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Abstract. The shape of a liquid surface bounded by an acute or obtuse planar angular sector is considered
by using classical analysis methods. For acute angular sectors the two principal curvatures are of the
order of the (fixed) mean curvature. But for obtuse sectors, the principal curvatures both diverge as the
vertex is approached. The power law divergence becomes stronger with increasing opening angle. Possible
implications of this contrasting behavior are suggested.

PACS. 68.03.Cd Surface tension and related phenomena

1 Introduction

The shape of the surface of a liquid or soap film con-
strained at its boundaries is a classic subject of mathemat-
ical physics [1–3]. These studies demonstrate the power of
producing very smooth surfaces of controlled curvature by
choosing the shape of the boundary. The chief emphasis of
these prior studies is to determine the global shape of the
surface bounded by a given smooth surface. Here we em-
phasize the complementary question of the local surface
shape in response to a singular boundary shape: namely,
a line with a sharp bend enclosing a droplet spanning a
plane sector of angle α. The role of singularities in gov-
erning the shape and the motion of fluids has aroused
great current interest. Such singularities occur when a
fluid droplet breaks apart [4–7], when it merges with an-
other droplet [8,9,7], when it moves across a surface [10–
17], or when it moves through another fluid [18–20,6].

Surprisingly, a qualitative change in the surface shape
occurs as the opening angle of the boundary α increases
past a right angle, as we show below. The curvatures for
acute angles remain finite for the region near the vertex.
But for obtuse angles, the curvatures diverge as the vertex
is approached, with a power law that varies continuously
with the angle. Similar characteristic angles (not necessar-
ily equal to 90 degrees) are encountered in the problem of
capillary rise in a vertical wedge-shaped container. Here
the meniscus height is bounded if the opening angle of
the wedge is larger than some critical value and diverges
as r → 0 if the opening angle is less than that critical
value [1,21]. The contrasting behavior of acute and obtuse
angles has also been noted for other phenomena involving
Laplacian fields. In hydrodynamic flow, the velocity field
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near a wedge changes qualitatively as the angle increases
through a right angle [22]. In diffusion (and analogous
random-walk polymers) emanating into a wedge-shaped
region there is a similar qualitative change of behavior [23–
25].

Our motivation for focusing on droplets over an an-
gular sector arises from observations of irregular droplets
seen in everyday life. These often have sector-shaped re-
gions arising from the vagaries of deposition and substrate
shape. We have noticed that evaporation in these regions
leads to distinctive drying patterns of solids dissolved in
the liquid. To understand the nature of these drying pat-
terns requires knowledge of the surface shape. For the cir-
cular drops the problem of the surface shape assumes a
very simple solution (spherical cap), allowing one to pro-
ceed with the issue of evaporation profiles up to the level
of successful comparison of the theoretical results with the
experimental data. These so-called “coffee-drop deposits”
have aroused recent interest [26–28].

Specifically, we consider a droplet on the horizontal
surface bounded by an angle α in the plane of the substrate
(Fig. 1). We assume that the droplet is sufficiently small
so that the surface tension is dominant, and the gravita-
tional effects can be safely neglected (the significance of
gravity increases with the size of the drop). At the same
time, we do not assume that the contact angle between
the “liquid-gas” surface and the plane is constant along
the boundary line on the substrate. To achieve an angu-
lar boundary, the substrate must have scratches, grooves
or other inhomogeneities (sufficiently small comparing to
the dimensions of the droplet), which pin the contact line.
A strongly pinned contact line can sustain a wide range
of contact angles; the angle is not fixed by the interfacial
tensions as it is on a uniform surface (Fig. 2).
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(a)

(b)

Fig. 1. (a) A water droplet with a sector-shaped boundary
on the plane substrate (side view). (b) The same droplet pic-
tured from another point (top view; the experimental setup is
sketched in Fig. 7). Black lines are the grooves on the substrate
necessary to “pin” the contact line. (Photos by Itai Cohen.)
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Fig. 2. Illustration of the possibility of a wide range of contact
angles in the presence of a groove or another inhomogeneity.

In the following section we first give a simple account
of the shape that assumes that the liquid surface is nearly
horizontal, and then we make a more systematic asymp-
totic analysis of the region where the distance r from the
vertex is much smaller than the fixed inverse mean curva-
ture R of the droplet, not making any a priori assump-
tions about the horizontalness of the surface. In the dis-
cussion section that follows, we calculate the curvatures
of the obtained surface shape and describe some possible
implications. In particular we discuss how the refraction
of the light in the drop shows contrasting properties in
acute vs. obtuse angular regions.

2 Calculation

Boundary problem

Our purpose is to calculate the shape of the surface of the
drop z(r, φ). Use of the cylindrical coordinates looks most
natural in this problem so that the angle occupied by the
liquid on the substrate is 0 < r < ∞ and −α/2 < φ < α/2
and hence the boundary conditions are

z(0, φ) = z(r,−α/2) = z(r, α/2) = 0 . (1)

We start from the Laplace equation for the surface tension:

2H = −∆p

σ
, (2)

where H is the mean curvature of the surface H =
(c1 + c2)/2 and c1 and c2 are the two principal curva-
tures. Here σ is the surface tension and ∆p is the pressure
difference between liquid and gas (∆p > 0). Since we ne-
glect the effects of gravity, the pressure within the droplet
is constant, and so is ∆p. Thus ∆p/σ is just a constant
parameter of the dimensions of inverse length. Since this
is the only dimensional scale in the problem, introduction
of the dimensionless variables r/R → r and z/R → z
(where R ≡ σ/∆p) makes the mathematical formulation
parameterless:

2H = −1 . (3)

Thereby we agree to measure all quantities of the dimen-
sion of length in units of R. Having found z(r, φ), one
can restore the desired surface shape in ordinary units by
simple substitution z(r, φ) → Rz (r/R, φ).

Given a surface z(r, φ), its mean curvature can be com-
puted in terms of the coefficients of the first and the second
fundamental quadratic forms of the surface:

H =
1
2

EN − 2FM + GL

EG − F 2
. (4)

Here E, F , G are the coefficients of the first fundamental
quadratic form of the surface and L, M , N are those of
the second fundamental quadratic form (see [29] or [1] for
a concise review of these results of the differential geome-
try). For the surface x(r, φ) = r cos φ, y(r, φ) = r sin φ and
arbitrary z(r, φ) these coefficients are

E = 1 + z2
r , F = zrzφ , G = r2 + z2

φ (5)
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and

L =
zrr√

1 + z2
r + (zφ/r)2

, M =
zrφ − zφ/r√

1 + z2
r + (zφ/r)2

,

N =
zφφ + rzr√

1 + z2
r + (zφ/r)2

. (6)

Combining equations (3-6) gives a second-order non-linear
differential equation for the function z(r, φ):[

zφφ + rzr + r2zrr +
{

zφφz2
r + rz3

r + zrrz
2
φ − 2zrφzrzφ

+2zrz
2
φ/r

}]
+ r2

[
1 +

{
z2
r + (zφ/r)2

}]3/2 = 0. (7)

Note that this equation could also have been obtained
if we had tackled the problem by minimizing the surface
area A =

∫∫ √
1 + z2

r + (zφ/r)2 rdrdφ (and hence the sur-
face energy σA) while keeping the volume of the liquid
beneath the surface V =

∫∫
z rdrdφ fixed 1. This is equiv-

alent to the minimization of the functional A − λV with
respect to arbitrary variations of z(r, φ) that leave the
boundary fixed, with λ being a Lagrange multiplier. The
proper choice of this parameter is λ = ∆p/σ in ordinary
units or λ = 1 in dimensionless ones, which arises from
the expression for the total energy E = σA − V ∆p. The
Euler-Lagrange equation for the functional A − λV reads
exactly as equation (7).

Thus, the boundary problem for z(r, φ) consists of
equation (7) and boundary conditions (1). Note that we do
not specify the boundary conditions at the opposite side of
the drop (the furthest from the vertex), and this will lead
to a set of undetermined coefficients in the solution to our
problem. However, our purpose is to infer the universal
features of the solution near the vertex, determined solely
by the opening angle of the sector of interest and indepen-
dent of the shape of the boundary outside of that sector.
As we show below, knowledge of this subset of boundary
conditions imposes sufficiently strict limitations on pos-
sible solutions, so that many important properties of the
surface shape can be determined on the basis of only these
local conditions. Had we specified all the boundary con-
ditions, we would have obtained the exact parameter-free
solution, dependent on the global shape of the boundary.

Horizontal solution

There is no generic method for solving second-order non-
linear differential equations of the kind of equation (7), so
we seek an approximate solution. First of all, we notice
that if all partial derivatives of z are small (|zr| � 1 and
|zφ/r| � 1), i.e. if the surface is nearly horizontal, then
the curly brackets in each pair of the square brackets can
be neglected with respect to the rest of the terms. This
horizontal approximation is not entirely obvious, and it
will be justified in the next subsection. Thus, omitting the

1 The integrations are over the angular region occupied by
the drop.

curly brackets in equation (7), an easy-to-solve Poisson
equation is recovered:

∇2z = −1. (8)

The general solution to the boundary problem (8, 1) can
be written as a sum of three terms:

z = −r2

4
+ zPN + zGH , (9)

where (−r2/4) is a solution to the non-homogeneous equa-
tion:

∇2

(
−r2

4

)
= −1; (10)

zPN is a particular solution to the homogeneous equation
with non-homogeneous boundary conditions:

∇2zPN =0 and zPN(r,−α/2)=zPN(r, α/2)=
r2

4
; (11)

and zGH is the general solution to the fully homogeneous
boundary problem:

∇2zGH = 0 and zGH(r,−α/2) = zGH(r, α/2) = 0. (12)

A particular solution to problem (11) is

zPN(r, φ)=




r2

4
cos 2φ

cos α
= Re

(
ξ2

4 cos α

)
, if α �= π

2
,

−r2

π
ln r cos 2φ +

r2

π
φ sin 2φ =

Re
(
−ξ2 ln ξ

π

)
, if α =

π

2
,

(13)

where a complex variable ξ = reiφ has been introduced
on the plane of the substrate. Since this expression is a
real part of an analytical function of ξ (for each fixed
α), it is a harmonic function on the (r, φ)-plane by the
Cauchy-Riemann conditions, and hence it is a solution to
∇2zPN = 0. Boundary conditions can be verified by direct
substitution φ = ±α/2.

The general solution to the homogeneous problem (12)
must satisfy the symmetry of the problem (i.e. must be
even in φ) and can be found by standard methods of math-
ematical physics:

zGH =
∞∑

n=0

Cnr(2n+1)π/α cos
[
(2n + 1)

πφ

α

]
=

Re

( ∞∑
n=0

Cnξ(2n+1)π/α

)
. (14)

The constants Cn cannot be determined without imposing
further conditions on the solution (for instance, obviously
Cn may depend on α). Had we specified the boundary con-
ditions along some curve r0(φ) that represents the rest of
the boundary of the drop, all the Cn would be fixed. Since
the number of coefficients Cn is infinite, any reasonable
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boundary condition at r0(φ) can be satisfied. On the other
hand, as is apparent from our construction, those missing
boundary conditions would not influence any other terms
in the solution, which are universal and do not depend on
the rest of the drop.

Thus, the general solution (even in φ and going to
0 as r → 0 in cylindrical coordinates) to the boundary
problem (8, 1) is

z(r, φ)=




−r2

4
+

r2

4
cos 2φ

cos α

+
∞∑

n=0

Cnr(2n+1)π/α cos
[
(2n+1)

πφ

α

]
, if α �= π

2
,

−r2

4
+

r2

π
(φ sin 2φ − ln r · cos 2φ)

+
∞∑

n=0

Cnr(2n+1)2 cos [(2n + 1)2φ] , if α =
π

2
.

(15)

Note the dominant terms in the limit r � 1 for different
values of α: for acute angles (α < π/2) the r2-term dom-
inates, for obtuse angles (α > π/2) the rπ/α-term does,
and for the right angle (α = π/2) the (r2 ln r)-term does.
At α = π/2 both the r2 and the rπ/α terms scale with r
as r2 (i.e. they “switch” here in the sense of power domi-
nance), and at exactly this value a logarithmic correction
to r2 appears, as it typically happens for a power series
solution near a crossover of two powers.

It may seem from the structure of expression (15) that
this solution is a discontinuous function of α at α = π/2.
However, this is not true. The key observation is that the
coefficients Cn can be different for different values of α.
In particular, C0 in the upper line of equation (15) is not
the same as the one in the lower line. Let us keep the
notation C0 for the coefficient C0 in the right-angle ex-
pression (lower line) and introduce a new notation C for
that coefficient in the expression for angles different from
π/2 (upper line). Consider some angle α in the vicinity of
π/2, i.e. let α = π/2 + ε, where |ε| � 1, and expand the
second and the Crπ/α cos(πφ/α) terms in the result for
α �= π/2 in small parameter ε:

r2

4
cos 2φ

cos α
+ Crπ/α cos(πφ/α) =

r2

4

(
−cos 2φ

ε

) (
1 + O(ε2)

)
+Cr2

(
1− 4

π
ε ln r+O(ε2)

)

×
(

cos 2φ +
4
π

εφ sin 2φ + O(ε2)
)

. (16)

Now, since C can depend on α (and hence ε), we set

C =
1
4ε

+ C0 + O(ε) . (17)

Then the two diverging terms of the order of 1/ε cancel,
and we recover (up to the leading order in ε) the second

and the C0r
π/α cos(πφ/α) terms in the result for α = π/2:

r2

4
cos 2φ

cos α
+ Crπ/α cos(πφ/α) =

−r2

π
ln r cos 2φ +

r2

π
φ sin 2φ + C0r

2 cos 2φ + O(ε). (18)

Since the other terms in the result (15) are identical in the
upper and the lower lines, we have shown thereby that our
solution is indeed continuous in α at fixed r for α = π/2
(or ε = 0).

Thus, solution (15) behaves reasonably well in the full
range of values of angle α from 0 to π. It cannot be used
for α > π since in that range it violates the horizontalness
requirement employed in its derivation.

Asymptotic analysis

The results above required the assumption that the drop
is nearly horizontal. This assumption has not been jus-
tified yet, and now we justify it via a more systematic
treatment. Since we are interested in the behavior of the
surface near the vertex of the angle, we introduce a new
small parameter for the problem:

r � R =
σ

∆p
(ordinary units) (19)

or
r � 1 (dimensionless units). (20)

For small r we may write z(r, φ) as a standard series ex-
pansion:

z(r, φ) = rνΦν(φ) + rµΦµ(φ) + · · · , (21)

where 0 < ν < µ < . . . . Note that we do not restrict
our attention to the horizontal case only, i.e. we do not
require 1 < ν. Values of ν between 0 and 1 leading to
non-horizontal surfaces will be eliminated automatically
by application of boundary conditions to the solutions of
equation (7), thus justifying the horizontal assumption.
Here we find only the main asymptotic (ν-term) and the
first-order correction (µ-term), but the method allows one
to proceed up to an arbitrary order. Details of the calcu-
lation are considered in Appendix; results are presented
below. We also treat the case of the right angle separately,
since we expect logarithmic corrections to the main power
of r and failure of the assumption (21).

Leading asymptotic

Substitution of z(r, φ) = rνΦν(φ) into equation (7) and
retention of only the dominant terms for r � 1 lead to
different equations for different possible values of power ν.
Solution of those equations and application of symmetry
arguments and boundary conditions eliminate some 2 val-
ues of ν, leaving at the end only two possibilities (ν = 2

2 The leading-order angular solution for ν ≤ 1 is Φν(φ) =
C cosν φ. This cannot vanish as required for φ → ±α/2 (see
Appendix for details).
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Fig. 3. Dependences ν(α) and µ(α).

and ν = π/α). For these two values the terms retained
are a subset of those constituting equation (8), yielding
the following main-order result:

z(r, φ)=




1
4
r2

(
cos 2φ

cos α
−1

)
, if 0 ≤ α <

π

2
(ν =2),

Crπ/α cos
πφ

α
, if

π

2
< α ≤ π (ν = π/α).

(22)

This agrees with the leading behavior of the horizontal
solution (15) as r → 0. Thus, our surface is indeed nearly
horizontal (since ν > 1), and the horizontal approach in-
deed produced a sensible result.

The constant C is again restricted by neither the equa-
tion nor the side boundary conditions, but it would get
fixed once the boundary conditions at the furthest side
are taken into account. It is a direct equivalent to the
constant C in the horizontal solution (15) obtained by an
independent treatment (recall that we relabeled the C0 in
the upper line of equation (15) into C).

The dependence ν(α) is shown in Figure 3: for acute
angles ν = 2 and for obtuse ones ν = π/α.

First-order correction

The final first-order result for the surface shape in the
limit r � 1 is
1. If 0 < α < π/4, then ν = 2, µ = 4 and

z(r, φ) =
1
4
r2

(
cos 2φ

cos α
− 1

)

+
1

192
r4

([
4 tan2 α − 3

] cos 4φ

cos 2α

+
[
2 tan2 α + 12

] cos 2φ

cos α
− [

6 tan2 α + 9
])

+ · · · . (23)

2. If π/4 < α < π/2, then ν = 2, µ = π/α and

z(r, φ) =
1
4
r2

(
cos 2φ

cos α
− 1

)
+ Crπ/α cos

πφ

α
+ · · · . (24)

3. If π/2 < α < 3π/4, then ν = π/α, µ = 2 and

z(r, φ) = Crπ/α cos
πφ

α
+

1
4
r2

(
cos 2φ

cos α
− 1

)
+ · · · . (25)

4. If 3π/4 < α < π, then ν = π/α, µ = 3π/α − 2 and

z(r, φ) = Crπ/α cos
πφ

α

+C3 π3

4α2(2π − α)
r(3π/α)−2 cos

πφ

α
+ · · · . (26)

The structure of the solution (23-26) becomes clear if
one plots functions ν(α) and µ(α) together (Fig. 3). Four
powers of r appear in these formulas: r2, r4, rπ/α and
r(3π/α)−2. For any given α our procedure selects the two
lowest powers in this set of four. Different powers get se-
lected for different α; this leads to the four cases appearing
in (23-26). In a full expansion, we expect all four powers
to be present for all angles 3.

Since a plane z = Dx = Dr cos φ is the exact solution
to equation (7) when the boundary of the surface is a
straight line α = π, it is rewarding to observe that both
terms in expression (26) reduce to this functional form
with D = C +

(
C3/4

)
+ · · · as α → π.

Note that although the leading asymptotics in r is the
same in the results (15) and (23-26), the sub-leading terms
are different. This is due to the fact that the two results
are based on different approximations: the former assumes
|zr| � 1 and |zφ/r| � 1 while the latter assumes r � 1.
Since, as shown in the previous subsection, the horizon-
tal approximation follows from the close-to-the-vertex one
(r � 1), the asymptotic treatment of this subsection de-
scribes the surface shape more accurately than result (15),
picking up lower powers of r for the first sub-leading terms.

Right-angle sector: first two terms in the expansion

We already know that a pure power series does not work in
the case α = π/2 and that the leading power of r should be
close to 2, at most logarithmically close. So, we introduce
a new ansatz instead of series (21):

z(r, φ) = (−r2 ln r)Φ1(φ) + r2Φ2(φ) + · · · . (27)

Subsequently, by repeating the steps of the Appendix,
we find Φ1(φ) = A cos 2φ, then obtain the second term
(Φ2(φ)) and fix A = 1/π by boundary conditions. As a
result we recover the lower line of expression (15):

z(r, φ) = − 1
π

r2 ln r cos 2φ

+r2

(
1
π

φ sin 2φ − 1
4

+ C0 cos 2φ

)
+ · · · , (28)

3 Note that all terms satisfy boundary conditions indepen-
dently.
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(a)

(b)

(c)

Fig. 4. Surface shape z(r, φ) (first two terms of the expansion
in r with C = 1/(4α− 2π) + C0 and C0 = 1) for (a) α = 3π/8
(Eq. (24)), (b) α = π/2 (Eq. (28)), and (c) α = 5π/8 (Eq. (25)).
The mathematical differences in the shapes are not apparent
in this view.

where C0 is again a constant equivalent to the C0 in (15).
The relation between the constant C0 in this right-angle
expression and the constant C in the result (23-26) for
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Fig. 5. Surface profiles at bisector (φ = 0) for three values of
angle α.

α �= π/2 is exactly the same as in equation (17) due to
the continuity of the full solution for all values of α.

Thus, an asymptotic expansion of the dimensionless
function z of the dimensionless coordinates r and φ in the
limit r � 1 has been found for all values of α in the range
from 0 to π. A natural extension of this study is to consider
angular regions that have α > π. We guess that for such
cases z(r, φ) grows as a power of r less than unity, so that
the slope of the surface diverges at the vertex. But we have
not succeeded to verify this behavior with our methods.

A typical behavior of the universal function z(r, φ)
(Eqs. (23-26) and (28)) for angles α = 3π/8, π/2 and
5π/8 is shown in Figure 4. To facilitate the comparison,
we also plot the bisector cross-sections of the same three
surface profiles in one frame (Fig. 5). Constant C0 is taken
to be 1 in all cases, while the value of constant C is cho-
sen according to the prescription (17). In spite of the ex-
istence of a drastic mathematical difference between the
three regimes, this difference is not apparent from looking
at the profile of the surface itself (as in Fig. 4), and that is
probably why it went unnoticed so far. We will further em-
phasize this qualitative difference in the following section.

3 Discussion

Curvature

Let us better understand the main-order result by looking
at the curvature of the surfaces described above. The prin-
cipal curvatures along the bisector of the angular region
are in the r̂ and φ̂ directions, and for the points on the bi-
sector the radial (crr) and the azimuthal (cφφ) curvatures
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Fig. 6. Radial curvature on the bisector for three values of
angle α (main asymptotic only).

are simply 4

crr =
L

E
and cφφ =

N

G
, (29)

with E, G, L and N defined in equations (5, 6). For small
r (and therefore small |zr| and |zφ/r|) these expressions
simplify even further to

crr = zrr and cφφ =
zφφ

r2
+

zr

r
, (30)

so that the principal curvatures sum to ∇2z. Thus, for the
surface (22) and (28) (up to the leading order in r � 1
only) these principal curvatures are:

crr = −1
2

+
1

2 cos α
, cφφ = −1

2
− 1

2 cos α
,

if 0 ≤ α < π/2 ;

crr = − 2
π

ln r , cφφ =
2
π

ln r ,

if α = π/2 ;

crr = C
π(π−α)

α2
r(π/α)−2 , cφφ =−C

π(π − α)
α2

r(π/α)−2 ,

if π/2 < α ≤ π . (31)

The typical behavior of the radial curvature crr on
the bisector as a function of r is shown in Figure 6 for

4 For an arbitrary point of the surface the principal curva-
tures are determined by the roots c1 and c2 of the quadratic
equation ∣∣∣∣ L − cE M − cF

M − cF N − cG

∣∣∣∣ = 0 .

At the points where the principal directions are along the coor-
dinate ones (e.g. on the bisector) coefficients F and M vanish
and the principal curvatures are given by simple relations (29)
(see [1,29] for details).

the same three values of α as in Figures 4 and 5. Now the
dramatic difference between the two regimes of α becomes
apparent. For acute angles the curvatures remain finite as
r → 0 while for obtuse ones the curvatures diverge as a
negative power of r (changing from 0 to −1 as the angle α
passes from π/2 to π). The limiting case of the right angle
has an intermediate logarithmic divergence.

Note that the finite values of curvature (for α < π/2)
sum to −1 in full accord with equation (3). However, the
divergent values (for α ≥ π/2) have the opposite signs
and thus sum to 0. This is a result of the neglect of the
corrections to the main asymptotic in r. Had we kept the
corrections to the divergent curvatures, they would sum
to −1. Thus, for instance, the second term in solution (25)
is the kind of correction which provides summation to −1
when the main (divergent) terms sum to 0.

The origin of the arbitrary constant C in solution (22)
is now seen to be related to the divergence of the principal
curvatures for obtuse angles. Indeed, for acute angles the
curvatures are finite and crr + cφφ = −1 while for the ob-
tuse ones the curvatures are divergent and crr + cφφ = 0
(up to the main order in r). Therefore, multiplication of
the solution z(r, φ) by an arbitrary constant is not allowed
in the former case, while is perfectly legitimate in the lat-
ter one (since both crr and cφφ get multiplied by the same
constant). Thus, a possibility for an arbitrary multiplica-
tive constant in the solution for obtuse angles comes from
the divergence of the curvature, which in its turn reflects
a different r-dependence of z(r, φ) for α > π/2.

On the other hand, the presence of an undetermined
coefficient means that the shape is influenced by the
boundary conditions at the side of the drop furthest from
the vertex. Hence, different scaling with r for different
angles results in a different dependence on boundary con-
ditions outside of the sector of interest: for acute angles
the dimensionless shape of the surface at the tip of the sec-
tor does not depend on these boundary conditions while
for obtuse angles it does. Of course, this argument was
based on the main-order solution (22), but general depen-
dence of the surface shape on the boundary conditions at
the opposite side of the drop via constant C is already
apparent from the first-order solution (23-26): the larger
the opening angle, the stronger the dependence of z(r, φ)
on these yet unspecified boundary conditions (the num-
ber of terms containing C increases as α increases). This
seems quite reasonable, as intuitively surface shape near
the vertex must cease depending on the rest of the drop
as α → 0, and it must be fully specified by the rest of the
drop when there is no vertex at all (i.e. when α = π).

Experimental realizations

The contrast between the drops over acute and obtuse an-
gular regions may be seen in the way they refract light. To
illustrate this, we picture a pair of sector-shaped droplets
on a transparent substrate at a distance s above an object
plane (Fig. 7). One angle is acute, and the other one is ob-
tuse. The object plane consists of a set of closely spaced
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Fig. 7. Experimental setup for the refraction demonstration.

Fig. 8. A set of parallel lines as seen through the drops over
acute (left) and obtuse (right) angular regions. The spacing
between the undistorted lines is about 1.6 mm. The opening
angles of the acute and obtuse sectors are approximately 51◦

and 124◦, respectively. The regions of interest are only a few
lines (a few millimeters) around the vertex of each drop. The
grooves necessary to pin the contact line can also be seen in
this image. (Photo by Itai Cohen.)

parallel lines perpendicular to the bisectors of each angu-
lar region, so that the spacing between the lines is in the
r̂ direction along the bisector. Observation of the object
plane through the droplets allows one to make qualita-
tive judgment about the behavior of the curvature near
the vertices of each sector. The result of such a simple
demonstration with spacing between the parallel lines of
approximately 1.6 mm, acute angle of about 51◦, and ob-
tuse angle of about 124◦ is shown in Figure 8. As is ap-
parent from this image, the spacing between the lines seen
through the drop over the obtuse angular region decreases
as they approach the vertex, while the spacing between
the lines seen through the drop over the acute sector re-
mains unchanged. Note that only a few millimeters near
the vertex should be taken into account while viewing this
figure since the inverse mean curvature R for water drops
not distorted by gravity is of this order of magnitude. At
higher distances gravitational effects cannot be neglected
while calculating the surface shape.

This observation agrees favorably with the result of
our calculation, as can be seen from an argument based
on geometrical optics. Indeed, for the dimensions of the
optical image along the bisector only the radial curvature
is important, and one can write the following approximate

Soap film 

  Air pressure 

Frame

 

Fig. 9. Pressurized soap film realization.

expression for the linear magnification by the drop in the
r̂ direction:

m =
1

1 + s(n − 1)crr
, (32)

where n is the index of refraction of the liquid the droplets
are made of 5. According to our result, for obtuse angles
the curvature diverges and the magnification should go to
zero as the vertex is approached; for acute angles both
quantities remain finite. Thus, the qualitative validity of
our result is confirmed by the simple demonstration de-
scribed above. A similar behavior should hold for the light
reflected off the surface of the droplet because curvature
is equally important for both such phenomena.

Another possible system to test the predictions of our
study is a pressurized soap film. As shown in Figure 9, a
soap film on a wedge-shaped frame with an applied con-
stant pressure difference across it will have constant mean
curvature. Thus, it is described by our formalism. The only
difference between such a film and a liquid drop is that the
film has two surfaces, and therefore the applied ∆p must
be two times as much as ∆p in equation (2). Once such a
surface is produced, it can be made as big as necessary for
experimental convenience, since gravitational effects are
virtually absent for this realization.

As these examples illustrate, the change in behavior
on going from acute to obtuse planar angular regions can

5 This expression assumes the horizontalness of the drop.
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show up in concrete ways. We suspect that further differ-
ences will emerge as capillary flow and evaporation prop-
erties of these sector-shaped liquid interfaces are explored.

The authors are grateful to Leo Kadanoff for an insightful dis-
cussion, to Joseph Keller for a useful mathematical clarifica-
tion, to Sidney Redner for pointing out the analogous phenom-
ena in hydrodynamics and diffusion, and to Itai Cohen for his
help with photographing the drops. This work was supported
in part by the MRSEC Program of the National Science Foun-
dation under Award Number DMR-9808595.

Appendix A.

Here we present some details on how we obtain expres-
sions (22) and (23-26). One starts from the substitution
of z(r, φ) = rνΦν(φ) (the first term of expansion (21)) into
equation (7) and obtains the following equation for Φν(φ):

rν
(
P [Φν ] + r2ν−2Q[Φν ]

)
+ r2

(
1 + r2ν−2R[Φν ]

)3/2
= 0 ,

where
P [Φν ] = Φ′′

ν + ν2Φν ,

Q[Φν ] = ν2Φ2
νΦ′′

ν +
(
ν − ν2

)
Φν (Φ′

ν)2 + ν3Φ3
ν ,

R[Φν ] = (Φ′
ν)2 + ν2Φ2

ν .

Considering all possible values of ν, leaving only main
terms in r (the smallest powers of r) and solving for Φν(φ)
in each case, one arrives at the following set of solutions
(only even terms are shown due to the symmetry of the
problem):

Φν(φ) =




C cosν φ , if 0 < ν < 1 ,

C cos φ , if ν = 1 ,

C cos νφ , if 1 < ν < 2 ,

C cos 2φ − 1
4 , if ν = 2 ,

no solution , if ν > 2

(C is independent of r and φ everywhere but arbitrary
otherwise). Obviously, the first two options cannot satisfy
boundary conditions Φν(−α/2) = Φν(α/2) = 0 for angles
α < π, and thus the “not horizontal” solutions with ν ≤ 1
are naturally eliminated. In cases 3 and 4 boundary con-
ditions yield ν = π/α and C = 1/(4 cos α), respectively.
Thus, the main-order result in the limit r � 1 is nothing
but equation (22):

z(r, φ)=




1
4
r2

(
cos 2φ

cos α
− 1

)
, if 0 ≤ α <

π

2
(ν = 2),

Crπ/α cos
πφ

α
, if

π

2
< α ≤ π (ν = π/α).

Then we proceed in exactly the same fashion to de-
termine µ and to find Φµ(φ) by employing just calculated
main-order result. Substitution of the first two terms of

expansion (21) into equation (7) yields the following equa-
tion for Φµ(φ):

rν
(
P [Φν ] + rµ−νU [Φµ] + r2ν−2Q[Φν ] + rν+µ−2V [Φν , Φµ]

+O(r2µ−2)
)

+ r2
(
1 + r2ν−2R[Φν ] + rν+µ−2W [Φν , Φµ]

+O(r2µ−2)
)3/2

= 0 ,

where Φν(φ) is already known, P , Q, R are the same as
in the equation for Φν(φ),

U [Φµ] = Φ′′
µ + µ2Φµ

and expressions for V and W are irrelevant to any final
results. Similar to the previous-case analysis, including a
thorough consideration of all possible cases for values of
µ, neglect of the terms of order higher than the first cor-
rection in r and application of symmetry arguments and
boundary conditions to the solutions, leads to the first-
order result (23-26).

Obviously, the procedure of building the next term of
power series for the solution of equation (7) can be re-
peated up to an arbitrary order.
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