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Effects of Flow on Measurements of Interactions in Colloidal Suspensions
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A hydrodynamic mechanism of interactions of colloidal particles
is considered. The mechanism is based on the assumption of tiny
background flows in the experimental cells during measurements
by Grier et al. Both trivial (shear flow) and nontrivial (force propa-
gation through viscous fluid) effects are taken into account for two
colloidal particles near a wall bounding the solvent. Expressions for
the radial (attractive or repulsive) forces and the polar torques are
obtained. Quantitative estimates of the flow needed to produce the
observed strength of attractive force are given; other necessary con-
ditions are also considered. The following conclusion is made: the
mechanism suggested most likely is not responsible for the attrac-
tive interactions observed in the experiments of Grier et al.; however,
it may be applicable in other experimental realizations and should
be kept in mind while conducting colloidal measurements of high
sensitivity. Several distinctive features of the interactions due to this
mechanism are identified. C© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The motivation for this work comes from the experiments
conducted by David Grier et al. (1–6) as well as by other groups
(7, 8), which show unexplained attraction between colloidal par-
ticles in suspension. As most other polymer aggregates do, the
particles used in the experiments dissociate in the solvent with
charges of one sign remaining on the surface of the particles and
charges of the other sign going to the solvent. According to the
prevailing model for electrostatic interactions of such particles
[DLVO (9, 10, 11)], these particles of same-sign charge should
repel via a screened Coulomb potential. Several other theories
for electrostatic interaction mechanisms have been suggested to
explain the attraction observed (12–15), but none of them stood
the experimental tests. Nonelectrostatic models have not suc-
ceeded in providing concrete reasons for the observed behavior
either. However, the first hydrodynamic attempt to account for
the attraction in the recent work of Squires and Brenner (16)
appears quite successful.

Here we explore another hydrodynamic effect that comple-
ments the effect described by Squires and Brenner. The nature of
attractive force is essentially the same [a nonequilibrium hydro-
dynamic effect based on the method of image forces by Blake
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(17)], but the mechanism explored here does not require any
charges on the surface of the walls and colloidal particles, while
the mechanism of Squires and Brenner does. While we do not
intend to dismiss their mechanism and we agree that it quantita-
tively captures essential features of the experimentally observed
attraction, we would like to offer a complementary effect that
might be responsible for attraction in the cases when the ex-
planation of Squires and Brenner does not apply. Examples of
such systems are suspensions and meta-stable crystallites, where
particles are essentially fixed in space (i.e., fluctuate around
their equilibrium position). This limits the mobility of particles,
which decreases applicability of the mechanism of Squires and
Brenner, but increases the applicability of our mechanism (as be-
ing “fixed in space” is an essential condition for our mechanism).
While quantitative description of suspensions and meta-stable
crystallites requires further work, we feel that the mechanism de-
scribed below is potentially important in accounting for colloidal
interactions and complements the work of Squires and Brenner.
It also demonstrates a subtlety produced by undetectable hy-
drodynamic flows that is relevant for colloidal measurements.
However, this mechanism appears too weak to account for the
experiments that motivated its development as we currently un-
derstand them.

In this paper we first consider physical ideas and assumptions
behind this mechanism, and then we theoretically invetigate two
hydrodynamic effects resulting from these assumptions. In the
discussion section that follows, we estimate orders of magnitude
of these effects and conclude that the mechanism explored is
probably too weak in the particular conditions of the experiments
of Grier et al. Later we discuss possible other implications and
experimental tests.

2. PHYSICAL ASSUMPTIONS AND GEOMETRY

The experiments of Crocker and Grier were conducted on
samples of colloidal suspensions confined between a microscope
slide and a coverslip. Each experimental run consisted of a series
of recordings of Brownian motion of two colloidal particles (suf-
ficiently remote from the other particles in the suspension) and
subsequent analysis of these recordings, which allowed one to
infer the pair interaction potential (1, 2). Before each recording
the particles were caught in the focal plane of the digital video
microscopy setup by optical tweezers, which are essentially a
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potential well of the electromagnetic origin (18, 19), then they
were released, and their Brownian motion was recorded in sev-
eral 1/30-s periods. Subsequently the particles were trapped by
the tweezers again (in order to be returned to the recording area
of the sample) and a new cycle began.

Here we consider the possible effects of background flow
in the apparatus. Our motivation originated from the thorough
flushes of the solvent carried out with the purpose of remov-
ing impurities from the solution before each experimental run.
However, the flow induced by these flushes decays exponen-
tially with a characteristic time of the order of d2/8ν, where d
is the distance between the slide and the coverslip and ν is the
kinematic viscosity of the liquid. Hence the flushes cannot be a
source of sustained flow: the typical value of this time in the
experimental conditions is of the order of 10−4–10−3 s. At the
same time there is another effect capable of inducing some flows
that are both small enough to be experimentally undetectable and
large enough to produce the desirable attractive effect during the
entire experiment (the required magnitude of flow velocity will
be shown to be of the order of 0.1 µm/s). This effect is related to
a slight misbalance in pressure in a vacuum system connected
to the experimental cell. Each cell was connected to the colloid
suspension supply via two openings in the microscope slide. Col-
loid refill, ion removal, and all other auxiliary operations were
conducted via this system. When measurements of the attractive
potential were performed, some negative pressure was applied
inside the cell to make the coverslip bow inward, lowering wall
separation d from about 50 µm to about 5 µm. While the pres-
sure inside the vacuum system was of the order of 15 Torr or
2000 Pa, we estimate2 that the difference in pressure between
the two parts of the vacuum system had to be only 0.8 Pa in
order to produce the required magnitude of flow. Thus, 0.04%
pressure difference, which is definitely beyond the experimen-
tal control and can exist unnoticeably under the conditions of
the experiment (20), could cause the background flow inside the
cell. In general, since the required flows are very small, other
subtle effects can also contribute to their existence. All the sub-
sequent treatment is based on the assumption of existence of
small constant flows in the experimental cell. One of the pur-
poses of this paper is to show that these undetectable flows can
lead to quite detectable effects as long as additional conditions
outlined below are fulfiled.

In conjunction with this assumption one can be tempted to re-
quire that the particles be carried along by the flow. Then there

would be no hydrodynamic interactions whatsoever since par-
ticles would not exert any force on the fluid. In contrast, we

2 The only nontrivial component of the Navier-Stokes equation reads
∂p/∂x = η(∂2u/∂z2), with x̂ being along the flow and ẑ being normal to the
walls (η is dynamic viscosity). Since pressure p does not depend on z, the
standard solution is the parabolic profile for velocity u = γ z(d − z)/d, with d
being the distance between the parallel walls. This yields |�p| = 2ηγ |�x |/d
for pressure difference between the openings separated by �x . Typical val-
ues �x = 2 cm, η = 1 mPa · s, and d = 5 µm give a result |�p| = 0.8 Pa for
γ = 0.1 s−1.
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assume that the particles are held in space (by optical tweez-
ers, by inhomogeneities of the wall, by interactions with other
particles in suspensions or meta-stable crystallites, or by some
other mechanism) while the fluid is flowing by and exerting a
Stokes force on them. The mechanism of such confinement and
its limitations will be discussed in the discussion section.

Another condition heavily employed below also originates
from the experimental procedure. All measurments were con-
ducted on colloidal suspensions enclosed between two micro-
scope slides separated by a small gap (of the width of a few
micrometers) so that the particles were confined in the vicinity
of at least one of the slides. Moreover, the strongest attraction
was observed when particles were located sufficiently close to
one of the slides. Therefore, we consider particle interactions
near a plane wall. As it will be shown, both effects described
below are absent in the infinite space.

The last assumption used will be the absence of inertial effects
or their negligible contribution, which is a reasonable approx-
imation for the case of small Reynolds numbers (the numbers
involved are of the order of 10−5–10−6). Gravity is also unim-
portant due to roughly equal densities of the material of the par-
ticles and the fluid, and so the only forces acting on the particles
are of the hydrodynamic origin. Thus, we consider the hydro-
dynamic interactions of spatially fixed particles subject to slow
flows (with small Reynolds numbers) in the semi-infinite space.

In particular, consider particles 1 and 2 in the flow field above
a plane wall. Let particle 1 be at height h1 above the plane and
particle 2 be at h2, and let the full (three-dimensional) distance
between the particles be b (Fig. 1). In agreement with the exper-
imental conditions, we picture both particles as spheres; let their
radius be a. We do not assume any relation between h and b, in
particular; they can be comparable or one of them can be much
larger than the other. However, we do assume that the size of the
particles a is much smaller than any other distance scale (h or
b), so that the particles can be thought of as point-like. This last
assumption is not strictly obeyed in the experiments (although
particles are smaller than the separations between the objects),
but it greatly simplifies the consideration and presumably does
not change the qualitative character of the interaction potential.
FIG. 1. Geometry of the problem.
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We choose the origin of the system of coordinates at the lo-
cation of particle 1. Axis z is directed away from the wall, so
that the wall is defined by the equation z = −h1. Axis x is di-
rected along the velocity of the flow u (parallel to the wall).
Particle 2 has spherical coordinates (b, θ, φ) or Cartesian co-
ordinates (b sin θ cos φ, b sin θ sin φ, b cos θ ) with the standard
choice of angles θ and φ. Then h2 = h1 + b cos θ . (See Fig. 1
for geometry.)

3. THE SHEAR FLOW EFFECT

The simplest effect in the system described above comes from
the flow gradient near a plane wall [see, e.g., Landau and Lifshitz
(21)]. Sufficiently close to the wall the flow speed u must grow
linearly with the distance to the wall: u = γ hx̂ , where γ is the
shear modulus. Then the original flow field at the location of
particle 1 creates a Stokes force on that particle F1 = 6πηaγ h1 x̂ ,
while at the location of particle 2 this force is F2 = 6πηaγ h2 x̂ ,
where η is the fluid viscosity. Obviously, the higher particle
experiences a higher force from the fluid flowing by. Now, if
we define the apparent interaction force between the particles as
the difference between the radial components of forces acting
on each particle: Fr = F2 · r̂ − F1 · r̂ (so that the positive force
corresponds to repulsion and the negative one corresponds to
attraction), then the difference in forces exerted on the particles
can be interpreted as either repulsion (if particle 2 is in the 1st
or the 3rd quadrant of the xz-plane with respect to particle 1)
or attraction (if particle 2 is in the 2nd or the 4th quadrant). The
exact result for the defined above interaction force is

Fr = 6πηγ ab cos φ cos θ sin θ. [1]

Of course, the interpretation of this force as repulsion or attrac-
tion does not mean that one of the particles acts on the other, but
under the conditions of the experiment (where the potential is
inferred from the measurements of Brownian motion for a frac-
tion of a second) there is no simple way to distinguish whether
particles interact directly or just move under the two external
forces as if they interact.

If the two particles are at the same height above the wall, then
no apparent interaction force is present. This can be seen both
from expression [1] and from the fact that the Stokes forces
exerted on both particles are exactly the same. It can also be
shown that there is no torque or force making particles leave the
original height.

Expression [1] allows one to estimate the minimal value of
the flow velocity necessary to produce the observed magnitude
of the interaction force. The maximum of the absolute value of
angular dependence of the force is reached at θ = π/4 or 3π/4
and φ = 0 or π ; at this configuration |cosφ cos θ sin θ | = 1/2.
Taking the typical values Fr = 10−15 N, a = 0.5 × 10−6 m, b =
2 × 10−6 m, η = 10−3 Pa · s (1, 2, 20), one can easily obtain

γ ≥ 0.1 s−1. [2]
Thus, flows as low as 0.1 µm/s (at height of 1 µm above the
OPOV

wall) can produce the observed magnitude of interactions. These
values of the velocity are below the experimentally detectable
level, and such flows can exist in the system (20).

Now, if there are two alternatives (attraction in 2nd and 4th
quadrants and repulsion in 1st and 3rd quadrants), why would
only attraction be observed? A possible explanation will be de-
ferred until the next section.

4. FORCE PROPAGATION VIA VISCOUS FLUID

Apart from the trivial effect described above, there is a more
elaborate mechanism of particle interactions via viscous force
propagating through the solvent. If a point force F (“stokeslet”)
is applied at point x, then the velocity field perturbation v at
point y is linearly related to the stokeslet magnitude: vi (y) =
Hi j (y − x)Fj (x), where Hi j is known as the Oseen tensor (in the
case of an extended source of force an integration over coordi-
nates is required, so that the Oseen tensor is just a Green function
for the velocity field). The force exerted on a spherical particle at
point y is then a Stokes force created by the velocity perturbation
f = 6πaηv. In the case of two particles in viscous fluid the
Stokes force F1 exerted by the original flow on particle 1 (given
in the previous section, but taken with a minus sign, since now
the particle, being held in place, acts on the fluid) will be the
source of the perturbation of the velocity field v2 at the location
of particle 2 and hence the source of the perturbation force f2

acting on particle 2, and vice versa. Thus, the interaction force
between the particles can again be defined as the difference be-
tween the radial components of forces acting on each particle:
fr = f2 · r̂ − f1 · r̂ , but now this will be the true interaction force,
the one propagating through the fluid.

Expression for the Oseen tensor Hi j in the infinite space is
well known [see, e.g., Happel and Brenner (22)] and leads to
the identical zero for the radial interaction force (the flow is
uniform). Thus, no hydrodynamic interactions are possible in
the infinite space. The Green function Hi j for the semi-infinite
space was constructed by Blake (17), although it can be alterna-
tively derived by the method of Lorentz (23). Calculation of the
interaction force fr based on his result leads to

fr = 9πηγ a2 cos φ cos θ sin θ

×
[

1 − 1 + 4t1t2 + 6t1t2(t1 + t2)2

(1 + 4t1t2)5/2

]
, [3]

where t1 ≡ h1/b and t2 ≡ h2/b = t1 + cos θ . The asymptotics
of the above result are

fr = 54πηγ a2 h1

b
cos φ cos2 θ sin3 θ if h1 � b [4]

and

fr = 9πηγ a2 cos φ cos θ sin θ

(
1 − 3b

4h

)
if h � b, [5]
where in the last line h can be either h1 or h2. Typical behavior
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of fr as a function of 1/t1 = b/h1 for θ = π/4 and φ = 0 is
shown on Fig. 2.

Inspection of the result [3] indicates that the coefficient pre-
ceding this force is a2, in contrast to the factor ab in Eq. [1].
However, far from the wall the angular dependences of the ki-
netic force [1] and the real force [3] are identical. Thus, no new
effect is present here: although the force magnitude is different,
the signage is the same—attraction in 2nd and 4th quadrants
and repulsion in 1st and 3rd quadrants. So, expression [3] serves
just as a correction to the main result [1] (since, by assump-
tion, a � b). It also gives the same order of magnitude for γ as
estimate [2] does.

Note also that fr of Eq. [3] reinforces Fr of Eq. [1]. This is
easy to understand from the fact that the perturbation velocity
v (and hence the perturbation force f) is in general oppositely
directed with respect to the original Stokes force F acting from
the fluid on the particle, or similarly directed with respect to the
force −F from the particle on the fluid (see Fig. 3 for the infinite
space), and is linearly proportional to the magnitude of the force
F. Thus, for instance, if the radial projection F1 · r̂ is greater
than F2 · r̂ , then the negative radial projection −f2 · r̂ should in
general be greater than −f1 · r̂ , leading to the same signage of
the above defined Fr and fr .

While the direct effect of the true hydrodynamic forces is rel-
atively weak compared to the kinetic effects of the previous sec-
tion, they have an indirect effect that may explain the tendency
toward observable attraction. In particular, if the two particles
are at the same height above the wall, then there is a force in
vertical direction pushing each of the particles into the 2nd or
the 4th quadrant with respect to the other particle,

fz = −54πηγ a2 cos φ
t4

(1 + 4t2)5/2
, [6]

where t = h/b and h = h1 = h2. For h = b, φ = 0, γ = γmin =
0.1 s−1 and the same typical values of a and η as in estimate
[2] the absolute value of this force is 7.6 × 10−17 N, which is
FIG. 2. Interaction force fr /(ηγ a2) as a function of distance b/h1 for
θ = π/4 and φ = 0.
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FIG. 3. Typical orientation of bulk flow velocity u, Stokes force exerted by
the fluid on the particle F, Stokes force exerted by the particle on the fluid −F,
and velocity perturbation field v(x) at some distance b from the particle (infinite
space).

about 8% of the typical value of Fr . In general, for arbitrary
h1 and h2, this effect can be described by the torque acting in
the θ -direction, which does not vanish at θ = π/2 (unlike in
the effect of the previous section). This torque is defined as
T = (f2 · θ̂ − f1 · θ̂ )b/2, and a general expression for T can be
obtained on the same grounds as result [3]:

T = 9π

4
ηγ a2b cos φ

×
[

cos2θ − (1+4t1t2) cos2 θ +6t1t2(t1 + t2)2 cos 2θ

(1 + 4t1t2)5/2

]
. [7]

Thus, this torque indeed favors the attraction geometries by
pushing particles into the configurations where attraction is cre-
ated by the shear flow effect of the previous section. Therefore,
attraction indeed should be observed more often than repulsion
if particles are positioned at the same height above the wall at
the beginning of each experimental run.

5. DISCUSSION

While the mechanism described in the previous section seems
to lead to the correct results and to be a feasible explanation to
the observed attraction, there remains one question: What holds
the particles fixed in space? As we noted earlier, the difference
in fluid and particle velocities is the necessary condition for the
existence of the Stokes forces producing all the above effects.
On the other hand, even if a particle is initially set at rest in
the flow, while not being held by some external force, it ac-
quires the velocity of the flow for relaxation time τ (defined by
v0(t) = u(1 − exp(−t/τ ))) much shorter than the duration of

each recording period (1/30 s), and hence it does not exert any
force on the fluid for most of the recording time. For instance,
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for a spherical particle of radius a = 0.5 × 10−6 m and of den-
sity of the water (ρ = 103 kg/m3) in a fluid of viscosity of the
water (η = 10−3 Pa · s) this relaxation time is

τ = 2

9

ρa2

η
≈ 56 ns. [8]

Thus, the described effects require an external force that holds
the particles at a non-zero velocity with respect to the flow.

The most probable candidate for this role could be a pair of
optical tweezers used to trap the particles before each recording
run. One scenario is straightforward to consider. While being
held by the tweezers before each recording of their Brownian
motion, particles are positioned to an attractive configuration by
means of the torque described in the previous section. After the
holding potential of the tweezers is removed and the recording
starts, the dominant shear flow effect influences the Brownian
motion of the particles, and an attractive “potential” is regis-
tered. Note that this does not even require any Stokes forces to
be present—just a drift in the flow with different velocities (so
that the further from the wall particle moves faster) influences
the Brownian motion in essentially the same manner. Since the
initial alignment was practically always chosen in the focal plane
(so that both particles were at the same height above the wall)
and along the longest dimension of the slides (so that one of the
particles was always down the flow with respect to the other)
(20), one might speculate that the hydrodynamic effects pro-
posed above had to produce apparent attraction in practically all
the conducted experiments.

However, despite a general feasibility of such a mechanism,
its estimated magnitude is discouraging. Under the particular
conditions of the experiment the force gradient in the optical
tweezers is of the order of 1 pN/µm = 10−6 N/m (20), which
leads to the forces of 3 or 4 orders of magnitude higher than
force [6]. Thus, particles are not easily displaceable by the hy-
drodynamic forces while being held by optical tweezers, and
therefore the hydrodynamic mechanism appears too weak if the
tweezers work as it is commonly understood. (Note, however,
that the estimate for the force [6] was made for the minimal pre-
dicted value of the shear modulus; higher flows lead to stronger
hydrodynamic interaction.) Therefore, optical tweezers, despite
being a promising candidate, most likely cannot perform the role
of the required external force.

Other candidates to this role might also be possible (e.g.,
forces due to the charges on the wall, inhomogeneities of the
wall, or concerted mean-field-like forces at high-concentration
systems like suspensions and meta-stable crystallites); however,
we were not able to find a feasible scenario of how exactly
these forces would keep the particles fixed (or at least at non-
zero relative velocity with respect to the flow). Thus, while the
hydrodynamic mechanism certainly exists when such forces are
present, the main difficulty in possible accounting for the at-

traction observed in the experiments like those of Grier et al.
comes from identifying these forces. At the same time, in the
OPOV

situations where there are such forces, the hydrodynamic mech-
anism considered here is always at work (and this should be kept
in mind while conducting high-sensitivity force measurements
in colloidal systems). One example where the required forces
exist can be the systems of meta-stable crystallites (4, 24). A
self-sustaining mechanism can be employed here: The attrac-
tive force holds particles together, thereby creating the necessary
condition for the described effect (flow past fixed particles—
assuming some flow is present), which in its turn leads to the
existence of attraction. Further work would be required to ac-
count in detail for such a self-sustaining mechanism. Here we
only note that while the concerted forces acting on a particular
particle can be mean-field-like, the whole system of particles
cannot be held at rest by only the interaction forces between
the particles in that system, as in this case the whole system
would be carried along by the flow. Therefore, there should be
some external forces different from interactions with the neigh-
boring particles and acting at least on the boundary layer of the
crystallite system.

As it is also apparent from our consideration, flow is not the
only possible source of the described effect. What is necessary
is the force exerted by the particles onto the fluid. This can be
achieved not only by making a fluid flow by the fixed particles
but also by making particles move in the stationary fluid. Thus,
for instance, particles can be dragged by some external force in
such a way that the further from the wall particle experiences
higher force; this should lead to effectively the same result for
the interaction potential. Essentially, this has a lot in common
with the mechanism of Squires and Brenner (16), where particles
are dragged away from the wall by the electromagnetic repulsive
force.

Note that the presence of a second wall, positioned symmetri-
cally with respect to the interacting particles, leads to canceling
of all considered effects (both force and torque). Therefore, an-
other restriction on the possible experimental geometries where
this hydrodynamic mechanism could be responsible for interac-
tions is that the particles must be located away from the cen-
ter plane of the suspension sample confined by the microscope
slides. In practice, however, this restriction is easily avoided due
to a slight difference in particle and fluid densities, so that the
particles are pulled closer to the lower wall by the gravity (if
their density is higher) or pushed closer to the upper wall by the
Archimedes force (if their density is lower).

The proposed mechanism immediately suggests several pos-
sible experimental tests on the presented effects of flow. Most
of these tests originate from the following list of the predicted
properties:

1. The simplest hydrodynamic effect originates from the ve-
locity gradient near a surface and can lead to the apparent at-
traction or repulsion (although no direct interaction exists). Both
outcomes are equally probable with randomly chosen initial geo-
metries.
2. The true hydrodynamic interactions propagating through
the viscous fluid do exist, but they lead to the same qualitative
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dependence on the geometry—attraction in 2nd and 4th quad-
rants and repulsion in 1st and 3rd quadrants. Nevertheless, there
exists a mechanism favoring attraction geometries.

3. The flows necessary to produce any hydrodynamic effects
can be as low as 0.1 µm/s (more generally, γ ≥ 0.1 s−1).

Different initial geometries fixed by optical tweezers can be
tried to check if the interaction strength changes depending on
the position of the particles. This requires only relocation of
principal potential minima of the tweezers, which can be rel-
atively easily achieved by refocusing or rotating them. If both
attractive and repulsive results are recorded (or if a stronger
interaction produced by some other mechanism gets modified
accordingly), then the effect is at work.

One can also look explicitly for the flow. This flow should
be easily detectable if particles are allowed to drift freely for a
sufficient interval of time. The flow could also be deliberately
induced at higher levels to increase the magnitude of the hy-
drodynamic force and to check that the mechanism works as
predicted.
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