velocity. The result above displays this expected behavior.

3.4 Solute transfer and deposit growth

Shape of the streamlines in the highly symmetric case of circular drops can be pre-

dicted without any calculations: these are the straight lines from the center of the

drop to the contact line along the radius. The parameter characterizing each of these

streamlines is simply the polar angle φ of the corresponding radial direction, and the

variable along the streamline is r. The time it takes an element of fluid to reach

the contact line can be inferred from the differential equation vr(r, t)dt = dr. Since

dependences on distance and time in vr(r, t) of Eq. (3.23) are separable (factorize),

the integration of one side of this differential equation from ri (the initial location

of an element of fluid) to R in distance and the integration of the other side from 0

to t in time are straightforward to carry out. The resulting dependence of the time

it takes an element of fluid to reach the contact line on the initial position of this
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element of fluid can be written as

(
1− t

tf

)3/4

+

[
1−

(
ri
R

)2
]3/2

= 1. (3.24)

Clearly, t = 0 when ri = R, and t = tf when ri = 0, as expected from the physical

intuition; however, the intermediate behavior is quite non-trivial, and no intuition

would be of much help.

The mass of the deposit accumulated at the contact line by time t is given by

Eq. (2.15), which for the case of azimuthal symmetry can be rewritten as

m = c
∫ R
ri
h(r, 0) 2πrdr, (3.25)

where h(r, 0) refers to the expression for the equilibrium surface shape (3.3) at the

beginning of the drying process (with θ = θi at t = 0). Simple integration yields

m = m0

[
1−

(
ri
R

)2
]2

, (3.26)

where m0 = πcR3θi/4 is the total mass of the solute present initially in the drop.

When an element of fluid starts from a vicinity of the contact line (ri ≈ R), the

accumulated deposit mass is still virtually zero when it arrives at the contact line.

When an element of fluid starts from the center of the drop (ri � R), virtually all

the solute (m ≈ m0) is already at the contact line by the time the element of fluid

reaches it.

Eliminating ri from expressions (3.24) and (3.26), one can finally obtain the de-
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pendence of the deposit accumulated at the contact line on drying time t:

m = m0


1−

(
1− t

tf

)3/4



4/3

, (3.27)

which can be rewritten in a more symmetric form

(
m

m0

)3/4

+

(
1− t

tf

)3/4

= 1. (3.28)

(We do not have a simple and intuitive explanation for this symmetry.) No solute

(m = 0) is at the contact line at the beginning of the drying process (t = 0), and all

the solute (m = m0) is accumulated at the contact line when the drop has completely

dried (t = tf ). At early times, the deposit mass scales with the drying time as a

power law with exponent 4/3:

m ≈ m0

(
3t

4tf

)4/3

(t� tf ). (3.29)

As we will show in the next chapter, this scaling with time is universal for early drying

times and should be observed in any geometry of the drop (as long as the contact

line is locally smooth). At the end of the drying process, the rate of the deposit

accumulation diverges as (tf − t)−1/4:

m ≈ m0


1− 4

3

(
1− t

tf

)3/4

 (|tf − t| � tf ). (3.30)

It is this final divergence that is responsible for the experimentally observed 100%

transfer of the solute to the edge.

Thus, in the case of circular geometry, it is relatively simple to obtain the desired

scaling of the deposit mass at the contact line with time. The situation is far more
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complex in the case of angular geometry. This case is considered in the following

chapter.



CHAPTER 4

DEPOSIT GROWTH FOR ZERO-VOLUME PARTICLES

IN POINTED EVAPORATING DROPS

In this chapter we will provide the asymptotic solution to the problem of solute

transfer in the case of angular drops. In this geometry, the droplet is bounded by an

angle α in the plane of the substrate (Fig. 4.1). We choose the origin of the cylindrical

coordinates at the vertex of the angle, so that the angle occupied by the drop on the

substrate is 0 < r < ∞ and −α/2 < φ < α/2 (Fig. 4.2). Given the complexity of

the geometry, we seek an approximate solution that captures the essential physical

features and correct at least asymptotically. Here, in the geometry of an angular

sector, the only possible locations of singularities and divergences (which normally

govern properties of the solutions to differential equations) are at the vertex of the

angle (i.e. at r = 0) and at its sides (i.e. at φ = ±α/2). Therefore, the most

important physical features will be correctly reflected if asymptotic results as r → 0

and as φ → ±α/2 are found. Thus, we limit our task to determining analytically

only the asymptotic power-law scaling for most quantities, and this task proves to be

sufficiently challenging by itself. We will also provide some numerical results that do

not rely on these assumptions.

Most of the results presented in this chapter have been previously published in

two our earlier papers (26; 27), and hence we will often refer to those works for further

details.

36
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(a)

(b)

Figure 4.1: (a) A water droplet with a sector-shaped boundary on the plane substrate
(side view). (b) The same droplet pictured from another point (top view). Black lines
are the grooves on the substrate necessary to “pin” the contact line. (Courtesy Itai
Cohen.)
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Figure 4.2: Geometry of the problem. The plane of the figure coincides with the
substrate.

4.1 Surface shape

The boundary problem for the equilibrium surface shape consists of the differential

equation (2.11) and the boundary conditions at the vertex and at the sides of the

angle:

h(0, φ, t) = h(r,−α/2, t) = h(r, α/2, t) = 0. (4.1)

Equation (2.11) represents the fact that the local mean curvature is spatially uniform,

but changes with time as the right-hand side (∆p) changes during the drying process.

The asymptotic solution to the boundary problem (2.11), (4.1) was found in our

earlier paper (26). The result turned out to have two qualitatively different regimes

in opening angle α (acute and obtuse angles) and can be written as

h(r, φ, t) =
rν h̃(φ)

Rν−1
0

. (4.2)
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Here R0(t) = σ/∆p and is the only function of time in this expression; exponent ν

has a discontinuous derivative at α = π/2 and is shown in Fig. 4.3; and

h̃(φ) =





1
4

(
cos 2φ
cosα − 1

)
if 0 ≤ α < π

2 (ν = 2),

C cos πφα if π
2 < α ≤ π (ν = π/α).

(4.3)

The constant C cannot be determined without imposing boundary conditions on h

at some curve on the side of the drop furthest from the vertex of the angle. It is

restricted by neither the equation nor the side boundary conditions, and thus, is not

a universal feature of the solution near the vertex of the angle. The constant C can

(and does) depend on the opening angle α. As we showed in the earlier paper, this

constant must have the following diverging form near α = π/2:

C =
1

4α− 2π
+ C0 +O(α− π/2) (4.4)

where C0 is independent of α. We will adopt this form of C (with C0 set to unity)

for all numerical estimates for obtuse opening angles.

Two different values of ν corresponding to the acute and obtuse angles give rise to

the two qualitatively different regimes for surface shape. This difference can best be

seen from the fact that the principal curvatures of the surface stay finite as r → 0 for

acute angles and diverge as a power of r for obtuse angles. This qualitative difference

can be observed in a simple experimental demonstration, which we provided in our

earlier work (26). We refer to that earlier work for further details and discussion. We

only note here that the asymptotic r → 0 at the vertex of the angle actually means

r � R0 (which is typically of the order of a few millimeters for water under normal

conditions), and that ∇h is indeed small for r � R0 and can again be safely neglected
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Figure 4.3: Dependence of exponent ν in the power law h(r) [Eq. (4.2)] on opening
angle α, after Ref. (26).

with respect to unity (i.e. the free surface is nearly horizontal in the vicinity of the

tip of the angle) as was asserted earlier.

4.2 Evaporation rate

As we explained in Chapter 2, in order to determine the evaporation rate one needs

to solve an equivalent electrostatic problem for a conductor of the shape of the drop

and its reflection in the plane of the substrate kept at constant potential. In geometry

of the angular sector this shape resembles a dagger blade, and one has to tackle the

problem of finding the electric field around the tip of a dagger blade at constant

potential in infinite space.

If one decides to account for the thickness of the blade [given by doubled h(r, φ, t)

of Eq. (4.2)] accurately, it becomes apparent that there is no hope for any analytical

solution in this complex geometry. This is suggested by both the bulkiness of the

expressions for a round drop with a non-zero contact angle in the preceding chapter
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and direct attempts to find the solution. However, taking into account that near

the tip ∇h is very small and hence the thickness of the blade itself is very small,

we can approximate our thick dagger blade with a dagger blade of thickness zero

and the same opening angle (i.e. with a flat angular sector). In the limit r → 0 the

contact angle θ scales with r as (r/R0)ν−1 and hence goes to zero. Thus, only the

flat blade can be considered up to the main order in r. This approximation would

not be adequate for determining the surface shape or the flow field, but it is perfectly

adequate for finding the evaporation rate. We will discuss possible corrections to this

result later in this section.

The problem of finding the electric field and the potential for an infinitely thin

angular sector in the three-dimensional space requires introduction of the so-called

conical coordinates (the orthogonal coordinates of the elliptic cone) and heavily in-

volves various special functions. Luckily, it was studied extensively in the past (35;

36; 37; 38), although the results cannot be expressed in a closed form. An impor-

tant conclusion from these studies is that the r and φ dependences separate and that

the electric field near the vertex of the sector scales with r as a power law with an

exponent depending on the opening angle α:

J(r, φ) ∝ rµ−1J̃(φ). (4.5)

Here

J̃(φ) ∝ 1

| cosφ∗|
∂Yµ(θ∗, φ∗)

∂θ∗

∣∣∣∣∣
θ∗=π

, (4.6)

and µ and Yµ(θ∗, φ∗) are the eigenvalue and the eigenfunction, respectively, of the

eigenvalue problem

−L2Yµ(θ∗, φ∗) = µ(µ+ 1)Yµ(θ∗, φ∗) (4.7)
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Figure 4.4: Solid line: Dependence of exponent µ in the power law J(r) [Eqs. (4.5)
and (4.12)] on opening angle α for an angular sector, after Refs. (36; 37; 38). The
same dependencies for a wedge (dashed line) and a cone (dotted line) are also shown.

with Dirichlet boundary conditions on the surface of an elliptic cone (degenerating

to an angular sector as θ∗ → π). In the last relation L2 is the angular part of

the Laplacian in conical coordinates (r, θ∗, φ∗). On the surface of the sector (i.e. at

θ∗ = π) the relation between the conical coordinate φ∗ and the usual polar coordinate

φ is sin φ = sin(α/2) sinφ∗. We refer to work (37) for further details. Here we notice

only that neither µ nor Yµ(θ∗, φ∗) can be expressed in a closed analytic form; however,

the exponent µ can be computed numerically and is shown in Fig. 4.4 as a function of

α. Note that this exponent is lower than similar exponents for corresponding angles

for both a wedge (a two-dimensional corner with an infinite third dimension) and a

circular cone, which are also shown in the figure. Both these shapes (wedge and cone)

allow simple analytical solutions (34) but none of them would be appropriate for the

zero-thickness sector.

Despite the unavailability of an explicit analytical expression for J̃(φ), its analytic

properties at φ = 0 and at φ = ±α/2 are quite straightforward to infer. Indeed, J̃(φ)
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is an even function of φ; therefore, J̃ ′(0) = 0 (as well as any other odd derivative on

the bisector) and

J̃(φ) = J̃(0) +O(φ2) (4.8)

for small φ. Obviously, J̃(0) is positive. On the other hand, at φ = ±α/2 the leading

asymptotic of the evaporation rate (or the electric field) is known to be (∆φ)−1/2

with exponent −1/2 corresponding to the edge of an infinitely thin half plane in the

three-dimensional space (34). (We have introduced notation ∆φ = α/2− |φ| in the

previous line.) If one were to correct this asymptotic in order to reflect the non-zero

contact angle at the edge of the sector, the asymptotic form at φ = ±α/2 would have

to be written as

J̃(φ) ≈ J∗(∆φ)−λ (4.9)

where J∗ is a positive constant and

λ =
π − 2θ

2π − 2θ
. (4.10)

This result corresponds to the divergence of the electric field along the edge of a

wedge of opening angle 2θ [both the drop and its reflection contribute to the opening

angle, hence a factor of 2] (34). However, accounting for the non-zero θ is a first-order

correction to the main-order result λ = 1/2. This can be seen from the expression

for the contact angle:

θ = arctan



(
r

R0

)ν−1 ∣∣∣h̃′ (α/2)
∣∣∣


 ∝

(
r

R0

)ν−1

. (4.11)

For all opening angles ν > 1 (except α = π where ν = 1). Thus, the correction due to

the non-zero contact angle can indeed be neglected in the main-order results, and λ
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should indeed be set to 1/2. Nevertheless, we will keep the generic notation λ for this

exponent in order to keep track of the origin of different parts of the final result and

in order to account properly for the case α = π in addition to the range of opening

angles below π. The numerical value of λ will be assumed to be 1/2 in all estimates.

The analytical results below will employ the asymptotics of this paragraph.

Thus, we will use the following expression for the evaporation rate J :

J(r, φ) = J0

(
r√
A

)µ−1

J̃(φ), (4.12)

where function J̃(φ) is defined in Eq. (4.6) with asymptotics (4.8) and (4.9). Here

we broke down the constant prefactor into two pieces: a distance scale
√
A (where

A is the substrate area occupied by the drop) and all the rest J0 (which is of the

dimensionality of the evaporation rate). Trivially, J0 is directly proportional to the

product of the diffusion constant and the difference of the saturated and the ambient

vapor densities D(ns − n∞), as was the case in the round-drop geometry.

The evaporation rate above does not depend on time and the same form of J

applies during the entire drying process, since the diffusion process is steady and the

variation of the contact angle with time does not influence the main order result (4.12).

The same is true for the total rate of mass loss dM/dt since

dM

dt
= −

∫

A
J
√

1 + (∇h)2 rdrdφ ≈ −
∫

A
J rdrdφ ∝ −J0A, (4.13)

where the integrations are over the substrate area occupied by the drop. We saw

the same behavior in circular geometry. The constancy of this rate during most of

the drying process was also confirmed experimentally (21). This fact can be used

to determine the time dependence of the length scale R0 of Eq. (4.2) [and hence of
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the pressure p0 of Eq. (2.11)] explicitly, as the mass M of a sufficiently thin drop is

inversely proportional to the mean radius of curvature R0:

M ∝ ρA2

R0
, (4.14)

where we retained only the dimensional quantities and suppressed all the numerical

prefactors sensitive to the details of the drop shape. From the last two equations one

can conclude that

d

dt

(
1

R0

)
∝ − J0

ρA
(4.15)

and remains constant during most of the drying process. Hence,

R0(t) =
R0i

1− t/tf
, (4.16)

where R0i is the initial mean radius of curvature (R0i = R0(0)) and tf is the total

drying time:

tf ∝
ρA

J0R0i
. (4.17)

Thus, at early drying stages (t � tf ) scale R0 grows linearly with time; this time

dependence will be implicitly present in the results below. However, it is very weak at

sufficiently early times and will be occasionally ignored (by setting R0 ≈ R0i) when

only the main-order results are of interest.

4.3 Flow field

As in the case of circular geometry, with h and J in hand, we proceed by solving

Eq. (2.12) for the reduced pressure ψ. Assuming power-law divergence of ψ as r → 0

and leaving only the main asymptotic (which effectively means that we neglect the
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regular term ∂th with respect to the divergent one J/ρ), we arrive at the following

asymptotically-correct expression for ψ:

ψ(r, φ, t) =
J0

ρ

rµ−3ν+1

√
A
µ−1

R−3ν+3
0

ψ̃(φ), (4.18)

where time-dependence is implicitly present via R0 and the function ψ̃(φ) is a solution

to the following differential equation:

ψ̃′′(φ) + 3
h̃′(φ)

h̃(φ)
ψ̃′(φ)− (µ+ 1)(3ν − µ− 1)ψ̃(φ) = − J̃(φ)

h̃3(φ)
(4.19)

(the combination (µ+ 1)(3ν − µ− 1) is positive for all opening angles). Computing

v according to prescription (2.13), we obtain the depth-averaged flow field

v = vr r̂ + vφφ̂ (4.20)

with components

vr(r, φ, t) = −(3ν − µ− 1)
J0

ρ

rµ−ν
√
A
µ−1

R−ν+1
0

h̃2(φ)ψ̃(φ) (4.21)

and

vφ(r, φ, t) =
J0

ρ

rµ−ν
√
A
µ−1

R−ν+1
0

h̃2(φ)ψ̃′(φ). (4.22)

Thus, one needs to solve Eq. (4.19) with respect to ψ̃(φ) in order to know the flow

velocity.

We were not able to find an exact analytical solution to this equation; however,

we succeeded in finding approximate solutions on the bisector (|φ| � α/2) and near

the contact line (∆φ � α/2), which represent the two opposite limits of the range
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of φ. (Again, we define ∆φ = α/2 − |φ|.) We describe these two solutions in great

detail in our earlier work (27), and since the solutions themselves are not needed in

this abbreviated account, we refer to this earlier work for further details. Here we

will only mention the asymptotics of both solutions (which can actually be inferred

directly from the differential equation, without even solving it). Near the contact

line, in limit ∆φ→ 0, the asymptotic of the solution is

ψ̃(φ) ∝ J∗(∆φ)−λ−1

(1− λ2)
∣∣∣h̃′ (α/2)

∣∣∣
3 . (4.23)

On the bisector, in the opposite limit φ→ 0, the asymptotic is

ψ̃(φ) ∝ ψ̃(0) +
1

2

[
(µ+ 1)(3ν − µ− 1)ψ̃(0)− J̃(0)

h̃3(0)

]
φ2. (4.24)

The reduced pressure on the bisector ψ̃(0) is positive. The value of ψ̃(0) cannot be

determined from the original differential equation; one needs to employ an integral

condition resulting from the equality of the total influx into a sector of radius r by

flow from the outer regions of the drop and the total outflux from this sector by

evaporation:

ρ
∫ α/2
−α/2

|vr|h rdφ =
∫ r

0

∫ α/2
−α/2

J rdrdφ. (4.25)

This condition is similar to an analogous condition for the circular drop (which was

written for the entire drop instead of only a certain part of it, since, unlike the infinite

sector, the round drop was finite). Upon simplification this condition reduces to the

following equation defining the constant prefactor ψ̃(0):

∫ α/2
0

[
(µ+ 1)(3ν − µ− 1)h̃3(φ)ψ̃(φ)− J̃(φ)

]
dφ = 0. (4.26)
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Obviously, ψ̃(0) is proportional to J̃(0)h̃−3(0).

In order to compensate for the unavailability of the exact analytical solution to

Eq. (4.19) we also approached this problem numerically. We will not describe the

numerical procedure in full here as it was described in great detail in our earlier

paper (27). Here, we will only mention that we use two different trial forms of J̃(φ)

that are simple and at the same time satisfy proper asymptotics (4.8) and (4.9).

These model forms are neither exact nor the only ones satisfying asymptotics, but

they allow one to avoid the numerical solution of the eigenvalue problem (4.7) and

thus not to repeat the elaborate treatment of works (35; 36; 37; 38). We use the

results based on these trial forms only for illustrative purposes in order to picture

general behavior of the solution for arbitrary values of the argument (not only in the

limiting cases). As we discussed in work (27), the difference between the numerical

results based on the two model forms of J̃(φ) did not exceed 10–15% in most cases,

and we have all reasons to believe that at least the orders of magnitude obtained by

this approximation are correct. We would like to emphasize that only the numerical

graphs based on the choice of J̃(φ) are affected by these simplified forms; all the

analytical results below do not rely on a particular form of J̃(φ) and use only the

analytical asymptotics of the preceding section.

The numerical solution to Eq. (4.19) satisfying conditions (4.26) for ψ̃(0) and

ψ̃′(0) = 0 for ψ̃′(0) was found for the two model forms of J̃(φ) and for approximately

20 different values of the opening angle. In all cases perfect agreement between

the numerical solution and the analytical asymptotics of this section was observed.

Two examples of the numerical solution together with the analytical asymptotics are

provided in Fig. 4.5 for opening angles 70◦ and 110◦.

Characteristic behavior of the velocity field (4.20) is shown in Fig. 4.6 for α = 70◦

and α = 110◦. Note that despite the fact that the exponent (µ− ν) of the power law
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Figure 4.5: Typical behavior of the numerical solution and the analytical asymptotics
of function ψ̃(φ) for two values of opening angle.
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in r is not a smooth function of α, the qualitative behavior of the flow field does not

visibly change as the opening angle increases past the right angle.

The velocity diverges near the edge of the drop. At the sides of the angle, only

the φ component diverges, as can be seen from Fig. 4.6 and expression (4.22). This

divergence near the sides is of exactly the same one-over-the-square-root dependence

on distance as the divergence in the circular drop and has exactly the same origin.

In addition, there is a divergence of both components of the velocity as rµ−ν when

r → 0, as is apparent from expressions (4.21) and (4.22). This divergence is entirely

new and is due to the presence of the vertex. The exponent of this divergence depends

on the opening angle as both µ and ν do. This is the first in a set of indices for the

pointed drop that are universal but depend on the geometry. Similar indices will also

be encountered for other physical quantities throughout this chapter.

4.4 Streamlines

One must know the shape of the streamlines in order to be able to predict the scaling

of the deposit growth, and now, with velocity field in hand, we have everything needed

to compute it. Integration of the velocity field (4.21)–(4.22) according to Eq. (2.14)

yields the streamline equation, i.e. the trajectory of each particle as it moves with

the fluid:

r(φ) = r0 exp

[
(3ν − µ− 1)

∫ α/2
φ

ψ̃(ξ) dξ

ψ̃′(ξ)

]
, (4.27)

where we assume that φ is positive here and everywhere below (the generalization to

the case of negative φ is obvious as all functions of φ are even). Thus, r = r0 when

φ = α/2, so that r0 is the distance from the terminal endpoint of the trajectory to

the vertex. In limit ∆φ→ 0 the integral in the exponent goes to zero (quadratically
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70° 

110° 

Figure 4.6: Characteristic behavior of flow field for two values of opening angle. Each
arrow represents the absolute value and the direction of velocity v at the point of
arrow origin.
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in ∆φ) and the streamline equation reduces to

r ≈ r0 (4.28)

[see Ref. (27) for details of all calculations in this section]. The streamlines are

perpendicular to the contact line (up to the quadratic terms in ∆φ). This is in

good agreement with what one would expect near the edge of the drop, since the

azimuthal component of the fluid velocity diverges at the side contact line while the

radial component goes to zero. In limit φ → 0 the integral in the exponent diverges

as ln[(α/2)/φ] and hence the result reads

r ≈ r0

(
α/2

φ

)ε
. (4.29)

Here we introduced exponent ε:

ε =
1

(µ+ 1)(1− I)
, (4.30)

where

I =

∫ α/2
0

(
h̃(φ)

h̃(0)

)3
ψ̃(φ)

ψ̃(0)
dφ

∫ α/2
0

J̃(φ)

J̃(0)
dφ

. (4.31)

As we showed in Ref. (27), 0 < I < 1 for all α. The positiveness of exponent ε

follows both from this fact and from the fact that the trajectory r(φ) necessarily has

to diverge as φ→ 0 (as solute comes from the outer regions of the drop).

Note that the last expression for parameter I is independent of the prefactors

of each function of φ, particularly, it is independent of the evaporation intensity

J0 and the constant non-universal prefactor C of the surface shape, reinforcing the
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Figure 4.7: Dependence of exponent ε in the power law r(φ) [Eq. (4.29)] on opening
angle α. The two curves correspond to the two model forms for function J̃(φ).

general conclusion of Chapter 2 that the shape of the streamlines is universal for each

geometry. The same conclusion can also be reached directly from Eq. (4.27), which

is independent of J0 and C and thus is universally correct regardless of the overall

intensity of evaporation and the non-universal features of the drop boundary.

We cannot compute I and ε explicitly, since we do not have an analytical expres-

sion for ψ̃(φ). However, we can gain some idea of the behavior of these parameters by

using approximate forms of J̃(φ) as we did in the preceding section. Fig. 4.7 demon-

strates the characteristic behavior of exponent ε as a function of the opening angle,

obtained numerically on the basis of the two model forms for function J̃(φ). In order

to obtain this plot, equation (4.19) was solved with respect to ψ̃(φ) numerically for

each α, and then expression (4.31) for I was employed. As can be observed in this

graph, the two model forms of J̃(φ) lead to the plots of very similar shape, but shifted

by no more than 10% in the whole range of the opening angles. Thus, we conclude

that Fig. 4.7 provides a good estimate for the qualitative behavior and the order of

magnitude of exponent ε(α).
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70° 

110° 

Figure 4.8: Typical shape of the streamlines for two values of opening angle (for the
same values as in Figs. 4.5 and 4.6).

Typical shape of the streamlines is shown in Fig. 4.8 for α = 70◦ and α = 110◦. It

was based on one of the model forms for function J̃(φ), and involved the corresponding

numerical solutions for function ψ̃(φ) (Fig. 4.5) employed in Eq. (4.27). This shape

is practically insensitive to the model form of J̃(φ), and almost an identical copy of

this graph was obtained for the other model form.

The distance from a point on a streamline to the bisector scales with φ as φ r(φ) ∝

φ1−ε when φ → 0. Since ε > 1 (Fig. 4.7), this distance increases when φ decreases.

Thus, the streamlines diverge away from the bisector when φ→ 0, and hence they do

not originate on the bisector. An incoming element of fluid initially located close to
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the bisector moves towards this bisector, reaches a minimum distance and then veers

away towards the contact line. One can also arrive at the same conclusion having

started from the ratio of velocity components. As can be shown [see Ref. (27)], for

small φ (in limit φ→ 0) the ratio of the velocity components is vφ/vr = −φ/ε. This

ratio represents the angle between a streamline and a coordinate line φ = φ0 at any

point (φ0, r(φ0)) on that streamline. Since ε > 1, the absolute value of this angle

is less than |φ|, and therefore, despite the opposite sign of this angle, the streamline

diverges away from the bisector for small φ. This tendency can also be observed

directly in Fig. 4.8.

Another feature apparent from Fig. 4.8 is the self-similarity of all the streamlines.

As is clear from equation (4.27), the only scaling parameter of the family of streamlines

is r0, and therefore all the streamlines can be obtained from a single streamline (say,

the one with r0 = 1) by multiplying its r-coordinate by different values of r0.

4.5 Solute transfer and deposit growth

The time it takes an element of fluid to reach the contact line can be inferred from

either vr(r, φ, t)dt = dr or vφ(r, φ, t)dt = r dφ on a streamline (i.e. with relation (4.27)

between r and φ). The only term with time dependence in expressions (4.21) and

(4.22) is Rν−1
0 . As we mentioned earlier, the time dependence of this term is weak

and can be safely ignored for times t� tf , where tf is the total drying time defined

in Eq. (4.17). It will be seen later in this section that these times are the only times

of interest in the geometry of the pointed drop since everything that happens closer

to the end of the drying process is not universal and depends on the details of the

boundary shape outside the sector of interest (i.e. on the shape of the contact line

on the side of the drop furthest from the vertex). Therefore, restricting our attention
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to only the universal features of the solution, we can consider only the times t � tf

and ignore the dependence of R0 (and hence vr and vφ) on time. Then the time and

the coordinate dependences in the differential equations above separate trivially and

the time it takes an element of fluid to reach the contact line can be calculated as

t =
∫ α/2
φi

r dφ

vφ
=
∫ r0
ri

dr

vr
, (4.32)

where (ri, φi) are the initial coordinates of that element of fluid. Taking into account

expressions (4.21) and (4.22) for the velocity components and relation (4.27) between

r and φ on a streamline, one can reduce both integrals to

t = t0

∫ α/2
φi

exp
[
(ν − µ+ 1)(3ν − µ− 1)

∫ α/2
φ

ψ̃(ξ) dξ

ψ̃′(ξ)

]

h̃2(φ)ψ̃′(φ)
dφ, (4.33)

where t0 is a combination of system parameters with the dimensionality of time:

t0 =
ρ

J0

√
A
µ−1

R−ν+1
0i r

ν−µ+1
0 (4.34)

and R0i = R0(0). Within this time all the solute that lays on the way of this element

of fluid as it moves toward the contact line becomes part of the deposit (highlighted

area in Fig. 4.9). The mass dm of this deposit (accumulated on the contact line

between r0 and r0 + dr0) can be found by integrating h(r, φ, 0) of Eq. (4.2) over

area dA swept by this infinitesimal volume and multiplying the result by the initial

concentration c of the solute [see Eq. (2.15)]. Employing relation (4.27) once again,

we obtain:

dm = c
rν+1
0 dr0

Rν−1
0i

∫ α/2
φi

h̃(φ) exp

[
(ν + 2)(3ν − µ− 1)

∫ α/2
φ

ψ̃(ξ) dξ

ψ̃′(ξ)

]
dφ. (4.35)
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Figure 4.9: Qualitative sketch: mutual location of streamlines (the two lines with
arrows) and isochrones (the four numbered lines). Solute moves along the streamlines
towards the contact line (the bold line). Shaded area is swept by an infinitesimal
element of fluid between the two infinitesimally close streamlines as that element
moves towards the contact line. The isochrones are the geometric locations, starting
from which the solute reaches the contact line at the same time. Solute from isochrone
1 reaches the contact line first; solute from isochrone 4 reaches the contact line last.

Dependence dm(t) can now be found by eliminating φi from results (4.33) and (4.35).

Exact analytical calculation of the dependence m(t) is not possible for an arbi-

trary starting point (ri, φi) on a streamline since no analytical expression for ψ̃(φ)

is available for arbitrary φ and since integrals in Eqs. (4.33) and (4.35) cannot be

computed analytically for arbitrary φ even if ψ̃(φ) were known. However, there are

two important cases that can be tackled analytically: (a) early times, when the initial

point is close to the contact line (i.e. when ∆φi � α/2 and ri ≈ r0) and only the

solute between that initial point and the contact line is swept into the edge deposit

(the starting point is on isochrone 1 of Fig. 4.9 or closer to the contact line), and (b)

intermediate times, when the initial point is close to the bisector (i.e. when |φi| � α/2

and ri � r0) and virtually all the solute between the bisector and the contact line is

swept into the edge deposit (the starting point is on isochrone 4 of Fig. 4.9 or further

from the vertex). Situations between these two limiting cases (highlighted area in
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Fig. 4.9 demonstrates one of them, starting points on isochrones 2 and 3 would cor-

respond to some other) can be extrapolated on the basis of continuity of the results.

Since our region is indefinitely smaller than the drop as a whole, we may treat regions

(a) and (b) assuming that a negligible fraction of the drop has evaporated. At some

later stage that we call the late-time regime, an appreciable fraction of the drop has

evaporated, and the fluid trajectories have reached back into the bulk of the drop.

In this late regime our asymptotic treatments are clearly not adequate to describe

the flow as we did not specify any details of the drop geometry far from the vertex.

Thus we cannot treat this regime by our methods, and only the properties of drying

process at early and intermediate stages can be found from information in hand.

Apart from the definitions based on the trajectories, the three regimes can be

equivalently defined in terms of time t: (a) early times: t � t0; (b) intermediate

times: t0 � t � tf ; and (c) late times: t ≈ tf . Here t0 is the characteristic time

defined in Eq. (4.34) (this characteristic time depends on r0) and tf is the total drying

time defined in Eq. (4.17). The equivalence of the definitions in terms of the initial

position on a trajectory and in terms of time can be seen from equation (4.33). As we

explained in the preceding paragraph, only the early and the intermediate times are

of our interest as being independent on the rest of the boundary shape, and therefore

the assumption t� tf employed at the beginning of this section is coherent with our

intention to determine only the universal features of the results.

As is clear from the definition of the intermediate-time regime, the necessary condi-

tion for its existence is t0 � tf , which can be reduced to (r0/
√
A)3−µ(r0/R0i)

ν−2 � 1

by combining Eqs. (4.34) and (4.17). For acute opening angles the latter condition is

always true (27), and hence the intermediate regime is well defined for acute open-

ing angles. For obtuse opening angles the condition above can be transformed into

(r0/
√
A)ν−µ+1 � θ2−ν

i , where θi is the typical initial value of the contact angle in
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the bulk of the drop, i.e. far away from the vertex. This condition should be expected

to be satisfied for not too small initial values of the bulk contact angle θi. The closer

to the vertex the trajectory endpoint is, the better this condition is obeyed. On

the other hand, this condition is obeyed worse for larger opening angles. At exactly

α = π the intermediate-time regime is indistinguishable from the early-time regime,

and hence should not exist (27).

At early times, the deposit growth is entirely due to the transfer of particles

originally located near the contact line. Evaluating the integrals in expressions (4.33)

and (4.35) in limit ∆φi → 0, expressing ∆φi in terms of time and then substituting

the result into the expression for mass, we obtain the mass of the deposit as a function

of time:

dm

dr0
(t, r0) ≈ c

rν+1
0

Rν−1
0i

∣∣∣h̃′ (α/2)
∣∣∣

2


1 + λ

1− λ
J∗∣∣∣h̃′ (α/2)

∣∣∣
t

t0




2
1+λ

. (4.36)

Note that t0 also depends on r0. Thus, at early times the deposit grows in time as a

power law

dm

dr0
(t, r0) ∝ t2/(1+λ)r

β
0 , (4.37)

where the r
β
0 arises from the rν+1

0 prefactor and from the r0-dependence of t0. Using

Eq. (4.34), we find

β = −(1− λ)(1 + ν)− 2µ

1 + λ
(4.38)

and plot it in Fig. 4.11 as a function of opening angle (the early-time curve). Note

that this result is independent of function ψ̃(φ) and hence precise as long as the factor

J∗ in the asymptotic of the evaporation rate (4.9) is known.

There are two important conclusions to be drawn from this result. One is that

the power-law exponent of time 2/(1 + λ) = 4/3 is exactly the same as in the case

of a round drop considered in the preceding chapter. This should be of no surprise
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Figure 4.10: An illustration of the derivation of the four-thirds law at a straight
segment of the contact line. The contact line is normal to the plane of the figure.
Length dr0 is along the contact line and hence not shown. The flow is in the plane
of the figure from left to right.

since close to the side of the angle (as well as close to the circumference of a round

drop) the contact line looks locally like a straight line, and the solute “does not know”

about the vertex of the angle or the curvature of the circumference. This exponent is

determined entirely by the local properties of an infinitesimal segment of the contact

line of length dr0 and is independent of larger geometrical features of the system.

The value 2/(1 + λ) = 4/3 of the exponent of time can be obtained from a

very simple argument, relying only on the assumptions that (a) the contact line

is straight, (b) the streamlines are perpendicular to the contact line, and (c) the

distribution of the solute is uniform. Indeed, the mass of both the water and the

solute is proportional to the volume of an element of fluid near the contact line

(Fig. 4.10): dm ∝ (∆l)2dr0. All this mass should be evaporated from the surface

of this volume element in some time t. The evaporation rate (per unit area) scales

as J ∝ (∆l)−λ and therefore the full rate of mass loss is JdA ∝ (∆l)−λ+1dr0. The

time it takes this volume to evaporate can now be found as the ratio of its mass to

the rate of mass loss: t = dm/(JdA) ∝ (∆l)1+λ. Thus, (∆l) ∝ t1/(1+λ) and hence

dm/dr0 ∝ (∆l)2 ∝ t2/(1+λ) as asserted.

The other observation is the dependence on r0. First of all, the dependence
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on distance to the vertex itself is entirely new compared to the round-drop case

(for obvious reasons). Second, since exponent β is always between −1 and 0, the

singularity in r0 is always integrable at r0 = 0. Physically, this corresponds to the

statement that the vertex of the sector does not dominate the sides and that the

deposit accumulation at the vertex is not qualitatively different from the deposit

accumulation on the sides.

Similar calculation can also be conducted analytically for the intermediate times

as well. The starting point of a streamline in the intermediate-time regime lies near

the bisector, and the appropriate limit is φi → 0. Calculating the time it takes an

element of fluid to reach the contact line [Eq. (4.33)] and the mass accumulated at

the contact line between r0 and r0 + dr0 for this time [Eq. (4.35)] in limit φi → 0,

and then eliminating φi from the two results, we arrive at the dependence of mass on

time:

dm

dr0
(t, r0) ≈ c

rν+1
0

Rν−1
0i

(µ+ 1)(1− I)

(ν − µ+ 1) + (µ+ 1)I
h̃(0)

α

2
×

×
(

(ν − µ+ 1)(3ν − µ− 1)h̃2(0)ψ̃(0)
t

t0

)1+(µ+1)I/(ν−µ+1)

. (4.39)

Taking into account that t0 also depends on r0, we finally conclude that the deposit

mass grows as a power law

dm

dr0
(t, r0) ∝ tδr

γ
0 , (4.40)

where we introduced notations for the exponent of time

δ = 1 +
(µ+ 1)I

(ν − µ+ 1)
(4.41)

and for the exponent of r0, originating from both the prefactor rν+1
0 and the r0-
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dependence of t0 [Eq. (4.34)]:

γ = µ− (µ+ 1)I. (4.42)

Unlike the early-time limit, this result depends on the entire functions J̃(φ) and ψ̃(φ),

not only their asymptotics, via parameter I defined in Eq. (4.31). This is quite natural

because an element of fluid passes through the entire drop when it moves from the

bisector to the contact line, and hence knowledge of all quantities in the intermediate

points is required. In the early regime, only the asymptotic properties near the edge

are of importance.

The exponent of time stays greater than one in the intermediate-time regime.

Thus, the rate of mass accumulation dm/dt continues to grow with time in this regime,

and the deposit mass grows faster and faster. This result has a simple explanation

for both the early- and the intermediate-time regimes. Since the initial distribution

of the solute is uniform, and since the solvent evaporates, the solute concentration at

any given volume increases with time. Thus, even though the fluid and the particles

move along the same streamlines in practically constant velocity field (assuming that

R0(t) ≈ R0i at sufficiently early stages), the rate of mass accumulation also increases

with time, since portions of solution arriving at the contact line at approximately

constant rate have higher and higher solute concentration. Note that this mechanism

and this general conclusion are in good agreement with the exact analytical result

for the circular geometry that the rate of mass accumulation must diverge at the end

of the drying process (as t → tf ) and that all the deposit must accumulate at the

contact line by t = tf .

Another observation is related to the exponent of r0. Since I < 1, then γ > −1.

Therefore, the mass is integrable at r0 = 0, and the statement of the early-time



63

0 45 90 135 180
-1.00

-0.75

-0.50

-0.25

0.00

early times

intermediate times

Ex
po

ne
nt

 o
f p

ow
er

 la
w

 d
m

/d
r 0(r 0)

Angle α (degrees)

Figure 4.11: Exponent of distance r0 in the power law dm/dr0(r0) [Eqs. (4.37) and
(4.40)] as a function of the opening angle for the two time regimes. The early-time
curve corresponds to the exponent β of Eq. (4.38); the intermediate-time curves
correspond to the exponent γ of Eq. (4.42). The two curves for the intermediate-time
exponent correspond to the two model forms for function J̃(φ).

regime that the deposit accumulation at the vertex is not qualitatively different from

the deposit accumulation on the sides continues to hold in the intermediate-time

regime as well. Trivially, γ < µ, as I > 0.

The exponent of r0 must be identically zero at any time for the opening angle of

exactly α = π. Indeed, at α = π the contact line is just a straight line (i.e. there

is no angle at all), and therefore there is a full translational symmetry with respect

to which point of this line should be called “vertex.” Thus, the choice of r0 = 0 is

absolutely arbitrary, and there can be no dependence on r0 whatsoever.

Indices γ and δ are plotted in Figs. 4.11 and 4.12, respectively, as functions of the

opening angle (the intermediate-time curves). The two intermediate-time curves on

each graph correspond to the same two model forms for function J̃(φ) as we used in

Fig. 4.7. To facilitate the comparison of the results, we plot the exponents for the

early- and the intermediate-time regimes in Figs. 4.11 and 4.12 together.
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Figure 4.12: Exponent of time t in the power law dm/dr0(t) [Eqs. (4.37) and (4.40)]
as a function of the opening angle for the two time regimes. The early-time curve
corresponds to the exponent 2/(1+λ) = 4/3; the intermediate-time curves correspond
to the exponent δ of Eq. (4.41). The two curves for the intermediate-time exponent
correspond to the two model forms for function J̃(φ).

The intersection of the exponents near α = π on both graphs can be attributed

to a couple of reasons. First, it should be kept in mind that the plotted results for

γ and δ are based on a relatively arbitrary choice of model forms for function J̃(φ),

which, as we suspect, become increasingly inaccurate for large α. Second, as was

explained just after Eq. (4.11), at exactly α = π the contact angle θ is not small

even for r � R0, and the correction to the exponent λ due to this contact angle [see

Eq. (4.10)] is comparable to the value 1/2 assumed in all numerical estimates. All in

all, we believe that this intersection of the early- and intermediate-time exponents is

an artifact of our formalism and should not be observed in reality, since the results

for the two time regimes should be identical at exactly α = π. At exactly α = π the

exponent of r0 must be equal to zero at any time and the exponent of time must be

equal to 2/(1 + λ) = 4/3 at any time.

In addition to the early- and the intermediate-time analytical asymptotics above,
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we also find the numerical solution for d2m/dtdr0(t). We find the time derivative of

dm/dr0 instead of dm/dr0 itself in order to demonstrate the amount of mass arriving

at the contact line at time t rather than the total mass accumulated by the time t.

We employ the chain rule to obtain d2m/dtdr0 on the basis of Eq. (4.33) for t(φi)

and Eq. (4.35) for dm/dr0(φi):

d

dt

(
dm

dr0

)
=

d
dφi

(
dm
dr0

)

dt
dφi

=

=
c

t0

rν+1
0

Rν−1
0i

h̃3(φi)ψ̃
′(φi) exp

[
(µ+ 1)(3ν − µ− 1)

∫ α/2
φi

ψ̃(ξ) dξ

ψ̃′(ξ)

]
, (4.43)

then use the numerical result for ψ̃(φ) (Fig. 4.5) in order to find t(φi) [Eq. (4.33)]

and d2m/dtdr0(φi) [Eq. (4.43)] numerically, and finally create a log-log parametric

plot d2m/dtdr0 vs. t, as shown in Fig. 4.13. The two curves in Fig. 4.13 correspond

to the two values of α we used earlier (70◦ and 110◦). As all numerical results of this

section are, the plot is based on one of the model forms for function J̃(φ), but very

insensitive to the particular form of this function. This plot clearly demonstrates two

different slopes (and hence two different time regimes) of each curve. The crossover

between the two regimes (slopes) occurs around time t ≈ t0 (i.e. near ln(t/t0) ≈ 0),

and the early-time slopes are equal for both values of the opening angle (and equal to

2/(1+λ)−1 = 1/3 as to be expected from our early time results). All these numerical

results are in excellent agreement with our analytical predictions, and the numerical

values of time exponents compare very well with those of Fig. 4.12 (which should be

corrected by −1 due to the differentiation with respect to time in Fig. 4.13).

In a similar fashion we obtain a log-log plot for d2m/dtdr0 as a function of r0.

We fix t, then express r0 in terms of φi by combining Eqs. (4.33) and (4.34), and

finally determine r0(φi) and d2m/dtdr0(φi) [Eq. (4.43)] numerically on the basis
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Figure 4.13: Log-log plot of the numerical solution d2m/dtdr0(t) for two values of
opening angle (for the same values as in Figs. 4.5, 4.6 and 4.8).

of the numerical result for ψ̃(φ) of Fig. 4.5. The resulting log-log parametric plot

d2m/dtdr0(r0) is shown in Fig. 4.14 for the two values of the opening angle (70◦

and 110◦). The purpose of this graph is to provide a snapshot of the deposit growth

at any given moment of time t. For small r0 the accumulation of the solute at the

contact line is already in the intermediate-time regime, while for large r0 the growth

is still in the early-time regime. The threshold between the two regimes is defined by

t = t0. This condition can be reversed by solving Eq. (4.34) with respect to r0. The

resulting value

r∗ =

(
J0

ρ

√
A

1−µ
Rν−1

0i t

) 1
ν−µ+1

(4.44)

defines the threshold in terms of r0 (at any moment of time t): the early regime

corresponds to r0 � r∗, and the intermediate regime corresponds to r0 � r∗. As

can be seen from the numeric plot, the regimes indeed switch at r0 ≈ r∗ (i.e. near

ln(r0/r
∗) ≈ 0). The intermediate-time slopes are almost equal for both graphs since

the intermediate-time exponent γ (the upper curves in Fig. 4.11) varies very weakly
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Figure 4.14: Log-log plot of the numerical solution d2m/dtdr0(r0) for two values of
opening angle (for the same values as in Figs. 4.5, 4.6, 4.8 and 4.13). Parameter r∗
is defined by Eq. (4.44).

with α (γ ≈ −0.135 for α = 70◦, and γ ≈ −0.111 for α = 110◦). Again, the numerical

results are in excellent agreement with the analytical asymptotics, and the numerical

values of exponents compare very well with those of Fig. 4.11.

Figure 4.14 suggests that the rate of increase of dm/dr0 has a sharp change of

behavior as a function of r0 for any given time. For small r0 (intermediate times)

function d2m/dtdr0(r0) varies weakly, while for large r0 (early times) it falls off more

dramatically with increasing r0. The crossover point r∗ [Eq. (4.44)] moves outwards

as a power of time t with exponent 1/(ν − µ+ 1). (Note that this exponent involves

only the accurately known functions of α.) This crossover point and its outward

motion provide a clear-cut signature of our mechanism, and this signature should

be the strongest for small opening angles (as Fig. 4.11 suggests). (In order to avoid

possible non-universal effects from late times, one needs to measure the system before

the late-time regime.)

Probably, the most exciting feature of the angular-sector solution is its dependence
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on the opening angle. Unlike the round-drop case, there is an extra free parameter

of the problem — the opening angle of the sector. All the results, including the

exponents of the power laws, depend on this opening angle. Note that these exponents

are universal, i.e. they do not depend on any other parameters of the system, except

for the opening angle. At the same time, the only parameter they depend on is

extremely easy to control — preparing an evaporating drop one can adjust the opening

angle of the contact line at his will without any technical elaborations. Thus, for

example, by suitably choosing the opening angle (and the time regime), one can

create a predetermined power-law distribution of the solute along the contact line

with virtually any exponent of distance between −1 and 0 (Fig. 4.11). In principle,

this feature may have significant practical applications for all the processes mentioned

in the Introduction.



CHAPTER 5

DEPOSIT GROWTH FOR FINITE-VOLUME PARTICLES

IN CIRCULAR EVAPORATING DROPS

In the preceding parts of this work we considered how mass of the contact-line deposit

grows with time and how it depends on such geometrical characteristics of the drop as

its radius (circular drops) or its opening angle and distance from the vertex (pointed

drops). However, we never attempted to describe the geometrical characteristics of

the contact-line deposit itself, e.g. the width and the height of the deposit ring in the

case of circular geometry. At the same time, there is solid experimental data (21)

on various geometrical characteristics of the ring and their dependence on time, the

initial concentration of the solute, and the geometry of the drop. In this chapter we

will provide a simple model that addresses this lack of theoretical understanding of the

geometrical properties of the contact-line deposit and provides analytical results that

compare favorably to the experimental data. This model is as universal (in its range

of validity) as all the consideration above and provides the description that depends

only on the geometry of the problem. This model is based on the assumption that

particles have finite volume and they simply cannot pack denser than some volume

fraction, e.g. fraction of close packing. It turns out that this model is sufficient to

explain most of the observed phenomena.

The notion that the profile of the deposit could be found by the simple assumption

that the solute becomes immobilized when the volume fraction reaches a threshold

was originally suggested by Todd Dupont (39). First efforts to create a model were

conducted by Robert Deegan (21; 22) who formulated most of the physical assump-

tions and wrote them down mathematically. Here we present the entire problem,

including its full formulation and its analytical and numerical solutions (not reported

69
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in the literature previously).

5.1 Model, assumptions, and geometry

In this chapter we will restrict our attention to the circular geometry of the drop only,

as this geometry is the easiest to deal with mathematically and the most important

practically. We will continue to use cylindrical coordinates (r, φ, z) with the origin

in the center of the drop. This will allow us to employ some results obtained for the

circular drops earlier in this work.

As we already saw, it is necessary to assume that the contact angle is small in

order to be able to obtain any analytical results in a closed form. This case is also

most important practically, as virtually always θ � 1 in experimental realizations,

including experiments of Ref. (21). Thus, we do not lose any generality assuming

that contact angle is small. This will be the only small parameter in this chapter. It

is clear that a drop with a small contact angle is necessarily thin, i.e. its maximal

height is much smaller than its radius. Therefore, it makes good sense to continue

considering vertically averaged quantities, like the vertically averaged velocity v of

Eq. (2.2) that we used in the three preceding chapters.

Our model pictures the drop as a two-component system (the components are

“fluid” and “solute”), which has two “phases”: the “liquid phase” in the middle of

the drop and the “deposit phase” near the contact line. Both components are present

in both phases, and the difference between the phases lies in the concentration of the

solute. In the deposit phase, volume fraction of solute p is high (e.g. comparable to

close packing fraction or 1) and fixed in both space and time. Thus, p is just a constant

number, one can think of it as close packing fraction or 1. (The case of p = 1 may

seem to be special as there is no water in the deposit phase; however, as will be seen
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below, for small initial concentrations of the solute this case leads to exactly the same

main order results.) In the liquid phase, volume fraction of solute χ varies in space

and changes with time, and it is relatively small compared to p. The initial volume

fraction χi = χ(0) is constant throughout the drop; at later moments the solute gets

redistributed due to the hydrodynamic flows, and the concentration becomes different

in different parts of the liquid phase. Volume fraction of fluid is then (1 − p) in the

deposit phase and (1−χ) in the liquid phase. Note that we do not require χi � p in

this section, although we do assume χi < p. We should also emphasize that we do not

presume there is any real “phase difference” between the so-called phases: one phase

is just defined as having the maximal reachable solute fraction p (solute cannot move

in this phase) while the other phase is characterized by lower solute fraction χ (in

this phase solute can move and hence concentration can change in time and space).

Besides this difference, phases are essentially identical. The idea that the solute loses

its mobility when its concentration exceeds some threshold was suggested by Todd

Dupont (39).

Since the drop is thin and since we employ vertically averaged velocity (i.e. the

problem is two-dimensional in certain sense), it is natural to assume the boundary

between the phases is vertical. Thus, the particles get stacked uniformly at all heights

when being brought to the phase boundary by the hydrodynamic flow (which does

not depend on vertical coordinate z). This boundary can be pictured as a vertical

wall at some radius R(t) from the center of the drop, and this wall propagates from

the contact line (located at Ri = R(0)) to the center of the drop. Fig. 5.1 illustrates

the mutual location of the phases, and Fig. 5.2 schematically shows the time evolution

of the drying process and growth of the deposit phase.

The evaporation rate depends only on the overall shape of the drop, and evap-

oration occurs in the same fashion from both phases. We assume that evaporation
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L DD

Figure 5.1: Mutual location of two “phases” in the drying drop: L is the liquid phase,
and D is the deposit phase.

 

time 

Figure 5.2: Time evolution of the deposit phase growth: side view (left) and top
view (right). Only the deposit phase is shown. Thickness of the ring is exaggerated
compared to the typical experimental results.
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is not influenced by any motion of the solute inside the drop, and the necessary

amount of fluid can always be supplied to the regions of highest evaporation near

the contact line. Physically, high evaporation near the edge is what brings the solute

to the contact line, and we assume that presence of the deposit does not obstruct

the motion of fluid (Fig. 5.3). Since the drop is thin and the contact angle is small,

we can use expression (3.20) for the evaporation rate, which we used for the case of

zero-volume particles, but with a slight modification — now, the radius of the drop

is Ri (while R(t) stands for the radius of the inner boundary of the deposit phase, so

that Ri = R(0)):

J(r) =
2

π

D(ns − n∞)√
R2
i − r2

. (5.1)

Here D the diffusion constant, and ns and n∞ are the saturated and ambient vapor

densities, respectively. The real situation may be different from the assumed above

when p is large or comparable to 1, and the edge of the area where evaporation occurs

may be located near the boundary of the phases instead of the contact line. However,

for small initial concentrations of the solute, the main order result will be insensitive

to the exact location of the singularity of the evaporation rate: whether it is located

at the contact line or near the boundary of the phases. We will further comment on

this case of “dry deposit” when we obtain the full system of equations.

The geometry of the problem is shown in Fig. 5.4. The radius of the drop is Ri,

the radius of the phase boundary is R(t), and R(0) = Ri. The height of the phase

boundary is H(t), and the initial condition is H(0) = 0. We conveniently split the

height of the free surface of the liquid phase into the sum of H(t) and h(r, t). Since

H is independent of r, function h(r) satisfies the Young-Laplace equation (2.11). As

is easy to see, the solution to this equation remains the same as in Chapter 2, and

hence the shape of the upper part (above the dashed line in Fig. 5.4) is just a spherical
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Figure 5.3: Presence of particles in the deposit does not obstruct fluid evaporation at
the edge of the drop. All the necessary fluid is supplied, and it is this motion of the
fluid that brings the particles to the deposit phase. Also shown schematically is the
fact that the boundary between the phases is vertical and the particles get stacked
at full height between the substrate and the free surface of the drop.

cap. Thus, we can use expression (3.1) obtained for h(r, t) earlier, which reduces to

Eq. (3.3) in limit of small contact angles:

h(r, t) =
R2(t)− r2

2R(t)
θ(t). (5.2)

Here θ(t) is the angle between the liquid-air interface and the substrate at phase

boundary (an equivalent of the contact angle). Note that we do not assume that θ(t)

and h(r, t) are necessarily positive at all times: both can be negative at later drying

stages, and the shape of the liquid-air interface may be concave. Both convex and

concave solutions for h(r, t) are consistent with Eq. (2.11); the right hand side of this

equation can have either sign. By definition, both θ(t) and h(r, t) are positive when

the surface is convex (and therefore they are positive at the beginning of the drying

process) and negative when the surface is concave. The initial value of θ(t) coincides

with the initial contact angle θi = θ(0).

Clearly, there are three unknown functions of time in this geometry: θ(t), R(t)

and H(t). These three time dependences are to be determined in the subsequent

sections of this chapter. However, these quantities are not independent of each other.

If we assume that solute particles fill up the entire space between the substrate and
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Figure 5.4: Geometry of the problem. Vertical scale is exaggerated in order to see
the details, typically H � Ri and h� Ri.

the liquid-air interface when being brought to the phase boundary, it is easy to see

that the three geometrical functions are related by the constraint

dH

dt
= −θdR

dt
. (5.3)

Physically, this assumption means that the angles between the liquid-air interface

and the substrate are identical on both sides of the phase boundary (θ = |dH/dR|),

and hence h(r) and its first derivative are continuous past the phase boundary. This

condition was first introduced by Robert Deegan (21; 22). Thus, there are actually

only two independent functions of time, θ(t) and R(t). In the case of zero-volume

particles we had only one independent function of time — contact angle θ(t).

The geometrical definitions above allow us to find volume of each of the two

phases. Volume of the liquid phase is simply

VL = 2π
∫ R(t)

0
(h(r, t) +H(t)) rdr = 2π

(
R3θ

8
+
R2H

2

)
. (5.4)

Taking into account relation (5.3), an infinitesimal variation of this volume can be

related to the infinitesimal variations of θ and R:

dVL =
πR4

4
d

(
θ

R

)
+ 2πHRdR. (5.5)
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The first term is responsible for the motion of the liquid-air interface, and the second

term corresponds to the shift of the phase boundary. It is also straightforward to

obtain an expression for the differential of the volume of the deposit phase, which has

only the term related to the inward motion of the phase boundary:

dVD = −2πHRdR. (5.6)

We will use the last two expressions in the following section. We will also adopt the

notation that subscripts L and D refer to the liquid and deposit phases, respectively.

Having formulated assumptions and having stated the model and the geometry,

we are now in position to write the governing equations.

5.2 Main equations: conservation of mass

If one were asked to express the essence of the entire theory in one sentence, this

sentence would be: “It is all about conservation of mass.” Indeed, as we will see

by the end of this section, all three governing equations obtained here represent

conservation of mass (or volume) in one form or another.

We start from the global conservation of mass in the drop. Since the amount of

solute within the drop does not change, the change of the entire drop volume is equal

to the change of the amount of fluid only. This fluid gets evaporated from the surface

of the drop, and the total amount evaporated per unit of time from the entire surface

of the drop equals to the total change of fluid volume in the drop. Hence the total

change of drop volume is equal to volume of fluid evaporated from the surface:

dV |tot = dV F
∣∣∣
surf

. (5.7)
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By convention, superscripts F and S refer to the fluid and the solute components,

respectively (while subscripts L and D continue to denote phases). Now, the total

change of drop volume is the sum of volume changes of each phase:

dV |tot = dVL + dVD =
πR4

4
d

(
θ

R

)
, (5.8)

where dVL and dVD were found in the preceding section [Eqs. (5.5) and (5.6)]. On

the other hand, the volume of fluid evaporated from the surface of the drop during

time dt can be determined from

dV F

dt

∣∣∣∣∣
surf

= −
∫ Ri

0

J(r)

ρ

√
1 + (∂rh)2 2πrdr ≈ −2π

∫ Ri
0

J(r)

ρ
rdr, (5.9)

where, as in the rest of this work, ρ is the density of the fluid and we neglected the

gradient of h(r) with respect to unity (which is always legitimate for thin drops).

Simple integration with J(r) of Eq. (5.1) yields

dV F
∣∣∣
surf

= −4D(ns − n∞)Ri
ρ

dt. (5.10)

Combining Eqs. (5.7), (5.8), and (5.10), we finally obtain the first main differential

equation of this chapter:

R4 d

dt

(
θ

R

)
= −16D(ns − n∞)Ri

πρ
. (5.11)

This equation represents the global conservation of mass in the drop and relates time

dependencies of θ(t) and R(t).

Our next equation represents the local conservation of mass and is analogous to

Eq. (2.3). Now, one has to take into account that there are two components in the
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liquid phase and write a separate equation for each component. Since solute particles

are carried along by the flow [a free particle of an appropriate size reaches the speed of

the flow in about 50 ns in water under normal conditions (40)], the velocities of each

component should be identical at each point within the liquid phase. Conservation

of fluid can be written in exact analogy with Eq. (2.3):

∇ · [(1− χ)(h+H)v] +
J

ρ
+ ∂t [(1− χ)(h+H)] = 0, (5.12)

where we took into account that the surface height is now (h + H) and neglected

its gradient with respect to unity in the second term as we did everywhere in this

work. Similar equation can be written for the conservation of solute, but without the

evaporation term:

∇ · [χ(h +H)v] + ∂t [χ(h+H)] = 0. (5.13)

In the last two equations χ is the volume fraction of the solute at a given point within

the liquid phase. Adding the two equations and employing the linearity of differential

operations, we obtain a direct analog of Eq. (2.3):

∇ · [(h +H)v] +
J

ρ
+ ∂t(h+H) = 0. (5.14)

This equation could have been obtained if we considered only one component with vol-

ume fraction 1 in the liquid phase, and this equivalence should not be of any surprise:

we explicitly assumed that the solute particles move in exactly the same fashion as

the fluid does, and hence any differentiation between the two (from the point of view

of the conservation of volume) is completely lost. Note that if evaporation were too

intensive, this equivalence would not hold, as there might be an insufficient amount

of fluid coming into a volume element and the solution could get completely dry (i.e.
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only the solute component would be left). We implicitly assume this is not the case

for our liquid phase where the solute fraction is relatively small and the evaporation

is not too strong.

In circular geometry Eq. (5.14) can now be resolved with respect to the flow

velocity, as was done in Eq. (3.22):

vr(r, t) = − 1

r(h+H)

∫ r
0

(
J

ρ
+ ∂th + ∂tH

)
rdr. (5.15)

Straightforward integration with J(r) of Eq. (5.1), h(r, t) of Eq. (5.2), and dH/dt of

Eq. (5.3) and employment of Eq. (5.11) for d(θ/R)/dt yield

vr(r, t) =
2D(ns − n∞)

πρ

Ri
r

√
1−

(
r
Ri

)2 −
[
1−

(
r
R

)2
]2

Rθ
2

[
1−

(
r
R

)2
]

+H
. (5.16)

This is an analog to Eq. (3.23); however, in this expression the velocity does not

diverge at r = R, but rather reaches a finite value (which is quite natural as the

evaporation rate does not diverge at r = R). This equation is a direct consequence

of the local conservation of mass.

As we did in the preceding chapters, we label ri(t) the initial location of the

solute particles that reach the phase boundary (and become part of the deposit ring)

at time t. This function is monotonically decreasing, as the solute particles from the

outer areas of the drop reach the deposit phase sooner than the particles from the

inner areas do. The derivative of this function is related to the velocity found in the

preceding paragraph in a very simple fashion:

dri
dt

= −vr(ri, t). (5.17)
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We explained the origin of this relation in Chapter 2. Thus, this equation and the

result for the flow velocity of the preceding paragraph yield the second principal

equation of this section:

dri
dt

= −2D(ns − n∞)

πρ

Ri
ri

√
1−

(
ri
Ri

)2 −
[
1−

(
ri
R

)2
]2

Rθ
2

[
1−

(
ri
R

)2
]

+H
. (5.18)

This equation relates ri(t) to time dependencies of the geometrical parameters of the

drop [θ(t), R(t), and H(t)].

The volume of the solute in the deposit phase V SD at time t is equal to the volume

of the solute located outside the circle of radius ri(t) at time 0 (since all the solute

between ri(t) and Ri becomes part of the deposit by time t). The latter volume can

be found similarly to Eqs. (2.15) and (3.25) (which are written for the mass instead

of the volume) and hence

V SD = χi

∫ Ri
ri

h(r, 0) 2πrdr = V S


1−

(
ri
Ri

)2



2

, (5.19)

where V S = πχiR
3
i θi/4 is the total volume of the solute in the drop. On the other

hand, the volume of the solute in the deposit phase is just the constant fraction p of

the volume of the entire deposit phase:

V SD = pVD. (5.20)

Equating the right-hand sides of these two equations, taking the time derivatives of

both sides, and making use of the already determined dVD of Eq. (5.6), we obtain
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the third principal equation of this section:

χiR
3
i θi


1−

(
ri
Ri

)2

 d

dt


1−

(
ri
Ri

)2

 = −4pHR

dR

dt
. (5.21)

As the other two principal equations (5.11) and (5.18) are, this equation is a conse-

quence of the conservation of mass. While Eq. (5.11) comes from the global conser-

vation of the fluid, this equation represents the global conservation of the solute.

Thus, we have four unknown functions of time: θ(t), R(t), H(t), and ri(t), and

four independent differential equations for these functions: Eqs. (5.3), (5.11), (5.18),

and (5.21). In reality we need only three of these functions: θ(t), R(t), and H(t);

however, there is no simple way to eliminate ri(t) from the full system of equations

and reduce the number of equations. Having solved this system of the four differential

equations, we will be able to fully characterize the dimensions of the deposit phase

and describe the evolution of the deposit ring. The following sections are devoted to

the details of this solution.

Here we will only comment on how this system of equations would change if we

were to consider the case of the completely dry solute p = 1. In this case there

would be no evaporation from the surface of the deposit phase, and the effective edge

of the evaporating area would be somewhere in the vicinity of the phase boundary.

Assuming the same one-over-the-square-root divergence of the evaporation rate at

r = R instead of r = Ri [which mathematically means substitution of R in place of

Ri in Eq. (5.1)] and conducting a derivation along the lines of this section, one can

obtain a very similar system of four differential equations. These equations would be

different from Eqs. (5.3), (5.11), (5.18), and (5.21) in only two minor details. First,

Eqs. (5.11) and (5.18) would lose all indices i at all occasions of Ri (i.e. one should

substitute R for all Ri in both equations). Second, p should be set to 1 in Eq. (5.21).
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Apart from these details, the two systems would be identical. As we will see in the

following section, this difference between the two systems is not important in the

main order in a small parameter introduced below, and thus this “dry-solute” case

does not require any special treatment contrary to the intuitive prudence.

5.3 Analytical results in the limit of small initial

concentrations of the solute

So far we have not introduced any small parameters in this problem other than the

initial contact angle θi � 1. In particular, equations (5.3), (5.11), (5.18), and (5.21)

were obtained without assuming any relation between p and χi other than the non-

restrictive condition χi < p. In order to find the analytical solution to this system, we

will have to assume that χi � p. Then, we will solve the same system of differential

equations numerically for an arbitrary relation between χi and p.

Assumption χi � p physically means that the solute concentration in the liquid

phase is small — it is much smaller than the concentration of close packing or any

other comparable number of the order of 1. This is the case for most practical realiza-

tions of the ring deposits in experiments and observations: the solute concentration

rarely exceeds 10% of volume, and in most cases it is far lower. If the volume fraction

of the solute in the drop is small, then the solute volume is also small compared to

the volume of the entire drop. Hence, the deposit phase, which consists mostly of

the solute and whose volume is of the order of magnitude of the volume of the entire

solute in the drop, must have small volume compared to the volume of the entire

drop. Thus, if the initial volume fraction of the solute in the drop is small, then

the dimensions of the deposit ring must be small compared to the corresponding di-

mensions of the entire drop (i.e. the ring width must be much smaller than the drop
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radius and the ring height must be much smaller than the drop height).

Let us now introduce parameter ε that is small when χi/p is small. However, we

do not fix its functional dependence on χi/p for the moment:

ε = f

(
χi
p

)
� 1, (5.22)

where f is an arbitrary increasing function of its argument. Then we postulate that

the ring width is proportional to this parameter:

R(t) = Ri
[
1− εW̃ (t)

]
, (5.23)

where W̃ (t) is an arbitrary dimensionless function and we explicitly introduced the

dimensionality via Ri. Obviously, W̃ (0) = 0. So far we have not done anything

but writing mathematically that the ring width is small whenever the initial volume

fraction of the solute is small (i.e. the statement of the preceding paragraph). Next,

we introduce a dimensionless variable for the angle θ(t):

θ(t) = θiθ̃(t), (5.24)

where both θ(t) and θi are small everywhere in this chapter, while the newly intro-

duced function θ̃(t) is arbitrary (in particular, θ̃(0) = 1). From the definitions above

and from the geometrical constraint (5.3), it is straightforward to conclude that for

small initial concentrations of the solute the height of the ring H(t) must be linear in

small parameters ε and θi and directly proportional to the only dimensional scale Ri:

H(t) = εθiRiH̃(t), (5.25)



84

where H̃(t) is a dimensionless function of time (H̃(0) = 0). Equation (5.3) fixes the

relation between this function and the previously introduced functions W̃ (t) and θ̃(t):

dH̃

dt
= θ̃

dW̃

dt
. (5.26)

Finally, we introduce the last dimensionless variable in place of the fourth unknown

function ri(t):

Ṽ (t) = 1−
(
ri(t)

Ri

)2

, (5.27)

with the initial condition Ṽ (0) = 0. So far, we simply introduced four new dimension-

less variables in place of the four original unknown functions of time and explicitly

separated dependence of these unknown functions on small parameters ε and θi. As

a final step of this procedure, we introduce the dimensionless time τ :

τ =
t

tf
, (5.28)

where tf is a combination of system parameters with the dimensionality of time:

tf =
πρR2

i θi
16D(ns − n∞)

. (5.29)

In the limit χi/p → 0 this combination represents the time at which all the solute

reached the deposit phase; for finite χi/p it does not have so simple interpretation.

Substitution of all the definitions for the dimensionless variables of the preceding

paragraph into the original system of equations (5.3), (5.11), (5.18), and (5.21) and

retention of only the leading and the first correctional terms in ε lead to the following

simplified system of equations:

dH̃

dτ
= θ̃

dW̃

dτ
, (5.30)
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dθ̃

dτ
+ εθ̃

dW̃

dτ
− 3εW̃

dθ̃

dτ
= −1, (5.31)

dṼ

dτ
=

√
Ṽ − Ṽ 2

[
1− 4εW̃

(
Ṽ −1 − 1

)]

2θ̃Ṽ
[
1− εW̃

(
2Ṽ −1 − 1

)]
+ 4εH̃

, (5.32)

χi
p
Ṽ
dṼ

dτ
= 4ε2H̃

dW̃

dτ

(
1− εW̃

)
. (5.33)

These differential equations are still coupled, but the coupling is simpler than in

the original system. As is apparent from the last equation, parameter ε2 must be

proportional to χi/p. Since the separation of the ring width into ε and W̃ in Eq. (5.23)

is absolutely arbitrary, parameter ε is defined up to a constant multiplicative factor.

Therefore, we set this factor in such a way that ε2 is equal to χi/p:

ε =

√
χi
p
. (5.34)

This fixes the function f from the original definition (5.22).

Next, we expand all four unknown functions of τ in small parameter ε:

θ̃ = θ̃0 + εθ̃1 + · · · , (5.35)

Ṽ = Ṽ0 + εṼ1 + · · · , (5.36)

H̃ = H̃0 + εH̃1 + · · · , (5.37)

W̃ = W̃0 + εW̃1 + · · · , (5.38)

and keep only the main-order terms after substitution into system (5.30)–(5.33). The

resulting main-order system of differential equations becomes very simple:

dH̃0

dτ
= θ̃0

dW̃0

dτ
, (5.39)
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dθ̃0

dτ
= −1, (5.40)

dṼ0

dτ
=

√
Ṽ0 − Ṽ 2

0

2θ̃0Ṽ0
, (5.41)

Ṽ0
dṼ0

dτ
= 4H̃0

dW̃0

dτ
. (5.42)

Clearly, equations decouple: the second equation can be solved with respect to θ̃0(τ)

independently of all the others, then the third equation can be solved with respect to

Ṽ0(τ) independently of the first and the fourth, and finally the first and the fourth

equations can be solved together as well (since dW̃0/dτ can be eliminated from the

two and the result can be solved with respect to H̃0(τ)). Thus, it is a matter of

technical effort and time to obtain the following solution to the system of equations

above with the appropriate initial conditions:

θ̃0(τ) = 1− τ, (5.43)

Ṽ0(τ) =
[
1− (1− τ)3/4

]2/3
, (5.44)

H̃0(τ) =

√
1

3

[
B
(

7

3
,

4

3

)
− B(1−τ)3/4

(
7

3
,
4

3

)]
, (5.45)

W̃0(τ) =
∫ τ

0

1

8H̃0(τ ′)

[
1− (1− τ ′)3/4

]1/3

(1− τ ′)1/4
dτ ′. (5.46)

Here B(a, b) =
∫ 1
0 x

a−1(1 − x)b−1 dx is the complete beta-function, Bz(a, b) =

∫ z
0 x

a−1(1− x)b−1 dx is the incomplete beta-function (a > 0, b > 0, and 0 ≤ z ≤ 1),

and the integral in the last equation cannot be expressed in terms of the standard

elementary or special functions. In a similar fashion, systems of equations of the first

and higher orders in ε can be written, however, they cannot be resolved analytically

as easily as the main-order system above.
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A system of equations similar to our system (5.30)–(5.33) was presented by Robert

Deegan in works (21; 22). Small concentrations are assumed in those works, but no

general system of equations similar to our Eqs. (5.3), (5.11), (5.18), and (5.21) is

written before introducing the small parameter and expanding in it. The equations

in that system mix terms of the main and the correctional order in concentration

arbitrarily. Upon examination, that system does include all the main-order terms of

our system; however, the first-order corrections are incomplete, and most corrections

are missing. Moreover, no analysis quantifying how small the neglected and the re-

tained “small corrections” are is made in Refs. (21; 22), and therefore the importance

of different terms is difficult to infer from that system. Equations are not written

as a single system of four differential equations for four unknown functions; instead,

equations for two variables are solved before even writing the other two equations,

thereby undermining the equality of all the four functions of time that must be de-

termined simultaneously and making it impossible to compare the neglected terms.

Finally, no analytical solution to the system of equations is provided in Refs. (21; 22);

the author tackles the system numerically. The numerical results are not presented

explicitly either; they are only used to convert the data between the experimental

graphs. All these deficiencies are rectified in our approach above. The analytical

solution (5.43)–(5.46) is reported here for the first time. Higher-order terms can also

be constructed (with sufficient labor invested), and the procedure can be conducted

up to an arbitrary order.

How do our results (5.43)–(5.46) translate into the original variables? The first

two of them [Eqs. (5.43) and (5.44)] reproduce the earlier results obtained for the zero-

volume deposit. In terms of the original (dimensional) variables Eq. (5.43) represents

the linear decrease of the angle between the liquid-air interface and the substrate with
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time:

θ(t) = θi

(
1− t

tf

)
. (5.47)

Taking into account the definition of tf [Eq. (5.29)], one can see that this is a direct

analog of Eq. (3.16) for the contact angle in the zero-volume-particle case. So, angle

θ in the finite-volume case depends on time in exactly the same fashion as the contact

angle in the zero-volume case does. This expression also provides an interpretation

of tf : it is the time at which the free surface of the liquid phase becomes flat. Before

time tf this surface is convex, after tf it becomes concave and bows inward (until

it touches the substrate). Thus, tf is not the total drying time, but rather the time

at which θ becomes zero. In the limit χi/p → 0 or equivalently ε → 0 the height

of the deposit is going to zero and the two times are the same. For finite values of

both parameters the total drying time is longer than the time at which the liquid-air

interface becomes flat. Eq. (5.47) has been verified in experiments (21; 22) where the

mass of the drop was measured as a function of time (Fig. 5.5). Since the mass of

the drop is directly proportional to θ these results confirm the linearity of θ(t) during

most of the drying process.

The second equation (5.44) also has a direct analog in the zero-volume case. In

the original variables it can be rewritten as

(
1− t

tf

)3/4

+


1−

(
ri(t)

Ri

)2



3/2

= 1, (5.48)

which is identical to Eq. (3.24). Clearly, ri = 0 when t = tf . Thus, tf can also be

interpreted as the time at which all the solute particles become part of the deposit.

The same interpretation can be obtained differently: according to Eqs. (5.19), (5.27),
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Figure 5.5: Mass of a drying drop as a function of time. Experimental results, after
Refs. (21; 22). The line running through the data is a linear fit. (Courtesy Robert
Deegan.)

and (5.44), the fraction of the solute particles in the deposit phase V SD/V
S is simply

V SD
V S

= Ṽ 2
0 =


1−

(
1− t

tf

)3/4



4/3

(5.49)

(plotted in Fig. 5.6). This fraction becomes 1 when t = tf , and thus all the solute

particles reach the deposit by time tf . So far, the results of this finite-volume model

coincide with the results of the zero-volume case considered earlier.

However, the third and the fourth equations [Eqs. (5.45)–(5.46)] provide com-

pletely new results. In the dimensional variables they yield the height of the phase

boundary H and the width of the deposit ring W ≡ Ri −R, respectively:

H(t) =

√
χi
p
θiRiH̃0

(
t

tf

)
, (5.50)

W (t) =

√
χi
p
RiW̃0

(
t

tf

)
, (5.51)

where functions H̃0(τ) and W̃0(τ) are given by Eqs. (5.45) and (5.46) and plotted in
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Figure 5.6: Fraction of the solute in the deposit phase V SD/V
S as a function of time

[Eq. (5.49)].

Figs. 5.7 and 5.8. (Note that these expressions represent only the leading term in the

expansions of the full functions for height and width in small parameter ε =
√
χi/p.)

These results provide the sought dependence of the geometrical characteristics of the

deposit ring on all the physical parameters of interest: on the initial geometry of the

drying drop (Ri and θi), on the initial concentration of the solute (χi), and on the time

elapsed since the beginning of the drying process (t). If the time is considered as a

parameter, they also provide all the necessary information to obtain the geometrical

profile of the deposit (i.e. the dependence of height on width), which we plot in

Fig. 5.9. Note that the vertical scale of this plot is highly expanded compared to the

horizontal scale since there is an extra factor of θi � 1 in the expression for height;

in the actual scale the height is multiplied by θi (in addition to the same scaling

parameters as in the width) and hence is much smaller than it appears in Fig. 5.9.

The time dependence of H and W plotted in Figs. 5.7 and 5.8 deserves a brief

discussion. It is straightforward to obtain the asymptotics of H̃0(τ) and W̃0(τ) for

small values of the argument and for values around 1 (i.e. for the early and the late
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Figure 5.7: Height of the phase boundary H(t) in units of θiRi
√
χi/p as a function

of time [Eq. (5.50)].
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Figure 5.8: Width of the deposit ring W (t) in units of Ri
√
χi/p as a function of time

[Eq. (5.51)].
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Figure 5.9: Deposit ring profile: height vs. width. The vertical scale is different from
the horizontal scale by a factor of θi � 1.

drying stages). At early times, both the height and the width scale with the drying

time as a power law with exponent 2/3:

H ≈
√
χi
p
θiRi

(3τ)2/3

27/3
[1 +O(τ)]

(
τ =

t

tf
� 1

)
, (5.52)

W ≈
√
χi
p
Ri

(3τ)2/3

27/3
[1 +O(τ)]

(
τ =

t

tf
� 1

)
. (5.53)

Thus, at early times H ≈ θiW , which can also be deduced directly from Eq. (5.3)

without obtaining the complete solution above. At the end of the drying process,

the height and the width approach finite values (which, apart from the dimensional

scales, are universal, i.e. simply numbers), and do so as power laws of (tf − t) with

two different exponents:

H ≈
√
χi
p
θiRi


H̃0(1)− (1− τ)7/4

14H̃0(1)
+O(1− τ)5/2




(
1− τ = 1− t

tf
� 1

)
,

(5.54)
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Figure 5.10: Ring width vs. drop radius. Experimental results, after Refs. (21; 22).
The line running through the data is a linear fit. (Courtesy Robert Deegan.)

W ≈
√
χi
p
Ri


W̃0(1)− (1− τ)3/4

6H̃0(1)
+O(1− τ)3/2




(
1− τ = 1− t

tf
� 1

)
,

(5.55)

where H̃0(1) and W̃0(1) are just numbers:

H̃0(1) =

√
1

3
B
(

7

3
,

4

3

)
≈ 0.297, (5.56)

W̃0(1) =
∫ 1

0

1

8H̃0(τ)

[
1− (1− τ)3/4

]1/3

(1− τ)1/4
dτ ≈ 0.609. (5.57)

Clearly, dH/dW = θi(1− τ) and hence vanishes when τ → 1. This fact can also be

observed in flattening of the graph in Fig. 5.9 at late times.

Dependence of the height and the width on the radius of the drop Ri, while

intuitively obvious (since Ri is the only scale in this problem with the dimensionality

of the length), has been verified in experiments (21; 22). A linear fit has been obtained

for the dependence of the ring width on the radius (Fig. 5.10), which agrees with our

findings.

Comparison to the experimental data for the dependence on the initial concentra-
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tion of the solute is slightly less trivial. Our results predict that both height H and

width W scale with the initial concentration as χ
1/2
i (at least, in the leading order

for small concentrations). However, experimental results by Deegan (21; 22) show

a different exponent of χi. Exponent of χi was determined to be 0.78 ± 0.10 and

0.86 ± 0.10 for two different particles sizes (Fig. 5.11). Why is the difference? The

answer lies in the fact that the width measured in experiments (21; 22) is not the

full width of the ring at the end of the drying process, but rather the width of the

ring at depinning. Depinning is a process of detachment of the liquid phase from the

deposit ring (Fig. 5.12). This detachment was observed experimentally in colloidal

suspensions but has not been explained in full theoretically yet.1 An important ob-

servation, however, is that the depinning time (i.e. the time at which the detachment

occurs and the ring stops growing) depends on the initial concentration of the solute.

This dependence was also measured by Deegan (Fig. 5.13). The resulting exponent

was determined to be 0.26±0.08. Thus, the width of the ring at depinning Wd scales

with the initial concentration of the solute χi as

Wd ∝ χ
1/2
i W̃0

(
td
tf

)
∝ χ0.5

i W̃0

(
χ0.26±0.08
i

)
, (5.58)

where td is the depinning time (td/tf ∝ χ0.26±0.08
i ). As is apparent from Fig. 5.13,

the typical values of the depinning time are of the order of 0.4–0.8 tf . In this time

range, function W̃0 is virtually linear (Fig. 5.8). Therefore, the dependence of Wd on

1. While the full explanation is yet to be developed, the naive reason for depinning seems rela-
tively straightforward. The pinning force depends only on the materials involved and is relatively
insensitive to the value of the contact angle. At the same time, the depinning force is simply the
surface tension, which is directed along the liquid-air interface and which increases as the contact
angle decreases (since only the horizontal component of this force is important). Thus, the relatively
constant pinning force cannot compensate for the increasing depinning force of the surface tension,
and after the contact angle decreases past some threshold, the depinning force wins and causes
detachment of the liquid phase from the deposit.



95

 

Figure 5.11: Ring width normalized by the drop radius vs. initial concentration of the
solute for two different particle sizes. Experimental results, after Refs. (21; 22). The
two data sets are offset by a factor of 5 to avoid mixing of the data points related to
the different particle sizes. The lines running through the data are linear fits in the
double-logarithmic scale, which upon conversion to the linear scale yield power laws
with exponents 0.78± 0.10 and 0.86± 0.10. (Courtesy Robert Deegan.)

χi has the overall exponent of the order of 0.5 + (0.26 ± 0.08) = 0.76 ± 0.08. It is

now clear that both experimental results 0.78± 0.10 and 0.86± 0.10 fall within the

range of the experimental uncertainty of the approximate predicted value 0.76±0.08.

All in all, it turns out the theoretical dependence of the ring width on the initial

concentration agrees with the experimental results very well.

Note that Robert Deegan (21; 22) did not report direct measurements of the

height of the deposit. He calculated the height from the data in hand, and thus direct

comparison to the experimental data is not available for the height [and comparison

between the plots of Refs. (21; 22) and our predictions depends on the details of

Deegan’s calculation and its inherent assumptions].

The square-root dependence of the height and the width on the concentration is in

good agreement with general physical expectations. Indeed, the volume of the deposit

ring is roughly proportional to the product of the height and the width. On the other

hand, the height is of the same order of magnitude as the width since the ratio of
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Figure 5.12: A photographic sequence demonstrating a depinning event. Experimen-
tal results, after Refs. (21; 22). The view is from above, and the solid white band in
the lower part of the frame is the ring; the rest of the drop is above the ring. The
time between the first and the last frames is approximately 6 s; the major axis of the
hole is approximately 150 µm. (Courtesy Robert Deegan.)

 

Figure 5.13: Depinning time normalized by the extrapolated drying time vs. initial
concentration of the solute. Experimental results, after Refs. (21; 22). The line
running through the data is a linear fit in the double-logarithmic scale, which upon
conversion to the linear scale yields a power law with exponent 0.26±0.08. (Courtesy
Robert Deegan.)
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the two is of the order of θi (which is a constant). Thus, both the height and the

width scale approximately as a square root of the ring volume. Finally, the volume

of the deposit ring is proportional to the initial volume fraction of the solute: the

more solute is present initially, the larger the volume of the deposit ring is at the end

(since the ring is comprised of only the initial amount of the solute). Therefore, both

the height and the width must scale as a square root of the initial volume fraction.

It is rewarding that the results of our complex calculation match the results of this

simple physical argument.

Thus, the complete analytical solution to our model is available in the limit χi/p→

0, and this solution compares quite well to the experimental results. Since the main-

order solution in χi/p is perfectly adequate, the difference between the original system

of equations and the one for the “completely dry” case is not important: in the main

order in χi/p the results are identical for both cases (since one case in different from

the other only by presence of R instead of Ri in a few places in the main equations,

and this difference is of the correctional order in χi/p).

5.4 Numerical results for arbitrary initial concentrations of

the solute

Apart from approaching the original system of equations (5.3), (5.11), (5.18), and

(5.21) analytically, we also solve the same system numerically. During this numerical

procedure we do not presume that χi/p is small, nor do we expand any quantities or

equations in ε or any other small parameters. Our main purpose is to reproduce the

results of the preceding section and to determine the range of validity of our analytical

asymptotics.

Typical values of χi/p in most experimental realizations are of the order of 0.001–
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0.01, and thus, only concentrations below approximately 0.1 are of practical interest.

Thus, we will mostly concentrate on this range of practical importance while de-

scribing the results despite the fact the numerical procedure can be (and have been)

conducted for any ratio χi/p. It is to be noted that in the case of χi comparable to p

our model is not expected to produce any sensible results, as the entire separation of

the drop into the two phases (the liquid phase and the deposit phase) is based on the

assumption that the mobility of the solute is qualitatively different in the two regions.

When χi is comparable to p the two phases are physically indistinguishable, while the

model still assumes they are different. Therefore, it should be of absolutely no sur-

prise if any results for χi ≈ p are unphysical or unrealistic. When the assumptions of

a theory are explicitly violated, its results are not to be taken seriously in that range

of parameter values. For completeness, we do provide results for χi = p, however, in

no way we attempt to claim these numerical results describe the real physical state

of the system at this value of the parameter. As we mentioned above, only the values

of χi/p around 0.1 and below are presented as our final numerical results. The case

χi = p is provided only as an illustration of the general trend, without any attempt to

draw any conclusions from this unphysical (within our model) value of the parameter.

We present our numerical results for the same quantities (and in the same order)

as in our analytical results (5.47), (5.49), (5.50), and (5.51). Since for arbitrary χi/p

time tf is not exactly the total drying time, there is a question of where (at what

time) to terminate the numerical curves. By convention, we terminate all the curves

(except χi/p = 1) in all the graphs at value of t/tf when all the solute reaches the

deposit phase. In our model, it turns out that this time approximately coincides with

the time the center-point of the liquid-air interface touches the substrate. For all the

initial concentrations (except χi = p), the time the center-point touches the substrate

was numerically found to be within 0.1% of the time the very last solute particles reach
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the deposit phase. Thus, within our model, the moment the center-point touches the

substrate and the moment the last solute particles reach the deposit ring are about

the same, and the curves are terminated at exactly this time. Of course, in reality a

small fraction of the solute stays in the liquid phase as long as the liquid phase exists,

and so the moment the last solute particles reach the deposit phase must be after the

moment the center-point touches the substrate; however, the amount of the solute

remaining in the liquid phase at touchdown is insignificant, and thus practically all

the deposit has already formed by that time (99.9% of all the solute is already in the

ring).

Numerical results for angle θ as a function of time are shown in Fig. 5.14. All

curves (except χi/p = 1) behave almost linearly (as expected), however, the slope

increases with the concentration: formation of the ring in the drops with more so-

lute finishes faster [in the relative scale of tf of Eq. (5.29)]. The end of each curve

demonstrates the value of the angle θt at the moment the liquid-air interface touches

the substrate. (The analytical expression for this angle is θt = −2H/R for a thin

drop.) The absolute value of this angle increases with concentration, which is quite

natural since the height of the ring grows as a square root of the concentration while

the radius of the liquid phase does not change substantially for small concentrations.

Clearly, the numerical results converge to the analytical curve when χi/p→ 0.

Growth of the volume fraction of the solute in the deposit phase with time is shown

in Fig. 5.15 for various solute concentrations. This graph reconfirms the observation of

the preceding paragraph that the solute transfer happens faster (in units of the time

scale tf ) for denser colloidal suspensions. All curves are terminated when volume

fraction V SD/V
S becomes equal to 1. The apparent termination of the curve for

χi/p = 0.1 earlier than that is an artifact of the plotting software, which discarded

the very last point of this data set when creating a plot. Presumably, this plot and
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Figure 5.14: Numerical results: Dependence of angle θ between the liquid-air interface
and the substrate at the phase boundary on time t. Different curves correspond to
different initial concentrations of the solute; values of parameter χi/p are shown at
each curve. The analytical result in limit χi/p→ 0 is also provided.

the preceding one should hold true independently of the geometrical details of the

solute accumulation in the ring (which cannot be expected from the following plots

for the ring height and width).

The next two graphs represent the numerical results for the geometrical character-

istics of the deposit ring as functions of time: the height is shown in Fig. 5.16, while

the width is in Fig. 5.17. The ring profile, i.e. the dependence of height on width (ob-

tained by elimination of time from the two results), is also provided in Fig. 5.18. As

the graphs depict, the ring becomes wider and lower at higher initial concentrations

of the solute. Since the volume of the ring is roughly proportional to the product

of the height and the width, the decrease in height must be of the same percentage

magnitude as the increase in width. This can be qualitatively observed in the graphs.

As a final piece of the numerical results, we create a double-logarithmic plot of

the dependence of the height and the width on the initial concentration of the solute

(Fig. 5.19). The predicted square-root dependence on the initial concentration is seen
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Figure 5.15: Numerical results: Dependence of the volume fraction of the solute in
the deposit phase V SD/V

S on time t. Different curves correspond to different initial
concentrations of the solute; values of parameter χi/p are shown at each curve. The
analytical result in limit χi/p→ 0 is also provided.
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Figure 5.16: Numerical results: Dependence of the height of the phase boundary H
on time t. Different curves correspond to different initial concentrations of the solute;
values of parameter χi/p are shown at each curve. The analytical result in limit
χi/p→ 0 is also provided.
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Figure 5.17: Numerical results: Dependence of the width of the deposit ring W on
time t. Different curves correspond to different initial concentrations of the solute;
values of parameter χi/p are shown at each curve. The analytical result in limit
χi/p→ 0 is also provided.
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Figure 5.18: Numerical results: Ring profile. Dependence of the height of the phase
boundary H on the width of the deposit ring W . Different curves correspond to
different initial concentrations of the solute; values of parameter χi/p are shown at
each curve. The analytical result in limit χi/p→ 0 is also provided.
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Figure 5.19: Numerical results: Log-log plot of the dependence of the height of the
phase boundary H and the width of the deposit ring W on the initial volume fraction
of the solute. “Lg” stands for the logarithm of base 10, and thus the numbers along
the horizontal axis represent the order of magnitude of the ratio χi/p. The main-order

analytical results H ∝
√
χi/p and W ∝

√
χi/p are also provided for comparison.

to hold true for volume fractions up to approximately 10−1/2p for the height and up to

approximately 10−3/2p for the width. Deviations for higher volume fractions are due

to the increasing role of the correctional terms in ε compared to the main-order terms

in expansions (5.37) and (5.38). In this graph, as in all the results of this section, it

is clear that our main-order analytical results provide an adequate description of all

the functional dependencies in the range of the initial concentrations of experimental

importance (0.001–0.01).

In general, the numerical results of this section complement and reinforce the

analytical results of the preceding section, and the good agreement between the results

of the two independent solutions provides a crosscheck of both methods.
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5.5 Discussion

The specific graphs of Figs. 5.14–5.18, both analytical and numerical, represent the

original contribution of this chapter and may be determined experimentally giving

validation to the model and our theory. Measurements of the profiles in Fig. 5.18

should be particularly easy to conduct (as there is no time dependence involved) and

may confirm or refute the predicted robustness and universality of the deposition

profiles.

One may notice that the curves in Fig. 5.18 end at some positive (non-zero)

height. This indicates the solute is exhausted before the profile curves had a chance

to return to the substrate, and the final shape of the deposit ring must have a vertical

wall at its inner end. We believe this is an artifact of our model that is inherently

two-dimensional when flows inside the drop are concerned. Thus, we used the depth-

averaged velocity (2.2) throughout this work, and we also explicitly assumed the

phase boundary is vertical and the particles get stacked uniformly at all heights (i.e.

the vertical distribution of the solute was assumed homogeneous). This is equivalent

to assuming that vertical mixing is complete. This assumption is quite important,

and the results are expected to get modified if the true velocity profile (2.7) (or any

other three-dimensional distribution) is used instead of the depth-averaged velocity.

We expect that if a three-dimensional model were built and the dependence on z

were taken into account for all quantities then the discontinuous wall of the phase

boundary would get smoothened and the height would continuously return to zero.

A question remains whether such a model would be solvable analytically.

Our model relies on the assumption that the mobility of the solute is different in

the so-called liquid and deposit phases. Essentially, we assume that the mobility is

0 in the deposit phase and 1 in the liquid phase. This assumption, while artificial in
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its nature, seems relatively reasonable when applied to this system. Indeed, in the

physical situations near the close packing, the loss of mobility typically occurs over

a quite narrow range of the concentration values, and hence our assumption should

work satisfactorily when the difference between χi and p is in the orders of magnitude.

The higher the initial concentration is and the closer the two values are, the worse this

assumption holds true and the more artificial the difference between the two phases

is. We observe this in our numerical data: the numerical results for χi = p are quite

unphysical, while the low-concentration results seem to be consistent and coherent

with expectations. Thus, the validity of any model based on this separation of the

mobility scales decreases for higher initial concentrations of the solute.

The model assumes that the free-surface slope between the liquid and the deposit

phases is continuous. In fact, assumption (5.3) expressing this continuity is one of

the four basic equations of this chapter. This assumption seems quite natural as well.

Indeed, if the liquid is present on both sides of the phase boundary, the change in the

slope of its free surface would cost extra energy from the extra curvature at the phase

boundary, since the liquid-air interface possesses effective elasticity. Presence of this

extra energy (or the extra pressure) at the location of the phase boundary is not

justified by any physical reasons under the conditions of this chapter where processes

are slow and the surface is in equilibrium. In equilibrium the surface shape must

have constant curvature past the phase boundary since the entire separation into the

two phases is quite artificial as discussed above. Presence of the particles below the

liquid-air interface does not influence the surface tension, and thus the liquid surface

(and its slope) should be continuous at the phase boundary. On the other hand, if

the density of the particles matches the density of the liquid (which was the case

in the experiments), nothing prevents the particles from filling up the entire space

between the substrate and the liquid-air interface, thus providing the growth of the
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upper edge of the deposit phase along the liquid-air interface. This is particularly

true for the thin drops discussed in this chapter (θi � 1 was assumed throughout)

where the vertical mixing is intensive, where the free surface is nearly horizontal,

and where the problem is essentially two-dimensional. However, the equality of the

slopes on both sides of the phase boundary does not seem inevitable, and one may

think of the situations when it does get violated. One example might be the late

drying times when the deposit growth is very fast (see Fig. 5.15) and hence the

deposition may occur in some non-regular manner inconsistent with the slow-process

description of this chapter. Other examples may be related to the gravity (slightly

unequal densities of the particles and the liquid) or the convection. In any case, this

assumption can possibly be checked experimentally, and if condition (5.3) is found

violated, an equivalent constraint dependent on the details of the deposit-growth

mechanism must be constructed in place of Eq. (5.3) in order to relate functions θ(t),

R(t), and H(t).

Another inherent assumption of our model is related to the evaporation rate J(r).

As we discussed at the beginning of this chapter, we assumed that presence of the

solute inside the drop does not affect the evaporation from its surface. This is gener-

ally true when the evaporation is not too fast and the deposit phase is not too thick

and not too concentrated. When these conditions are not obeyed, presence of a thick

or concentrated layer of the solute on the way of the liquid moving from the phase

boundary to the contact-line divergence of the evaporation rate may create a strong

viscous force. This viscous force would prevent the necessary amount of the fluid

from being supplied to the intensive-evaporation region near the contact line. Gen-

erally, we assumed throughout this work that the viscous stresses are not important,

and showed in Chapter 2 and the Appendix that this assumption is valid whenever

v � σ/3η. In the deposit phase, the velocity is large due to the proximity to the
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contact-line divergence of the evaporation rate, and the effective viscosity is large due

to the high concentration of the solute. Thus, this condition may get violated and the

viscosity may become important in the deposit phase, slowing down the supply of the

liquid and ultimately making the deposit dry. Obviously, this affects the evaporation

rate, and the functional form of the evaporation profile changes. Simple assumption

that the evaporation rate stays of the same functional form, but with the divergence

at the phase boundary (at R) instead of the contact line (at Ri), was shown above

not to affect our main-order results. Thus, our results appear to be relatively insen-

sitive to the exact location of this divergence within the (narrow) deposit phase. (In

reality the evaporation edge would be somewhere between the contact line and the

phase boundary, i.e. the real situation is intermediate between the two considered.)

However, the deposit could modify the evaporation rate J(r) in other ways. When

there is a dry deposit ring just outside the liquid phase, the entire functional form of

J may change, and the Laplace equation for an equivalent electrostatic problem must

be solved anew with the additional boundary conditions responsible for the presence

of the dry solute rim and the modified evaporation at the edge. As we already saw in

all the preceding chapters, this is the most complicated part of the problem, and the

mathematics can become prohibitively complex. Thus, finding the exact form of J

may be a formidable task. One way around is in creating such evaporating conditions

that the functional profile is simpler, for instance, J is just a constant. This would

be more difficult to control experimentally, but would be much easier to treat analyt-

ically. The unavailability of the exact analytical form for J seems to be the biggest

open question in this class of problems (the same difficulty was also encountered for

the pointed-drop solution of Chapter 4).

The equilibrium surface shape of the liquid phase is a spherical cap (5.2). This is

a rigorous result proved in the preceding chapters and valid during most of the drying
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process. However, when h(0, t) becomes negative and exceeds H(t) in absolute value

(i.e. when the center-point touches the substrate), the surface shape is no longer

spherical. Moreover, a new element of the contact line is introduced in the center

of the drop in addition to the original contact line at the perimeter, and the entire

evaporation profile gets modified in addition to the modified surface shape, thus

influencing all the other quantities. Our treatment does not account for the small

fraction of the drying process occurring after this touchdown (which is a change

in topology of the surface shape, and thus requires a separate treatment after it

happened). First of all, the amount of liquid remaining in the drop at this moment

is of the order of ε compared to the original volume and hence would not modify

our main-order analytical results. Second, as our numerical calculations show, at

touchdown practically all the solute is already in the deposit phase, and the remaining

amount of the solute in the liquid phase is insignificant. Thus, within our model, the

remainder of the drying process cannot modify the deposit ring substantially, and

hence this neglect of the late-time regime seems well justified. Experimentally, the

inner part of the deposit ring is different from our prediction (which is a vertical wall)

and appears to have a spread shelf. Presence of this tail in the deposit distribution

can be caused by several features absent in our model. Its inherent two-dimensionality

may be one of these shortcomings (as discussed above); the account for the dynamical

processes occurring after the deposit phase has already been formed (e.g. avalanches

of the inner wall) may be another missing feature. Absence of the account for the late-

time regime after the center-point touches the substrate may be among these reasons

influencing the final distribution of the deposit as well. A more detailed account for

the effects of this late-time regime might be required in the future.



CHAPTER 6

CONCLUSIONS

The major results presented in this work are related to two problems. One of them

is the problem of the solute transfer and the deposit growth in angular evaporating

drops, and the other is the problem of determining the geometrical characteristics of

the deposition patterns in circular evaporating drops.

For the angular drops, we provide the full solution to the problem of the deposit

accumulation at the contact line. We determine all the necessary physical quantities

(the surface shape, the evaporation rate, the flow field, and the mass of the deposit)

and fully describe the deposition process near the vertex of the angle. Not surprisingly,

we find that the angular drops are rich in singularities that govern all these physical

quantities and affect the deposition. All the quantities scale as power laws of the

distance to the vertex and the elapsed drying time with exponents dependent only

on the opening angle of the drop. These exponents are universal and do not depend

on any free or fitting parameters, they depend only on the drop geometry. This

dependence on the geometry is useful for creating controlled deposition patterns and

is a step towards complete understanding of the evaporative deposition for arbitrary

contact-line geometries.

For the problem on the geometrical characteristics of the deposition patterns, we

provide a model that accounts for the finite dimensions of the deposit on the basis of

the assumption that the solute particles occupy finite volume and hence these dimen-

sions are of the steric origin. Within this model, we find the analytical solution for

small initial concentrations of the solute and the numerical solution for arbitrary ini-

tial concentrations of the solute. We demonstrate the agreement between our results

and the experimental data and show that the observed dependence of the deposit

109



110

dimensions on the experimental parameters (the initial concentration of the solute,

the initial geometry of the drop, and the time elapsed from the beginning of the

drying process) can be attributed mainly to the finite dimensions of the solute parti-

cles. These results are also universal and important for understanding the deposition

process and controlling the pattern formation.

The entire work provides all our results and derivations pertaining to the evap-

orative deposition and obtained to date in a single volume, which may serve as a

reference guide to anyone interested in the theory of the evaporative deposition. We

hope this reference volume will simplify future theoretical and experimental efforts

towards the complete understanding of these ubiquitous phenomena.



APPENDIX A

DOMINANCE OF THE CAPILLARY FORCES OVER

VISCOUS STRESS, AND LEGITIMACY OF

EMPLOYMENT OF THE EQUILIBRIUM SURFACE

SHAPE

The purpose of this section is to demonstrate that for sufficiently slow flows one can

employ the equilibrium surface shape for finding the pressure and the velocity fields

instead of having to solve for all the dynamical variables simultaneously. We will also

quantify how slow “sufficiently slow flows” are.

We start from the equation of the mechanical equilibrium of the interface (2.10),

where we approximate the doubled mean curvature 2K with∇2h. This approximation

holds true because the liquid-air interface is nearly horizontal for thin drops and small

contact angles (this can be proved rigorously for both geometries of interest, see the

corresponding sections in the main text), and the other terms of the functional K[h]

are unimportant. Substitution of

p = −σ∇2h+ patm (A.1)

into the Darcy’s law (2.8) yields

v = v∗h2∇(∇2h), (A.2)

where v∗ = σ/3η. Upon further substitution into the conservation of mass (2.3), we

obtain

∇ ·
[
v∗h3∇(∇2h)

]
+
J

ρ
+ ∂th = 0, (A.3)
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which, together with Eq. (A.2), constitutes the full system of equations for finding

h(r, φ, t) and v(r, φ, t).

Now, for water under normal conditions, η = 1 mPa ·s and σ = 72 mN/m. Hence,

the velocity scale v∗ is of the order of

v∗ =
σ

3η
≈ 24 m/s. (A.4)

Obviously, this is a huge value compared to the characteristic velocities encountered

in usual drying process. Therefore, one can develop a systematic series expansion in

small parameter ε = ṽ/v∗ (where ṽ is some characteristic value of velocity, say, 1 or

10 µm/s):

h = h0 + εh1 + · · ·+ εnhn + · · · , (A.5)

v = v0 + εv1 + · · ·+ εnvn + · · · , (A.6)

and keep only the h0 and v0 terms at the end in order to describe the process up to

the main order in ε = ṽ/v∗. A similar expansion can also be constructed for pressure:

p = p0 + εp1 + · · ·+ εnpn + · · · , (A.7)

where pi are related to hi by equation (A.1):

p0 = −σ∇2h0 + patm, p1 = −σ∇2h1, etc. (A.8)

Physically, condition ṽ � v∗ is equivalent to the statement that the viscous stress is

negligible and that the capillary forces dominate. Let us understand what h0 and v0

physically correspond to.

Plugging the expansions for h and v into the system (A.2)–(A.3), one obtains a
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set of terms for each power of ε, starting from ε−1 and up. Equating terms of the

main order in ε yields the following two equations

h2
0∇(∇2h0) = 0 and ∇ ·

[
h3

0∇(∇2h0)
]

= 0, (A.9)

which both can be satisfied if and only if ∇2h0 is a function of time only. Writing it

as

∇2h0 = −p0 − patm
σ

= − 1

R0(t)
, (A.10)

we immediately identify this equation with the statement of spatial constancy of the

mean curvature of the interface, which describes the equilibrium surface shape at any

given moment of time t (i.e. we obtained equation (2.11) with the desired properties

of p0). Thus, h0 is indeed the equilibrium surface shape, and so is h (up to the

corrections of the order of ṽ/v∗).

Repeating the same procedure for the terms of the next order in ε, we arrive at

another two equations:

v0 = ṽh2
0∇(∇2h1), (A.11)

ṽ∇ ·
[
h3

0∇(∇2h1)
]

+
J

ρ
+ ∂th0 = 0, (A.12)

which can be seen to be equivalent to the set of equations (2.12)–(2.13) upon identi-

fication ψ = ṽ∇2h1 = −εp1/3η. Knowing the equilibrium surface shape h0, one can

solve the second equation above with respect to the reduced pressure ψ, and then

obtain velocity v0 by differentiating the result according to the first equation. Thus,

up to the corrections of the order of ṽ/v∗, one can first find the equilibrium surface

shape h(r, φ) at any given moment of time, and then determine the pressure and the

flow fields for this fixed functional form of h, as was asserted in the main text.
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