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On-lin e sensing of tool wear and breakage in machin i ng has been a long standing goal of the 
manufacturing c omm u nity. Wear and breakage detection systems are typically based on force, acoustic 
emission , current or temperature measurement . They are important for reliable unmaned operation, and 
also for implementation of an adaptive control optimization system. This paper proposes a model - based 
approach to on-line tool wear and breakage detection under varying cutting conditions based on force 
measurement. The proposed model is used together with on - l i ne parameter estimat i on to track fla nk wear 
during cutting . The proposed method is illustrated with a simulation study, the results of which conf i rm 
the feasibility of the model-based approach. 

1. INTRODUCTION 

A successful tool wear/breakage sensor has been a 
long standing goal of the manufacturing c om mu nity 
[1-8]. I n addition, a wear sensor has always been 
regarded as a necessary step toward the implementation 
of an adaptive control optimization system [6,9,10]. 
Wear and breakage detection systems are typically 
based on acoustic emission, motor current , temperature 
measurement, or cutting force. 

Acoustic emission [ 11-16 ] and vibration [17] 
measurements are receiving a great deal of attention 
due to the non-obtrusive nature of the transducers, 
but important signal processing problems still remain 
to be solved . CtJrrent monitoring is the simplest 
method for de motor driven machine tools[18 - 19], but 
suffers from sensitivity and time lag problems. Tem ­
perature measurement is particularly important for 

"wear [20-2 2 ], however, a practical on - line transducer 
has yet to be developed [7 ] . With all these methods 
the tool wear or breakage are meas 11red indirectly 
thro ug h another system variable . Direct methods based 
on optical or radiometric techniques have been demon­
strated, but not yet proven to be practical [23,24]. 

Among the indirect methods those based on force 
and torque sensing [25-28] are perhaps the most 
developed. Such commercial units have begun to appear 
on the market in recent years , and have been used with 
some s uc cess in certain limited production situations . 
With this recent introduction of the first commercial 
tool wear/breakage sensors it is worthwhile to 
evaluat e these sensors and to reassess their economic 
advantages [2 9 - 30 ]. For this purpose the machining 
operations can be divided into roughing and finishing 
cuts . In roughing operations one can consider two 
distinct types of production: 

1. short prod uction cycles (e . g., t < 5 min) 
2. long production cycles (e .g., t > 10 min) 

The first Jituation is frequently encountered in high 
volume prod u ction , while the second situation occurs 
in the production of large complex workpieces, or in 
the machining of hard materials such as titanium. 

The importance of wear sensing, breakage 
detecting, and adaptive control is summarized 
acc ording to the production mode in Table 1. As can 
be seen tool breakage detection is economica l ly 
important in al l machining operations except finishing 
operations. Tool wear sensing is important as a 
predictor of tool failure du e to excessive wear. In 
long production cycle manufacturing operations, tool 
wear detection becomes important for surface roughness 
considerations . Tool wear sensing is also important in 
finishing cuts due to the effect on product quality. 

Commercially available systems for wear and 
breakage detection are typically based on force or 
power limits . When the measured force falls outside 
these predetermined fixed limits the tool is assumed 
to h a ve failed due to excessive wear or breakage . The 
disadvantage of t~ e fixed force limit method is that 
the cutting conditions must remain nearly identical 
throughout the whole cutting operation, and therefore 
this is applicable only in very simple cases. 

To extend the force limit approach to various 
cutting conditions, force signature methods typically 
use ''learning '' or ''dveraging'' strategies. These 
methods, however, have the following disadva n tages: 

1 . many parts must be cut to allow the system to 
learn the force signature 
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2. 

3. 

the metho d is not effective in long 
production cycle situations 

the method is not applicable in adaptive 
control(AC), because in AC cutting conditions 
are not repetitive from one part to another 

Table 1 also summarizes the importance of var i ous 
types of adaptive control systems. Adaptive control 
is not particularly sign i ficant in high volume/short 
production cycle manufacturing . Geometric adaptive 
control {GAC) is important in finishing operations 
[31-34]. In manufacturing operations with a long 
production cycle , both adaptive control optimization 
(ACO) and adaptive control with constraint (ACC) type 
systems are important . 

The tool wear sensor is also a necessary 
component in ACO systems for turning and milling 
[ 8 - 10, 35] . There is a fundamental difference, 
however, between using a tool wear monitoring system 
(which operates in open-loop) and applying the same 
sensor in a closed-loop adaptive control system . ACO 
systems (e.g., the mid 1960's Bendix System [9]) are 
based on maintaining the optimal cutting conditions by 
incrementing the feed and/or cutting speed in small. 
steps . However, in practice an indirect measurement 
of the tool wear is used, and feeding back the sensor 
signals in order to close the ACO loop is not a 
straightforward task . 

For example, assume that the tool wear is 
monitored through measurements of the cutting force . 
Typically, increasing wear increases the magnitude of 
the output signal of this sensor . An incremental 
increase in the feed (as may be executed automatically 
by the ACO system) will have two effects : 

1 . Since the cutting force is directly dependent 
on the feed, an increase in the feed causes a 
consequent increase in the cutting force. 
This is the direct effect . 

2. An increase in the feed shortens the tool 
life, namely increases the tool wear rate. 
As a consequence the wear increases and the 
force again becomes larger . This is the 
indirect effect . 

An ACO system should use only the latter effect. 
However, since both mechanisms affect the cutt i ng 
force similarly, the problem of isol~ting th~ second 
effect from the first i s not trivial . One might say 
that the direct effect happens almost immediately 
(theoretically after one revolution of the spindle), 
while the other mechanism affects the force after 
''some time'' . However, since the ACO convergence 
strategy is based upon incremental feed variations, 
and the signal - to-noise ratio in force measurements is 
low, it is difficult in practice to isolate the two 
phenomena by using simple electronics. 

A solution to this problem might be obtained by 
programming a mathematical model of the cutting 
process and updating it in real time in order to 
obta i n an accurate estimation of the two effects . The 
separation of the two effects has another sign i ficant 
outcome : it permits the separate detection of tool 
breakage and excessive tool wear. Tool breakage is 
detected by a sudden change in the force due to the 
first (direct) effect, whereas wear can be sensed by 
changes in the force due to the second (indirect) 
effect . By cont r ast to the fixed lim i ts and the force 
signature approaches , this proposed method does not 
require the cutting of many parts for the learning 
mode, and is also effective in long production cycles. 
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2 . THE FORCE EQUATION 

Before proceeding to the model-based approach of 
this paper, we would like to further clarify the 
problem introduced at the end of the previous section 
by using a simplified mathematical analysis . The 
relation between each component of the cutting force F 
and the flank wear W is approximated by [36] 

F F + aC W 
0 w (1) 

where F 1s the initial cutting force (with a sharp 
tool) , ~ 1s the depth of cut, and C is a constant for 
a certain tool and workpiece materi~l and a fixed set 
of cutting conditions (feed f and speed v) . Equation 
(1) has been exper1mentally verified (see Fi g. 1) for 
cases in which flank wear has the dominant e ffect on 
tool life . The initial cutting force is given by 

F 
0 

( 2) 

where a and t are constants depending on the tool and 
workpiece material; typicelly 0 . 6 < 1 s 1 . 

If the wear is assumed to be in its linear 
progression zone (see Fig . 2) it obeys the equation 

w 
w -w 

Wo+~ ( 3) 

0 

where T is the tool l1fe, Wf 1s the corresponding wear 
at which the tool 1s replaced, and Y(t) is a slowly 
time varying function used to account for the 
non-constant slope of the flank wear curve . Combining 
Eq. (1) and (3) yields the following force equation: 

( 4) 

where 

( 5) 

An acceptable model for T is the extended 
Taylor's tool life equation 

( 6) 

substituting T from Eq . (6) into Eq. (5) yields 

F
1 

Y( t) Savnfm (7) 

where 8 CC Wf and is assumed to be constant in the 
linear progr~ssion zone of the wear curve . The signal 
that an indirect tool wear detector transmits is 
proportional to Fin Eq . (4). However, only the term 
F1 t is proportional to the wear and therefore it 
should be separated from F (and be inserted as 
feedback to the ACO control loop) . Thus, a wear 
sensor based on force measurements must resolve the 
following problems : 

1. The real-time separation of the term F
1

t in 
Eq.(4), particularly under continuously 
changing cutting conditions . 

2. 

3 . 

Since the coefficients F
0 

and F
1 

depend on 
the depth of cut, feed, and speed, any change 
in these process variables might be 
interpreted by the system as a change in W. 

The coefficients (F and F ) in Eq.(4) 
depend not only on ~he cutting conditions, 
but also on the tool and workpiece material . 
They must be estimated accurately in real 
time in order to enable the identification of 
the level of wear increase . 

In order to solve these oroblems, the 
coefficients (a,B,Y) and the exponents (~,n, and m) 
in Eqs . (2) and (7) must be known . The exponents 'n and 
m of the Taylor's tool life equation have been 
traditionally determined from off - line experiments 
[37]. These tool life estimates have not been 
sufficiently accurate due to variations in material 
properties and cutting conditions. On-line tool wear 
illOnitoring using force measurement was initially based 
on correlations between force and wear for various 
constant cutting conditions and known materials 
[26-28, 36] . These results, although useful, require 
extensive off-line testing and are limited in 
applicability. Some of these methods have been 
extended even further by using ''learning'' or 
''averaging" techniques to account for process 
variability [4,24,25] . These approaches and others 
[38-40] are all basically empirical, and utilize 
on-line or off-line estimation methods to develop 
simple relationships between the measured forces and 
wear. 
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Wear and breakage have also been investigated 
from a more fundamental viewpoint by researchers who 
attempt to identify and quantify the mechanisms of 
wear in metal cutting [ 41-48]. Mechanically activated 
(e . g., abrasion and adhesion) and thermally activated 
mechanisms have been proposed for flank wear [ 43]; and 
crater wear is generally attributed to thermally 
activated mechanisms [48] . These mechanistic models 
have provided a better u nd ers tand ing of the problem of 
tool wear, bu t have been too complex to be of 
practical. use. 

Our proposed approach, described in the following 
section, builds on these previous studies to develop a 
model-based wear and breakage system which uses force 
sensing and is s u itable for variable cutting 
conditions . 

3. ESTIMATION OF PROCESS PARAMETERS 

The estimation of the unknown coef·r~ici e nts a and 
B, ?.nd the unkno wn exponents 9.., m and n i'1 Eqs. (2), 
(4 ) a nd (7) can be accomplished by on - line (recursive) 
parameter estimation methods . In this paper the 
standard recursive least squares (RLS) algorithm is 
used [49, 50], ~ 

O(k+ 1 ) O(k) +P(k) f(k)[y(k+1)~(k)] 
!(k) + !(k)T P(k)+(k) 

( 8) 

and, 

P( k + 1) = _1_ 1P(k) _ P(k)t(k)t(k)TP.(k)] 
A(k) l !(k) + !( k)TP(K) t(k) 

( 9) 

where y(k) is the value of the measured variable at 
time t = k~t for k = 0, 1, 2, 3 •. . . , f (k) is a vector 
of measured (or known) variables, A(k) provides 
exponential data weighting, and 9(k) is a vector of 
parameter estimates . The P(k) is the matrix of 
estimation gains . The above algorithm recursively 
updates the estimated parameter vector 8(k) for any 
process whose equations can be written in the form , 

y ( k) ( 1 0) 

Th us, the process model must be written in a form that 
is linear in the unknown parameters, which are the 
elements of the vector O(k). 

For the process model presented in the previous 
section, we first consider the estimation of a and ~ 

us ing Eq. (2) . When the tool is sharp, the term F
1

t 
in Eq. (~) is approximately zero , and one can writ e 

F F 
0 

This, can be rewritten in the form of Eq . (10) by 
taking natural logarithms of both sides, 

lnF Ina + Ina + ~(lnf) 
or, 

(lnF - Ina) [1 lnf] {l ~a~ 

(1 1) 

( 1 2) 

So, initially the estimation algorithm in Eqns . (8) 
and (9) is used with, 

~nF(k)-lna(k) 

[ 1 ~nf ( k)] 

[Ina I] 

to estimate a and ~ . Then, assuming that a and ~ 

remain constant during the cutting operation, one can 
calculate 

Next, use the same RLS algorithm with Eq. (o) to 
estimate 8, m, and n in Eq. (7) . For example, if we 
assume that Y( t) == 1, and S, m, and n are all unknown 
and constant , taking natural logarithms of both sides 
of the equat ion gives, 

~n(F(k)-F (k)) 
0 

now define, 

InS + lna(k) + mlnf(k) 

+ nlnv(k) + lnt 

y(k) 

9( k) T 

ln[F(k)-F (k)] - l.na(k) - ~nt 
0 

[1 lnf(k) ~nv(k) ] 



[~nB m n] 

to estimate 8, m, and n . 

The RLS estimation algorithm requires that one 
select initial values for B(k) . These selections can 
either be made from typical values of a, B, 9.., m,. and 
n as published in the literature [36, 37], or. ass1gned 
arb i trarily. Initial values of the ga1n matr1x P(k) 
are usually selected to be of the form, 

P(o) 6l 

where 1 i s the identity matrix, and the scalar 
constant 6 > o is chosen by trial and error through 
simulation studies. The RLS algorithm is typically 
not too sensitive to the choice of 8(0) and P(O). 

The choice of the weighting factor A(k) in 
Eqs.(8) and (9) is more significant. The standard RLS 
algorithm is obtained when A(k) : 1 . When it is 
necessary to track parameters with a value that may 
jump or vary slowly with time, a value of o < A(k) < 
exponentially weights the data to ensure the 
"alertness• of the algorithm [49, 50] . In the 
simulation results presented in the next section a 
value of A(k) = 1 was used . In those simulation 
studies scaling and factorization of the P(k) matrix 
into upper triangular and diagonal factors was also 
used . Such measures are often required in practice to 
eliminate numerical problems [49,50] . For a process 
model as in Eq.(lO) with constant coefficients it can 
be proven that the RLS algorithm ensures convergence 
of the estimation error E(k) = y(k) - <j>(k-1 )O(k-1) to 
zero . To ensure that the parameter estimates O(k) 
convergence to the actual parameter values, there is 
an additional requirement on the richness (frequency 
content) of the process inputs . For further discussion 
on estimation algorithms the interest reader is 
referred to [49 , 50]. 

4. SIMULATION RESULTS 

In this section we present simulation results to 
illustrate the model - based approach to tool wear and 
breakage detection as outlined in the previous 
sections . The basic scheme is illustrated in Figure 
3, where the ''process model'' block is based on the 
model presented in Eqs . (2),(4), and (7) . The 
''adaptat i on algorithm'' is based on the RLS algorithm 

presented in Eqs. (8) and (9). For the purposes ot 
this simulation study the ''cutting process'' is 
represented by a model described previously in [48] . 
That model is more detailed than the simple process 
model presented here and accounts for crater wear as 
well as flank wear due to both thermally and 
mechanically activated mechanisms. Results presented 
in [48] show that the model gives good results for 
force, temperature, flank wear, and crater wear. The 
model equations as well as the cutting conditions used 
in the simulation are summarized in the Appendix . 
Under these cutting conditions flank wear dominates, 
and the effect of crater wear is negligibly small. 

To provide sufficient input richness for prameter 
convergence using the RLS algorithm , the feed f(t) is 
varied as shown in Fig . 4, by + 0 . 025 mm/rev about the 
nominal value of 0.35 mm/rev .- The simulated flank 
wear and force versus time are shown in Figs.5 and 6 
respectively. Note that there is initially a rather 
high wear rate followed by a relatively constant wear 
rate for 3 < t < 10 min. For t > 10 minutes the wear 
rate again increases and the useful life of the tool 
is T ~ 11 minutes. The simulated force shows the 
effects of the variations in feed, and also an 
increase in level due to increasing flank wear . 

The RLS algorithm in Eqs.(8) and (9) is used to 
first estimate a and~ using Eq.(12). This estimation 
is carried out during the first few sampling periods 
and leads to constant values of a : 4300 and ~ = 
0.877. Next, assuming that a and i remain constant, F

0 is calculated and used to estimate ~he F
1 

term in 
Eq.(7) . The estimate of F0 (i.e ., F

0
) is shown in 

Fig . 7, and is quite effective in separating the 
effects of feed variations on force from those related 
to the flank wear on the tool . In the simulation v : 
300m/min is constant, a: 2.5 mm is constant, and m: 
1 is assumed to be known, so we use the following form 
of Eq.(7): F1 Y(t)Bf where we have found that Y(t) 
: tp gives good results in the estimation. As shown 
in Figs.8 and 9, when the wear is in the constant wear 
rate region the estimated values are, 

80 

p 0 . 1 

These lead to good agreement ~etween the actual F 
1 

t 
and the estimated F1 t (i.e . , F

1
t), as shown in Figure 

10, for the constant wear rate region . When the tool 
wear rate increases, the error 

e F
1
t- F

1
t 

becomes large, and serves as a good indicator of tool 
failure . Thus, the simulation results shown in Figs . 4 
- 10 illustrate the potential usefulness of the 
model-based approach for separating the effects of 
feed and flank wear on force and for predicting tool 
failure due to excessive flank wear . 

5. SUMMARY AND CONCLUSIONS 

This paper has presented a model-based app roach 
to on-line tool wear and breakage detection in metal 
cutting. Such a model - based approach is considered 
important for machining under variable cutting 
conditions, and for use with adaptive control systems 
that automatically adjust feedrates . The basic 
approach has been developed, and illustrated with a 
simple simulation example. 

The simulation results confirm the feasibility of 
the proposed model-based approach, and indicate the 
need for further research to obtain experimental 
confirmation . Further research may also be desirable 
on process modeling, estimation algorithms, and 
on - line training of the model-based approach by using 
artificial intelligence methods. 
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APPENDIX 

. The ''cutting process'' in Fig . 3 is simulated 
us1ng the following model from [48], 

(v/9.
0

) ( -W 1 +K 1 cos ar(F/fa)) 

K2 VV exp( - (K
3
!(273+0f))) 

K4Vn1 fn2 + K (W +W )n3 
5 1 2 

[ n4 
K6 f (1 -K 7ar)- K

8
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9
v] a+ K

10
a (W

1
+w

2
) 

where W1 is the mechanically activated component of 
flank wear, W2 is the thermally activated component of 
~lank wear, 8f is the temperature at the tool flank, v 
1s the cutting speed, f is the feed, a is the depth of 
cut, and F is the cutting force. The parameters K. 
and exponents ni are selected to be typical of turhing 
steel with a carbide tool [48]. The values used in 
the simulation study are, 

a 

9. 
0 

COM ME NTS ON 
BREAKAGE 

COMMENTS ON 
WEAR 

COMME NTS ON 
ADAPTIVE 
Control 

Table 1. 

2 . 5mm K6 1960 

0.35 mm/rev K7 0 . 57 

300 m/min K8 86 

10° Kg 0.1 

500 K1 0 500 

5.2 X 10-s n1 0.4 

1 5 n2 0 . 6 

8000 n3 1 . 4 5 

72 n4 0. 76 

2500 6t 0.05 rn in . 

TYPE OF OPERATION 

ROUGH ING CU T 

SHORT PRODUCTIO N 
CYCLE/HIGH VOLUME 

Important; f orce 
signature method 
can be used 

Important only 
as a predictor 
of fa !lure d"e 
to excessive 

Not 

LONG PRODUCTION 
CYCLE 

Important; force 
signature method 
not suitable 

Important for 
predicting 
failure and eum-
i nat 1 ng e xc essive 
surface rough-
ness 

FINISHING CUT 

Important d"e 
effect on part 
dimensions and 
surface f 1 nish 

to 

1mpor tant Both ACO and GAC is important 
ACC are 
important 

Summary of Comments on the Importance of 
Wear, Breakage, and Adaptive Control 
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Fig.3 Schematic of the Proposed Model Based Approach 
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