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We study the elastic response of a wormlike polymer chain with reversible kinklike structural defects. This
is a generic model forsad the double-stranded DNA with sharp bends induced by binding of certain proteins,
and sbd effects oftrans-gaucherotations in the backbone of the single-stranded DNA. The problem is solved
both analytically and numerically by generalizing the well-known analogy to the quantum rotator. In the small
stretching force regime, we find that the persistence length is renormalized due to the presence of the kinks. In
the opposite regime, the response to the strong stretching is determined solely by the bare persistence length
with exponential corrections due to the “ideal gas of kinks.” This high-force behavior changes significantly in
the limit of high bending rigidity of the chain. In that case, the leading corrections to the mechanical response
are likely to be due to the formation of multikink structures, such as kink pairs.
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I. INTRODUCTION

Since the pioneering experiments of Smithet al. f1–4g,
the single-molecule micromechanical studies have become
one of the central themes in molecular biophysics. These
techniques have contributed substantially into our under-
standing of the properties of various biomolecules and their
interactions. The original stretching experiments with the
double-stranded DNAsds-DNAd were followed by the theo-
retical work of Marko and Siggiaf5g who demonstrated that
the observed elastic responsesi.e., the dependence of the
ds-DNA end-to-end extension on the applied stretching
forced is in remarkable agreement with the wormlike chain
sWLCd model of polymer elasticity. Within this model, the
chain is described as a constant-length rod with finite bend-
ing rigidity subjected to the thermal fluctuations. Various
modifications and refinements of the WLC model have been
proposed over the past decade to include additional effects,
such as torsional constrainsf6g, bond elasticity, and sequence
disorderf7,8g. Recently, a discrete version of the WLC has
been suggested as a plausible model for the single-stranded
DNA sss-DNAd f9g. In most cases, the modifications of the
WLC model are within the domain of linear elasticity, and
the overall nonlinearity of the observed response is associ-
ated with the entropic nature of the problem.

In this paper, we discuss an intrinsically nonlinear gener-
alization of the WLC that takes into account effects of the
localized structural defects on its elastic response. In particu-
lar, we study a generic model of the WLC with reversible
kinklike singularities. This model is relevant to several sys-
tems of interest. First, the kinklike defects can be used to
model the sharp bending of the ds-DNA backbone associated
with binding of certain proteinsf10–21g. In addition, the
protein-mediated looping of the DNA would normally result
in a nontrivial mutual alignment of the ends of the loop,
which can also be interpreted as a kink defect. Typically,
such DNA-protein interactions are sequence-dependent, and
there is a strong preference for the proteins to bind to the

particular sites on the DNA. However, in a realistic situation
the nonspecific binding takes place as well, and it may affect
the overall properties of the DNA in vivo. Since the stretch-
ing experiments can probe the elastic properties on the
single-molecule scale, they may be used to extract the infor-
mation about the parameters of such DNA-protein interac-
tions. The theoretical study of this paper is important for the
interpretation of the results of this type of future experi-
ments. This problem was recently addressed in a general
context of the DNA-deforming proteinsf22g. In that work, a
discrete version of the WLC model was used to obtain the
stretching curves with the numerical transfer matrix tech-
nique. In our paper, use of the continuous model allows us to
obtain a variational analytical result and compare it against
the numerics. In addition, our approach yields important in-
sights into the underlying physics associated with the pre-
dicted elastic behavior. The only significant limitation of the
continuous model is that it does not allow one to approach
the shypotheticald saturation regime where the DNA gets
completely covered by the proteins.

The other system where our model is relevant is the ss-
DNA. While several models have already been proposed to
describe its elastic properties, none of them is sufficiently
justified by the microscopic structure of the molecule, and all
of these models break down at high enough stretching forces.
Analysis of the backbone structure of the ss-DNA suggests
that the traditional models such as the WLC or the freely
jointed chainsFJCd are unlikely to be adequate as the coarse-
grained description of the chain. Indeed, on the atomic level
the conformations of the ss-DNA are mainly associated with
rotations of certain bonds. It is well known in the context of
the general polymer physics that such rotations typically in-
volve transitions between the discreettrans and gauche
states, which are normally described with the rotational iso-
mer modelf23g. On the other hand, there are also elastic
modes associated with small deviations of the torsional
angles from their local equilibrium valuessi.e., from these
transandgauchestatesd. The WLC would be a natural model
for describing the long-wavelength elastic modes due to
these small deformations. In order to account for both types
of conformations, one needs to construct a hybrid description
that would unify the two classical models of polymer phys-*Corresponding author. Email address: yopopov@umich.edu
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ics. In fact, our problem of the WLC with reversible kinks
has all the essential features of such a hybrid model. Indeed,
the local trans conformation can be viewed as a “no-kink”
state, while thegauchestate can be considered as a kink
since it corresponds to a turn in the overall direction of the
backbone.

Our model is different from a recent model by Wiggins,
Phillips, and Nelsonf24g, where the kinks are taken as
freely-bending hinges instead of the fixed-angle singularities
considered here. In most cases of the biological relevance the
fixed-angle kinks appear as a more adequate description of
the respective singularities than the free hinges. In particular,
the gauchestates are characterized by the specific angles
between the bonds fixed by the chemistry of the polymer
sss-DNAd. Similarly, protein binding and protein-mediated
looping feature some characteristic angles determined by the
nature of the proteins, although these angles may vary over
some range of valuesf25g swe consider modification of our
fixed-angle results for the case of these deformable kinks
with thermal fluctuations at the very end of this workd. Our
results will be seen to depend on the kink angle quite sub-
stantially, and thus this extra parameter is important. A model
with soft annealed kinks similar tof24g was also considered
recently by Yan and Markof26g in the context of DNA cy-
clization.

In the following section we first describe our model for a
wormlike chain with reversible kinks, and then outline a gen-
eral approach to its solution by drawing an analogy to the
quantum rotator. Subsequently, we solve the resulting evolu-
tion equation both analyticallysby the variational methodd
and numericallysby direct integrationd, and compare the re-
sults. Finally, we discuss our results in both the weak-force
and the strong-force limits as well as in the intermediate
regime, and draw physical conclusions from our findings.

II. THEORY

Model

We consider a wormlike polymer chain with rodlike bend-
ing elasticity. The persistence length of the unperturbed
chain is denoted bylp, and the total length of the chainL is
much greater than the persistence length throughout this pa-
per. We presume that kinklike structural defects can exist
anywhere along the chain. These defects are reversible and
can appear and disappear spontaneously, with certain free-
energy penalty associated with each of them. We should em-
phasize that we neglect the sequence dependence of kink
probability, thus limiting ourselves to the case of nonspecific
DNA-protein binding only. Each kink is characterized by the
sfixedd opening angleK sFig. 1d; this value is the same for all
the kinks and is an external parameter of the problem. The
presence of each kink costs finite amount of the free energy
e sat zero stretching forced, which is also assumed to be the
same for each kink. The structural defects are local, i.e., they

are characterized by a microscopic length scalel0 much
smaller than the persistence lengthlp and can be considered
as pointlike for most practical purposes. We also neglect any
direct interaction of the kinks separated by more thanl0.
Thus the three length scales of the problem are related by
L@ lp@ l0.

An important quantity is the average line density of the
kinks k in the absence of the applied stretching force. This
quantity is defined as the Boltzmann probability of the exis-
tence of a kink per characteristic length scale of a kink site
l0:

k =
1

l0

exps− e/kTd
1 + exps− e/kTd

. s1d

At each site of lengthl0, there might be either a kinkffactor
exps−e /kTdg or no kink ffactor 1g, with the probability of
having a kink at an arbitrary sitesper unit lengthd given by
the expression above. Note that in practice we assume that
e@kT, and therefore

k <
1

l0
exps− e/kTd !

1

l0
, s2d

i.e., kinks are rare and far apart, and only few possible sites
are occupied by the kinks.

The chain is stretched by applying forceF in the ẑ direc-
tion of the Euclidian coordinates. The effective energy of a
chain segment between two adjacent kinks is given by the
sum of the bending energy and the coupling to the stretching
force:

E

kT
=E

si

si+1F lp
2
S ] t̂

]s
D2

−
F

kT
ẑ · t̂Gds. s3d

Here s is the coordinate along the chain,t̂ssd is the unit
tangent vector of the chain ats, and kink numberi is located
at coordinatesi fso thatL=oissi+1−sidg. This expression was
used by Marko and Siggiaf5g and in some earlier works on
wormlike chain elasticity. This time, however, it does not
apply to the entire chain; instead, it applies only to the chain
segments between kinks. At each kinksi.e., atsid the tangent
vector experiences an abrupt change of its orientation and
hops to a directionp−K away from the preceding one.
Mathematically, this can be written as a constraint

t̂ssi − 0d · t̂ssi + 0d = cossp − Kd = − cosK. s4d

Analogy to the quantum rotator, and the free energy

Let cst̂ ,sd be the orientational distribution function for
the chain ends. Then the probability distribution for the tan-
gent vectort̂ at coordinates for inner points of the chain is
simply ucst̂ ,sdu2. Function c satisfies a Schrödinger-like
equation for evolution along the chain. This can be demon-
strated by the path-integral techniquef5,27g where path in-
tegration is conducted over all possible chain conformations,
thus accounting, among other things, for the entropy of the
chain. A more illustrativesthough less rigorousd way to ob-
tain the same equation also existsf28g. Here, we will only

FIG. 1. Kink geometry.
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notice that each term in the effective energys3d has a coun-
terpart in this Schrödinger-like equation, in the same way as
each term of the mechanical energy in classical mechanics
has a counterpart in the quantum-mechanical Hamiltonian.
Thus, an unperturbed chainswithout any kinksd obeys the

evolution equation]scst̂ ,sd=Ĥ0cst̂ ,sd, whereĤ0 is the ef-
fective Hamiltonian

Ĥ0 =
1

2lp
Dt̂ +

F

kT
ẑ · t̂ . s5d

The term with the Laplacian int̂ arises from the term with
thes derivative in the effective energys3d, while coupling to
the external force remains the samefup to the sign changeg
ssee Refs.f5,27g for detailsd. The HamiltonianĤ0 is the
Hamiltonian of the quantum rotator in quantum mechanics.

Now we need to add a term to this Hamiltonian respon-
sible for the nonlocal constraints4d. This teleportationlike
term changes the direction oft̂ abruptly, with the tangential
vector t̂ssd hopping instantly by a finite anglep−K at the
location of a kink. Such behavior is described by a delta-
functional kernel in the Hamiltonian:

V̂cst̂,sd ~E d2t̂8
2p

dst̂ · t̂8 + cosKdcst̂8,sd, s6d

where the full Hamiltonian is nowĤ=Ĥ0+V̂ and the 1/2p
factor provides the proper normalization of the kernel. The
number of such nonlocal hops of the tangential vectorsi.e.,
the number of kinksd yields the proportionality constant in
the expression above. Thus, the missing prefactor is simply
the average line density of the kinksk, and the full Hamil-
tonian is

Ĥcst̂,sd =
1

2lp
Dt̂cst̂,sd +

F

kT
ẑ · t̂cst̂,sd

+ kE d2t̂8
2p

dst̂ · t̂8 + cosKdcst̂8,sd. s7d

The structure of the evolution equation

]cst̂,sd
]s

= Ĥcst̂,sd, s8d

suggests the standard procedure for solving this kind of
quantum-mechanical-like problems: expansion in eigenfunc-
tions of the time-independent si.e., s-independentd
Schrödinger equation

− mcst̂d = Ĥcst̂d, s9d

wherecst̂d andm are the eigenfunctions and the eigenvalues,
respectively. Since each of the terms in such an expansion
depends on the exponent ofsthe negative ofd the correspond-
ing eigenvalue, it is easy to conclude that for sufficiently
long chains most terms in the expansion die off very fast, and
only the smallest-eigenvalue term governs the long-chain be-
havior. Thus we are interested in the lowest eigenvaluem of
Eq. s9d. The free energy of the chain is then simply related to
this lowest eigenvalue by

F
kT

= Lm s10d

ssee Refs.f5,27g for detailsd.

Variational solution

Since the lowest eigenvalue is being sought, we use the
variational method for finding the analytical solution to
eigenproblems9d. Application of the force makes theẑ di-
rection highly preferable for the tangential vector, and there-
fore the distribution functioncst̂d must be strongly peaked at
t̂ i ẑ. Conventionally, we choosecst̂d~ expsvẑ·t̂ /2d as a trial
function, or

cst̂d =Î v

4p sinhv
expSvẑ · t̂

2
D s11d

upon proper normalizationfec2st̂dd2t̂ =1g. Here v is the
variational parameter. The lowest eigenvalue can then be es-
timated as

m = − max
v

H̄, s12d

where

H̄ =E cst̂dĤcst̂dd2t̂ . s13d

Evaluating the last expression with trial functions11d yields

m = min
v
FS v

4lp
−

F

kT
DScothv −

1

v
D − k

sinhsavd
a sinhv

G ,

s14d

where we introduceda=sinsK /2d. Minimization with re-
spect tov gives the implicit dependence ofv on the applied
force or, being inverted, the explicit dependence of the force
on v:

F

kT
=

v2

4lp

coshv sinhv − v

sinh2v − v2

+ kv2a−1sinhsavdcoshv − coshsavdsinhv

sinh2v − v2 .

s15d

Note that here and everywhere belowv is the particular
value of the variational parameter that minimizes the free
energy sinstead of the generic variable implied until this
pointd. Knowledge of the free energy as a function of force
s14d also allows one to determine the extension of the chain:

z

L
= −

1

L

]F
]F

= −
]m

]sF/kTd
= cothv −

1

v
. s16d

Thus Eqs.s15d and s16d provide the parametric dependence
of the force on the extension, withv playing the role of the
parameter. This extension curve is shown in Fig. 2 for kink
angles of 135° and 45° and several values ofk. Our results
reduce to those of Marko and Siggiaf5g when no kinks are
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present, i.e., whenk=0. The new physics introduced by the
kinks is represented by the term proportional tok in Eq. s15d.
The ratio of the first and the second terms in this equation is
determined by the dimensionless parameterklp, which has
the physical meaning of the average number of kinks per the
persistence length in the absence of force. The larger this
parameter is, the more significant the kink contribution is.

Weak forces and small extensions

The asymptotics of the above results in the limit of small
v:

z

L
=

v

3
+ Osv3d s17d

and

F

kT
= F 1

2lp
+ ks1 + a2dGv + Osv3d s18d

allow one to obtain the explicit dependence of the extension
on the force in the limit of weak forces and small extensions:

z

L
=

2

3

lp
1 + 2klps1 − a2d

F

kT
. s19d

This expression can be compared to the weak-force result for
a bare skink-freed persistence chainz/L=s2/3dlpsF /kTd.
Clearly, the elastic response of the chain with kinks is char-
acterized by the renormalized persistent length

lp eff =
lp

1 + 2klps1 − a2d
=

lp
1 + klps1 + cosKd

. s20d

This quantity reduces to the bare persistence lengthlp in the
absence of kinkssk=0d. It is also apparent thatlp eff, lp, and
therefore a wormlike chain with kinks isharder than a
wormlike chain without them. Similar renormalization of the
persistence length was also observed in recent numerical re-
sults by Yan and Marcof22g. It may appear that analogous
renormalization was obtained in Refs.f7,8g as well, however,
these works consider quenched sequence disorder, and thus
the physical origin of their renormalization is very different.

For high bending rigiditysklp@1d, the renormalized per-
sistence length becomeslp eff=1/fks1+cosKdg. This result
deserves some discussion as it turns out to be closely related
to the Flory result fortrans-gaucherotational isomersf23g.
If a gaucheconformation is considered as a kink, then it is
straightforward to identify the geometrical relations

cos
K

2
=

Î3

2
sin

u

2
s21d

and l0=b cossu /2d, whereu is the angle characterizing the
trans zigzag andb is the length of the zigzag segmentsFig.
3d. From these results, one can obtain the mean square of the
distance between the chain ends:

kR2l = 2lp effL = 2
lp eff

l0
Nl0

2 = 2

2 + expS e

kT
D

3 sin2Su

2
D Nb2cos2

u

2
,

s22d

which is identical to the result for the Flory modelf23g
FIG. 3. Geometrical parameters of the Flory model fortrans-

gaucherotational isomersf23g.

FIG. 4. “Critical” value of parameterklp as a function of the
kink angleK. Both the numerical solution and the analytical asymp-
totics are shown. The instability region is above the solid curve.

FIG. 2. Extension curves: force vs extension. Analytical results
of the variational solutionsad for K=135° and sbd for K=45°.
Curves for several values of the kink densityklp are shown on each
plot.
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kR2l = Nb21 + cosu

1 − cosu

1 + 2 expS e

kT
D

3
s23d

in the limit of rare kinksse@kTd. Note that comparison to
the Flory result for the free rotational modelsinstead of the
trans-gaucherotational oned would be impossible due to the
lack of the equivalent angle and absence of a relation similar
to Eq. s21d. In the case of the free rotations, the effective
kink angle can adopt a continuous spectrum of values be-
tween zero and some positive value corresponding to the
rotation by 180°.

Strong forces and large extensions

In the opposite limit of largev our resultss15d and s16d
also allow for simple asymptotic expansions:

z

L
= 1 −

1

v
s24d

and

F

kT
=

v2

4lp
+ kv21 − a

a
expf− s1 − advg. s25d

Thus an explicit dependence for the elastic response is again
available:

z

L
= 1 −Î kT

Flp
F1

2
+ klp

1 − a

a
expS− 2s1 − adÎFlp

kT
DG .

s26d

To the main order, this result reproduces the earlier result of
Marko and Siggiaf5g for the one-over-the-square-root de-
pendence on the stretching force. Hence the response of a
wormlike chain with kinks to the strong stretching is domi-
nated mostly by the bare wormlike-chain elasticity. In addi-
tion, kinks contribute an exponential correction to that main-
order result, which can be interpreted as due to the “ideal gas
of kinks.” Indeed, the second term in Eq.s14d is the average
line density of the kinks in the presence of the stretching
force, and it is equivalent to the concentration of the mol-
ecules in the ideal gas. Thus the second term in Eq.s25d
derived from the free energys14d is analogous to the relation
p=nkT for the pressure of the ideal gas.

High rigidity, small kink angle, numerical results

Probably the most interesting feature of Fig. 2 is related to
the middle portion of the high-rigidity extension curves,
where an instability region withdz/dF,0 is present. This
instability region exists when parameterklp is greater than
the “critical” value sklpdc, i.e., when the chains are of high
rigidity. The “critical” value is determined by the conditions
F8szd=F9szd=0 and is given by

sklpdc =
expvc

sinhavc

a
s4vcs1 + a2d − 8d + coshavcs8 − 8vcd

,

s27d

wherevc is the solution to

tanhav

a
=

vs3 + a2d − 6

vs1 + 3a2d − s3 + 3a2d
s28d

and is large for all kink anglessthe lowestvc is around 5 for
small kink anglesd. The last equation allows for simple ana-
lytical solutions in the limits of small kink anglessav!1d
and large kink anglessav@1d. Thus the analytical asymp-
totics of sklpdc in these two limits are readily available:

FIG. 5. Extension curves: force vs extension. Numerical results
of the direct solution of the evolution equationsad for K=135°,sbd
for K=90°, andscd for K=45°. Curves for several values of the kink
densityklp are shown on each plotssame values as in Fig. 2d. Solid
lines represent the numerical results, while the dashed lines repro-
duce the corresponding analytical results.
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sklpdc =
exps3 +Î3d
8s1 +Î3d

S1 + 3a22 +Î3

3 +Î3
D sav ! 1d s29d

and

sklpdc =
a exp 3

2s1 − ad
sav @ 1d. s30d

These asymptotics as well as the exact numerical solution for
sklpdc are shown in Fig. 4. As can be observed in this figure,
the “critical” value is much lower for sharp kinks, and hence
for smaller kink angles the instability region is present for
much lower values ofklp and lies in the range of the mea-
surable stretching forces in Fig. 2.

This instability behavior is similar to the behavior of the
Van der Waals curves for the ordinary liquid-gas system and
hence suggests the coexistence of two “phases.” Of course,
no true phases can exist in a one-dimensional system like the
DNA molecule under consideration, however, for the worm-
like chain with kinks it may be appropriate to think of “kink-
free” and “kink-rich” portions of the chain instead of the true
phases.

In order to check this “two-phase” hypothesis, we conduct
a direct numerical solution of the evolution equations8d with
the Hamiltonians7d. In order to avoid the delta-functional
singularity inside the integration in the last term, the analyti-
cal integration of the delta function is carried out, and we
operate with a smooth-kernel Hamiltonian

Ĥcsp,sd =
1

2lp
Fs1 − p2d

]2csp,sd
]p2 − 2p

]csp,sd
]p

G +
F

kT
pcsp,sd +

k

p
E

−p cosK−Î1−p2sin K

−p cosK+Î1−p2sin K csp8,sddp8
Îs1 − p2ds1 − p82d − spp8 + cosKd2

s31d

swhere p= ẑ·t̂ and p8= ẑ·t̂8d instead of the original Hamil-
tonian s7d. Then we choose an arbitrary initial distribution
functioncst̂ ,0d and let it evolve by evaluating the right-hand
side of Eq.s8d on each step and setting thes-derivativesthe
left-hand sided equal to the result. This procedure is stopped
when the relative change of the relative extensionz/L
=eẑ·t̂c2st̂ ,sdd2t̂ evaluated at each step becomes very small
and hencecst̂ ,sd itself becomes the stationary distribution
function. Such an approach yields more precise results for all
the quantities since it does not make anya priori assump-
tions about the shape of the distribution function.

The results of this numerical solution are shown in Fig. 5
for kink angles of 135°, 90°, and 45° and several values ofk.
It is immediately apparent that the agreement between the
variational analytical and the exact numerical curves is good
for both small and large forcessand extensionsd for all values
of parameters, and hence the analytical results of the preced-
ing two sections are accurate in the respective limits. How-
ever, the intermediate regime for high-rigidity chains and
small kink angles differs substantially from the analytical
parametric dependence of Eqs.s15d and s16d. What causes
this difference, and how can the numerical results be under-
stood?

The answer to both these questions comes from the nu-
merical results for the distribution functioncst̂ ,sd sFig. 6d.
The distribution profile for large kink angles possesses the
shape assumed in the variational method: a peak att̂ alongẑ
with the exponential falloff away from it. However, for rigid
chains and small kink angles, we observe existence of a sec-
ondary peak in addition to the main peak. Thus, the discrep-
ancy between the variational and the numerical results can be
explained by inadequacy of the trial function in the varia-
tional method, which ignores the possibility of the secondary
maximum. The location of the secondary peak corresponds

approximately to the anglep−K away from the direction of
the applied forcesẑd, i.e., there is an unusually high portion
of chain segments at anglep−K to the force. This can be
interpreted as presence of a small, but substantial fraction of
kink pairs sFig. 7d. Indeed, if the two outer chain sections of
a kink pair are aligned precisely alongẑ, then the inner sec-
tion is at anglep−K to that direction, and if the kinks in
each pair are close, then the fraction of the chain segments at
anglep−K to the force is small compared to the fraction of
the chain segments aligned with the force, but high com-
pared to the fraction of the other nonaligned segmentsfin
full agreement with Fig. 6sbdg. When the two kinks are in a
pair with the outer sections aligned with the force and the
inner section at anglep−K to the forcesFig. 7d, much less
bending is necessary compared to the case of a single kink
with both outer sections aligned with the forcesFig. 1d. Thus
condensation of kinks into pairs is favorable both because
the fraction of the “nonaligned with the force” chain seg-
ments is small and because the energetically costly bending
is not required. We should emphasize that although kink-
pairing may be a good way of thinking of this system, we do
not have a simple yet rigorous theoretical model accounting
for all the properties of such a “gas of kink pairs.”

Soft kinks

So far, we considered only hard kinks, i.e., kinks charac-
terized by the fixed opening angleK. Each kink could appear
and disappear; however, the possibility of its elastic defor-
mation due to the thermal fluctuations was ignored. In this
section, we demonstrate how our results are modified when
kinks are of finite rigidity and their opening angle is allowed
to deviate from the equilibrium valueK. We limit our dis-
cussion to small fluctuations aroundK, which corresponds to
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high rigidity of each kink. In the opposite limit of large de-
viations, the kinks are almost free and the model of Wiggins
et al. f24g should be applied.

The effective energy of the chain can be written as a sum
of the contributionss3d of all segments between kinks and
the quadratic contributions of all kinks:

Esoft

kT
= o

i
HE

si

si+1F lp
2
S ] t̂

]s
D2

−
F

kT
ẑ · t̂Gds

+
g

2
farccos„− t̂ssi − 0d · t̂ssi + 0d… − Kg2J , s32d

where the summation is over kinksi. The last springlike term
allows for the thermal fluctuations of the opening angle and
substitutes for the delta-functional constraints4d; a similar
term was used in the numerical study by Yan and Marko
f22g. Kink stiffness parameterg is assumed to be large, so

that the fluctuations are small. TheV̂ term in the effective
Hamiltonian is then

V̂softcst̂,sd = k

E e−sg/2dfarccoss− t̂ · t̂8d − Kg2cst̂8,sdd2t̂8

E e−sg/2dfarccoss− t̂ · t̂8d − Kg2d2t̂8

=
E e−sg/2dsK8 − Kd2V̂cst̂,sdd cosK8

E e−sg/2dsK8 − Kd2d cosK8

, s33d

where in the last equalityV̂ is the old delta-functional term
s6d smultiplied bykd considered as a function of the integra-
tion variableK8 instead of the equilibrium valueK.

Thus the variational solution for the free energy of the
chain with soft kinks reduces to a single integration of the
last term of the variational results14d for the free energy of
the chain with hard kinks. This integration can be performed
analytically in the limit of small thermal fluctuationssg
@v /ad and leads to the following main order result:

msoft = min
v
FS v

4lp
−

F

kT
DScothv −

1

v
D

− k
sinhsavd
a sinhv

expSv2s1 − a2d
8g

DG , s34d

or, in terms of the force,

Fsoft

kT
=

v2

4lp

coshv sinhv − v

sinh2v − v2

+ kv2a−1sinhsavdcoshv − coshsavdsinhv

sinh2v − v2

3expSv2s1 − a2d
8g

D . s35d

In the expressions above we omitted all the terms of the
order ofv /g or less and retained only the term of the order
of v2/g, which is not necessarily small whenv is large.
Thus, the main effect is simply renormalization of the kink
density k by a factor of expfv2s1−a2d / s8gdg. Physically,
when kinks are allowed to relax by deforming the opening
angle, the number of kinks increases, making the chain
harder to extend. However, the absolute value of the effect is
not substantial, and for all reasonably small thermal fluctua-
tions of the kink angleslarge gd the analytical extension
curves get only slightly distorted for large extensions, with-
out major qualitative changes. For very soft kinksssmall gd
the results of Wigginset al. f24g should be employed.

III. CONCLUSIONS

In conclusion, we studied the generic model of the semi-
flexible polymer chain with reversible kinks. It can be
viewed as a hybrid of the two classical descriptions of the
polymer elasticity: the WLC and the rotational-isomer-states
models. Therefore, the proposed theory should be applicable
to the ss-DNA whose conformations may involve both the

FIG. 6. Numerical results for the distribution functioncsp,sd
swherep= ẑ·t̂d in the limit of larges for the kink angles ofsad 135°
andsbd 45°. The two graphs are for the comparable stretching force
and for the respective values of the kink densityfÎ10 times the
“critical” density for each kink angle, i.e., for the second from the
right curve in Figs. 5sad and 5scdg.

FIG. 7. A pair of kinks.

EFFECTS OF KINKS ON DNA ELASTICITY PHYSICAL REVIEW E71, 051905s2005d

051905-7



discretetrans-gaucherotations of the chemical bonds and
small deformations giving rise to the continuous elasticity.
Another important class of systems where our model is ap-
plicable is the ds-DNA with sharp protein-induced bends.

In the limit of weak stretching forces, the elastic response
of the kinked DNA chain is characterized by a renormalized
persistence length, which is smaller than the bare persistence
length. This conclusion is consistent with the observation
made in the earlier numerical work on the problemf22g. We
obtained the analytical expression for the renormalized per-
sistence length and showed that the classical results for both
the pure WLC and the rotational isomer models can be re-
covered exactly as limits of our expression. Furthermore, by
using the variational approach, we calculated the complete
nonlinear response of the chain to the stretching. This result
is in excellent agreement with the direct numerical solution
over a substantial range of the model parameters.

In the limit of strong stretching forces, we recover the
pure wormlike-chain behavior with exponential corrections
due to the “ideal gas” of kinks. The variational theory breaks
down in the regimes of high chain rigidity and small kink
angles. In this case, the analytical curves have signatures of
instability similar to those of the Van der Waals gas. By
analyzing our numerical results, we conclude that this behav-
ior corresponds to the creation of multikink objects, e.g.,
kink pairs.

For soft kinks, where the opening angle can fluctuate and
thus relax the overall energy of the chain, we found that the
number of kinks increases compared to the hard-kink case,
and the DNA gets harder to extend.

The major limitation of our model is that we have ne-
glected the sequence-specific effects by assuming that the
kink energy is constant along the chain. While this may be a
reasonable first approximation to both problems of the ss-
DNA elasticity and the nonspecific protein-DNA binding, a
significant future work is needed in order to include the ef-
fects of the sequence disorder.

Several experimental tests of our results can be suggested.
In the case of the ss-DNA, in order to probe the “pure”
elastic response of the chain one needs to exclude the effects
of base-pairing and the electrostatic interactions. In the ex-
isting experiments, these effects are not suppressed, and thus
direct comparison is not possible at the moment.sNote that
the electrostatic and the base-pairing contributions were
simulatedin Ref. f29g instead of being excluded experimen-
tally.d However, in the future an experiment can be done at
the conditions of very strong screeningsi.e., at high salt con-
centrationd with all-purine or all-pyrimidine ss-DNA se-
quences to avoid these contributions.

The effects of the protein-induced kinks on the ds-DNA
elasticity can be studied by performing the DNA-stretching
experiment at various concentrations of the DNA-binding
proteins.
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