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Abstract 
Optimal line design seeks to identify the best configuration of resources and allocation of tasks to satisfy criteria such as 
maximum throughput or minimum cost. Coupling several levels of the problem together provides a more comprehensive 
solution but can be difficult because of problem formulation and computational complexities. In this paper we present an 
approach to coupling line-balancing, machine selection (including buffer) and throughput analysis for manufacturing lines that 
produce multiple parts. We utilize a Genetic Algorithm formulation to capture in string form the configuration and task allocation 
for a multiple parts line (MPL). Minimal ratio of cost to throughput is used as the criterion for the fitness function. An analytical 
throughput analysis engine is called during the evaluation of each solution to size and locate buffers, and to consider the 
effects of machine breakdown. This method is effectively used during the initial stages of line design to guide manufacturing 
engineering in evaluating different line design options. 
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1 INTRODUCTION 
Designing a manufacturing line is a very complicated 
problem because it involves a number of issues that are 
coupled with each other and increase complexity of the 
problem. These issues include line balancing, machine 
and buffer selection and throughput analysis. It becomes 
more intertwined when the line is for multiple parts due to 
interactions and interventions among different part types. 

With growing trends towards great product variety and 
fluctuations in market demand, building of a 
manufacturing system with customized flexibility 
(reconfigurability) oriented at part family has gained 
increasing attention [1]. The manufacturing line studied in 
this paper is exactly this kind of system, called multiple 
parts line (MPL), which can produce a number of parts in 
a part family. As shown in Figure 1, a MPL consists of 
several serial stages and each stage contains a number of 
identical parallel machines that perform the same set of 
tasks. Between every two stages a finite-size buffer is 
located to deal with machine failures. The use of MPLs 
yields great benefits for manufacturing enterprises. 
Manufacturers can convert to the other parts of the part 
family quickly to meet stringent due times. Diverse 
demands from customers are also satisfied while less 
initial capital investment is required compared with 
constructing distinctive lines for each part because the 
MPL shares toolings and fixtures which need considerable 
expenses. 

2 LITERATURE REVIEW 
Several key issues need to be considered when an MPL is 
designed. First, a manufacturing line must be well 
balanced such that the line attains the highest throughput. 
Secondly, the machine type to be chosen for each stage 
also greatly affects the effectiveness of the line for long 
runs since different machines will run with different speeds 
and reliability. The third issue is throughput analysis for 

estimating how many parts the line can yield during a 
specified time period considering machine parameters 
and buffers allocation. 
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Figure 1 Multiple Parts Line 

 
To date, researchers have investigated each of the above 
issues as an independent problem. In 1955 Salveson[2] 
was the first researcher who constructed a mathematical 
model for the line-balancing problem and provided a 
solution procedure. Since then numerous optimum-
seeking algorithms and heuristic procedures that attempt 
to solve different line-balancing problems for single 
product or multiple products have been developed. 
Basically these methods seek an optimal task allocation 
scheme that minimizes the number of stations for a fixed 
cycle time (Type I problem), or maximize the line 
throughput for a fixed number of stations (Type II 
problem)[3]. Shen and Tsai[4] propose a graph matching 
approach to search for the optimal task allocation. Ercal [5] 
use a simulated annealing method to find a solution. 
Others, such as Yip-Hoi[6], Aoyagi[7] and Hadj-Alouane[8], 
use genetic algorithm (GA) to explore the best allocation 
scheme.  
For the machine selection problem when designing a 
manufacturing system, ElMaraghy[9] has proposed the use 
of an Alternative Process Plan (APP) to describe all the 
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optional machines mapped to one task. Kiritsis and 
Porchet[10] utilize a simple and safe Petri net model to 
represent an APP. By reachability analysis on the Petri 
net, all possible process plans can be generated and the 
appropriate machines for each task can be identified.  
In addition to task allocation and machine selection, the 
system performance, especially the system throughput 
under a long run period is of interest to designers. 
Gershwin[11] applied a Markov model to a three-stage-
flow-line and obtained the exact analytical solution. For 
the flow line with more than three stages, both 
aggregation and decomposition techniques are employed 
to approximately analyze the throughput. Yang[12] 
developed an analytical model based on decomposition 
technique to estimate the throughput, which is used in the 
research work of this paper. Apart from analytical 
methods, many simulation-based methods are used to 
evaluate the performance of a manufacturing line, e.g. the 
commercial software Witness@ [13] has been widely used 
in the manufacturing industry. 
Although great progress has been achieved in each of the 
above areas, it is inadequate to build a good line 
configuration if only one or two of them is concerned. For 
example, a well-balanced task allocation scheme may not 
yield the highest throughput if machine reliability in one 
stage is much lower than those in other stages. Since 
these factors are coupled together, a concurrent method 
is presented to provide a more comprehensive solution. 

3 NOMENCLATURE 
NP: Total number of part models produced by MPL 
NT: Maximum number of manufacturing tasks of a part 
NS: Total number of production stages of MPL  
NR: Total number of available machine types 
K: Maximum number of alternative machines being 
assigned to a manufacturing task 
NC: Maximum number of stage capabilities 
p : Index for part, p = 1, …, NP 
i,j : Index for manufacturing task, i, j = 1, …, NT  
s : Index for production stage in MPL, s = 1, …, NS 
r  : Index for available machine type, r = 1, …, NR 
k : Index for alternative machine type, k = 1, …,K 

4 PROBLEM FORMULATION 
Given a part family with NP parts to be produced and each 
part possessing up to NT manufacturing tasks (hereinafter 
“tasks”), a MPL will be built to perform all these tasks. The 
sequence of performing tasks of each part must conform 
to basic process planning rules as well as user-specific 
requirements, which are documented in a task-
precedence-graph. Each task can be performed on K 
alternative machines chosen from the machine library 
which contains NR candidate machines. All tasks must be 
finished in NS serial production stages (hereinafter 
“stages”), where identical machines are arranged in 
parallel in each stage with finite-size buffers (the size can 
also be zero) between stages. With cost constraints, 
machine quantity limit and demands, the system designer 

wishes to configure a MPL with maximum ratio of 
throughput to cost. The goal is achieved by answering the 
following questions: 
1. How are the tasks assigned to each stage without 

violating precedence constraints? 
2. What machine type is used and how many machines 

are required in each stage? 
3. How large is the buffer size between each stage? 
4. What is the estimated throughput for each part? 
 
4.1 Assumptions 

The following assumptions are made in this work: 
1. The number of stages, NS, is specified by designers in 

advance. 
2. Each part in the family must visit all stages in the 

system. 
3. The machines in the same stage perform the same 

tasks. 
4. Each part is produced in a batch and the batch is large 

enough so that the throughput for each part can be 
estimated separately. 
 

4.2 Inputs 

Task-Precedence-Graphs  
Each part in the part family has its own task-precedence- 
graph that defines sequential constraints between tasks. A 
three-dimension binary matrix Pre[1..NP][1..NT][1..NT] 
has been used to represent all precedence graphs. 
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Machine Library 
All available machine types comprise the machine library 
from which alternative machines are specified for each 
task. It is represented by a one-dimension array 
ML[1..NR]. 

 Machinerth   theof ID  Unique ][ =rML  
 
Machine Cost Array 
An array CE[1..NR] records costs of all machines in the 
machine library. 

 machinerth   theofCost   ][ =rCE  
 
Machine Reliability Martix 
A matrix REL[1..NR][2] records mean-time-between failure 
(MTBF) and mean-time-to-repair (MTTR) of each machine  
in the machine library. 
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Alternative Machine Matrix and Alternative Time Matrix 
Each task can be performed on alternative machines and 
that may entail different working times. The Alternative 
Machine Matrix AMM[1..NP][1..NT][1..K] stores the 
alternative machines for every task of the part family. The 



   

respective working times are stored in the Alternative 
Time Matrix ATM[1..NP][1..NT][1..K].  
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Stage Key Characteristic Matrix 
Each manufacturing stage usually has limited capabilities, 
which are reflected by a group of key characteristics of the 
stage. When a set of tasks are assigned to a stage, the 
necessary capabilities must fall in the key characteristics 
of the stage. Otherwise the task allocation is invalid. For 
example, the machining stage only has several possible 
cutting-tool access directions and thus the tasks assigned 
to this stage must be performed on those directions.  
Assuming the number of the key characteristics of each 
stage is NC, a capability matrix SKC[1..NS][1..NC] stores 
all possible key characteristics of each stage.  
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Task Key Characteristic Matrix 
Respectively, each manufacturing task corresponds to a 
key characteristic. A task key characteristic matrix 
TKC[1..NP][1..NT] stores the key characteristic of each 
task.  
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Throughput Demands Array 
The MPL must be able to meet throughput demands of all 
parts which are stored in the array TH[1..NP]. 

 part  of demand Throughput  ][ ppTH =  
 
Cost bound 
Maximal allowable investment on the MPL is MaxInvest. 

 
Machine Quantity Limit 
Total number of machines cannot exceed MaxNMC 
 
Buffer Cost per Unit Size: 
The average cost of each unit buffer size is BufCost. 
 
4.3 Decision Variables 

MPL Type Array 
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Machine Number Array 

 . stagein  used being machine of Numbe  ][ ssNMC =  
 

Buffer Size Array 

.1 and  stagebetween  sizeuffer   ][ += ssBsBUF  
BUF[NS] = 0 since there is no buffer after the last stage. 

 
Task Allocation Matrix 
A two-dimensional matrix TAM[1..NP][1..NT] records the 
allocation of tasks to stages of the MPL. 
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4.4 Throughput Function 

FTH(p, MPL,NMC, BUF, TAM, REL ) 
The function is used to estimate the throughput of part p 
under the line configuration specified by arrays MPL[], 
NMC[], BUF[] and matrices TAM[][], REL[][]. A throughput 
analysis engine – Performance Analysis of Manufacturing 
Systems (PAMS), based on Yang’s work [12], is called to 
calculate the throughput for each part. 

 
4.5 Mathematical Model 

A mathematical model has been formulated to find the 
best line configuration and task allocation scheme. It is 
described in the following: 
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The objective expressed in (1) is to minimize the ratio of 
the total investment in machines and buffers to the total 
throughput of all parts. 
Subject to 

1. Precedence constraints: 
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For two tasks i and j in part p, if task i must be performed 
before j (Pre[p][i][j] = 1), it will be assigned to the same or 
a preceding stage as j. 

2. Functionality constraints: 
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All tasks assigned to the same stage must use the same 
machine type. 

3. Key characteristic constraints: 

 
)1,1(                                  

0
1

])][[]]][][[[(

NTiNPp

NC

j
ipTKCjipTAMSKC

≤≤≤≤

=∏
=

−            (4) 

If the task i is assigned to the stage s, its key 
characteristic must be one of those for the stage s. 

4. Throughput demands: 
( )
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Each part must achieve its predefined throughput under 
the optimal system configuration. 



   

5. Cost bound: 

MaxInvestBufCostsBUFCEsNMC
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The total cost of machines and buffers being used cannot 
exceed the budget bound. 

6. Machine quantity limit: 

MaxNMCsNMC
NS

s
≤∑

=1
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The total number of machines cannot exceed a specified 
value because of shop floor area. 
 
The above formulation can be viewed as a Mixed Integer 
Programming problem. However it contains a few complex 
functions some of which do not have explicit forms like the 
throughput function FTH(). Furthermore, previous studies 
have shown that it is an NP-hard problem, i.e., as the 
problem size increases combinatorial explosion will 
happen. Therefore conventional optimization techniques, 
such as gradient method and SQP, cannot find the 
solution in a reasonable time. 
Due to the above reasons a heuristic method utilizing a 
Genetic Algorithm is used to solve this optimization 
problem. 

5 GENETIC ALGORITHM METHOD 
Genetic algorithms (GA) have been developed as a 
powerful and broadly applicable heuristic search and 
optimization technique since the 1970s. For mixed integer 
problems with complex functions and combinatorial 
explosion on feasible space, like MPL design problem, GA 
is a good and efficient way to solve them according to 
Aoyagi, Hadj-Alouane, Yip-Hoi, Cheng and Gen’s 
research experiences [6-8, 14].  
The basic idea of a GA is to maintain a population of 
strings, say P(t), for generation t. Each string represents 
an encoding of a potential solution to the problem at hand 
and will be evaluated to provide some measure of its 
fitness. Some strings undergo stochastic transformations 
by means of genetic operations. There are two types of 
transformations: crossover, which creates new strings by 
combining parts from two parent strings, and mutation, 
which creates new strings by making changes in a single 
one. New strings, called offspring C(t), are then evaluated. 
By selecting the more fit strings from the parent and 
offspring populations a new population is formed. After a 
number of generations, the algorithm converges to the 
best individual, which represents a near-optimal solution 
to the problem. Due to the stochastic nature of a GA, it is 
not guaranteed that a global optimum can be attained.  

 
5.1 String Representation 

The first step of applying GA is to represent a solution of 
the problem by the format of a string, i.e. encoding. An 
MPL design scheme is encoded by an integer double 
string which consists of 5 portions, corresponding to (1) 
task sequencing, (2) alternative machine selection, (3) 
task allocation, (4) buffer size and (5) number of 

machines, respectively. Figure 2 depicts the string that 
encodes an MPL producing two parts L and R.  

Integer Double String Encoding Scheme
(MPL with Two Part L & R)
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Figure 2 String Representation 

5.2 Decoding 

After an offspring is obtained by genetic operators, it has 
to be translated to a corresponding solution for evaluation. 
This is called decoding. The 5 portions of the string 
mentioned in the preceding paragraph will be decoded to 
their respective part of an MPL design solution. That is 
described in the following sections. 
 
Decoding the task sequence 
Since task precedence relations are stored in a 
precedence graph, a partial precedence graph sorting 
technique [14] is used to translate the string to a sequence 
of tasks without violating precedence constraints. 
Each digit in the first portion of the string stands for an 
element of the eligible task set in which no tasks have any 
precedent task. The first eligible set is constructed based 
on the original precedence graph and the first digit 
indicates which task will be chosen as the first one in the 
sequence. Then a new eligible set is generated by 
removing the first task from the graph and the second digit 
identifies the second task. The detailed procedure is 
explained in [14]. Finally a sequence of tasks is generated 
with all precedence constraints satisfied. 
 
Decoding the task allocation 
The second portion of the string determines how tasks are 
assigned to each stage of the MPL. Each digit 
corresponds to a stage and stands for the percentage 
ratio of the number of tasks in the stage to the total 
number of tasks of the part. For example, by the string 2-
4-3 it is determined that stage 1 contains 2/(2+4+3)=2/9 of 
all tasks. According to the ratios the task sequence is 
divided and assigned to N stages.   
 
Decoding the alternative machine selection 
Each task corresponds to a number of alternative 
machines which comprise a machine set. As shown in 
Figure 2, task 1 has A, B, C, D (4 machine types) 
associated with it. Each digit in the third portion 
corresponds to the respective task in the sequence 



   

obtained in (1) and a machine is chosen by the value of 
the digit. In the example of Figure 2, if task 1 is put in the 
second place, 3 is the code for alternative machine 
selection and machine C is chosen. 
Since tasks assigned to the same stage (by decoding the 
second portion) may select different machine types, the 
code in the third portion needs to be repaired, i.e. making 
the tasks in the same stage use identical machine. A 
simple heuristics is employed such that the most 
frequently used machine type of each stage becomes the 
dominant one and all tasks in the stage must use this one. 
If some tasks cannot be performed on this machine, a 
penalty value is imposed. 
  
Decoding the buffer size 
The nth number stands for the size of buffer following 
stage n. The buffer following the last stage is assumed to 
be infinity.  
 
Decoding the number of machines 
The value of the nth digit is the number of identical 
machines used in the stage n. 

 
5.3 Fitness (Objective) Function 

This is a function which measures the relative worth of the 
solution when applied to a decoded string. To this 
problem, the fitness function evaluates the ratio of the 
total cost to the total throughput. Through the comparison 
of string fitness values, the GA moves toward the optimal 
solution.  

 
5.4 Other Constraints 

The decoding method above has satisfied precedence 
constraints (2) and tested functionality constraints (3). 
However, the remaining three constraints: key 
characteristic constraints (4), throughput demands (5) and 
cost bounds (6), still need to be evaluated.  
To evaluate these constraints, the penalty method is used. 
A penalty function is developed for each type of 
constraint. If a decoded string violates any constraints, its 
fitness will be added on the respective penalty value.  
For each violation of key characteristic constraint, 1000 
penalty value is added to the final fitness. 
If the actual throughput THa (parts/hour) is less than the 
throughput demand THd, a penalty value 10000*(THd - 
THa) will be applied. 
When the total system cost Ct exceeds the cost bound Cb, 
a penalty value 10000*(Ct - Cb) will be applied. 

 
5.5 Genetic Operators 

The following three mechanisms are used to create 
successive generations of strings from the parent strings.  
1. Reproduction: This operator copies the individual 

strings with better fitness value into the next 
generation.  

2.  Crossover: The “genetic material” within parent strings 
is broken down and then reconstituted into new 

solutions. It is the primary method to introduce new 
solutions into the population.  

3. Mutation: This is another way to add new “genetic 
material” to a population. Randomly selected strings 
undergo the altercation according to the mutation rate. 
The purpose of doing so is to help the GA avoid 
getting trapped at a local optimum. 

6 CASE STUDY 
The above genetic algorithm is applied to the machining 
domain by using a case study from the automotive 
industry to demonstrate the MPL design approach.  
 
6.1 Machining Domain Background 

The ‘task’ in the machining domain refers to a series of 
cutting operations that use the same cutting tool in the 
same setup. The operations like drilling several mounting 
holes on the same surface are considered as a single 
task. According to the requirements of the machining 
process planning, between tasks exist sequential 
constraints which are represented by a task precedence 
graph. The key characteristic of the task is defined as the 
cutting-tool access direction (TAD). Each ‘stage’ contains 
identical CNC machines or Reconfigurable Machine Tools 
(RMT) that normally possess 2 or 3 possible TADs. Thus 
the SKC and TKC matrix will record TADs. 
 
6.2 Inputs 

Two cylinder heads, called “left-hand” and “right-hand” 
respectively (shown in Figure 3), comprise the part family 
to be produced. 84 manufacturing tasks are required for a 
left-hand cylinder head while 80 tasks for a right-hand 
one. Both parts are supposed to visit 8 production stages 
(this is an input and can also be 7 or 9). 

 
Left-hand Right-hand 

Figure 3 Cylinder Head Part Family 

The precedence graphs for both parts are shown in Figure 
4. The left-hand part has 106 constraints (edges) and the 
right-hand part has 99 constraints. 
Each task has 3 alternative machines with different task 
completion time on each. In this case all alternative 
machines use equal time. The TAD of the task is also 
documented in the Table 1. 

Task ID M/C 1 Time 1 M/C 2 Time 2 M/C 3 Time 3 TAD 
101001 101 18.32  102 18.32  103 18.32  EF 
101002 101 15.50  102 15.50  103 15.50  EF 

… … … … … … …  

Table 1 Tasks with Alternative Machines 



   

The available machines (machine library) are listed in 
Table 2. 

M/C ID Name Cost(K$) MTBF(min) MTTR(min)
101 A 200 1500 8 
102 B 160 1200 10 
103 C 180 1300 12 
104 D 225 1850 10 
105 E 140 850 20 

Table 2 Machine Library 

The stage key characteristics, i.e., the possible TADs for 
each stage are listed in Table 3. 

Stage 1 2 3 4 5 6 7 8 
TAD 1 FF CF CF FF CF CF CF CF
TAD 2 EF IF IF RF IF JF JF FF
TAD 3 n/a JF JF CF JF n/a n/a n/a

Table 3 Stage Key Characteristic (TAD)

It is required that both throughputs must exceed 35 parts 
per hour (PPH), total cost is limited under 8400 K$ and at 
most 43 machines can be used in the line. 
 

Left-Hand Right-Hand 

6.3 Results 

The optimal ratio of system cost to throughput is 7.4431 
where the total cost is 7,310 K$ and total throughput is 
71.328 PPH. There are in total 43 machines and 14 unit 
buffers being used in the line. 
Figure 5 shows how tasks from each part are allocated to 
8 stages. The cycle-times of both parts per stage are 
shown in Figure 6. The individual cycletime distribution is 
unbalanced for two reasons: one is that constraints 
imposed on tasks prevent them from being performed in 
any stage; the other is that some tradeoff must be made 
so that the total cycletimes are more evenly distributed. As 
shown in Figure 6, the total cycletime per stage is around 
80 seconds. 

Figure 4 Precedence Graphs 

 
Figure 5 Cycletime Distributions Per Stage of Each 

Part  

 
Figure 6 Total Cycletime Distributions per Stage  
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Figure 7 MPL System Configuration 

 
The type and quantity of machines used in each stage are 
shown in Figure 7 as well as buffer sizes. 
Figure 8 gives the GA convergence curves using different 
control parameters. It shows the best solution of 7.4431 
was found in 600 generations (curve 2). Most of the runs 
converge to close to the same value with the similar 
solution. The computation time required was around 66 
minutes on a Pentium 4 2.0GHz PC with 512MB memory. 
Compared to the large solution space, 85.(84+80)8.710 = 
4.844x1030 (obtained from the following facts: each stage 
can choose 5 machine types, each task can perform at 
any of 8 stages, each buffer size can vary from 1 to 10), 
the GA algorithm is much more efficient.  

 
Figure 8 GA Run Convergence Curves 

7 DISCUSSIONS AND FUTURE WORK 
The results obtained in the case study show a good match 
compared to the actual task allocation and machine 
quantity distribution determined by the experts in the 
industry.   
Besides system cost, throughput and task precedence 
issues mentioned in this paper, other optimization goals 
and constraints concerned by users (if any) can be easily 
integrated into the proposed approach. Only minor 
changes to the genetic representation and evaluation are 
needed.  
There are a number of improvements that can be made in 
future. The first is about the number of stages in the MPL, 

which is specified by the designer in the current approach. 
The MPL is divided into several stages because tasks 
have different TADs that may need different setups and 
fixtures. Apart from the effects of process plans, material 
handling devices impose some limitations that restrict the 
maximum number of stages and machines in each stage 
of the line. We are currently looking at ways to include this 
issue in our GA algorithm. 
A second improvement focuses on routing issues in MPL. 
In the current approach, it is assumed that every part will 
visit every stage and every machine in each stage 
undertakes identical tasks. The assumption may not be 
reasonable in some manufacturing practices like assembly 
where a part does not go through all stages and machines 
in the same stage may perform different tasks. To cop 
with this situation we need to revise our gene 
representation scheme to adapt to a flexible-routing-MPL. 
The third one considers how to reconfigure the MPL when 
new parts are introduced into the part family to replace 
existing ones. In addition to all requirements mentioned 
before, we have to generate a reconfiguration plan with 
minimal expense.  
Some other topics such as reducing computation time, 
improving algorithm efficiency and providing user-
interactive capabilities are also under investigation.   

8 CONCLUSIONS 
In this paper, we have studied how to design a multiple 
parts line with integration of line balancing, equipment 
selection and throughput analysis. It is formulated by a 
mixed integer programming model and solved by a 
genetic-algorithm based approach which enables us to 
cope with the intrinsic complexity of configuring a 
manufacturing line. Furthermore, a case study from a real-
world manufacturing application has been investigated by 
our approach and a satisfying result was obtained within a 
short duration. Compared to many trial-and-error 
processes currently used in industry, this saves a lot of 
time for line designers to come up with a final decision. 
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