

Concurrent Line-Balancing, Equipment Selection And Throughput Analysis For Multi-
Part Optimal Line Design

Li Tang1, Derek M. Yip-Hoi2, Wencai Wang1, Yoram Koren1

1 NSF Engineering Research Center for Reconfigurable Manufacturing Systems
University of Michigan

Ann Arbor, MI 48109, USA
2 Department of Mechanical Engineering

University of British Columbia
Vancouver, B.C., V6T 1Z4

Abstract
Optimal line design seeks to identify the best configuration of resources and allocation of tasks to satisfy criteria such as
maximum throughput or minimum cost. Coupling several levels of the problem together provides a more comprehensive
solution but can be difficult because of problem formulation and computational complexities. In this paper we present an
approach to coupling line-balancing, machine selection (including buffer) and throughput analysis for manufacturing lines that
produce multiple parts. We utilize a Genetic Algorithm formulation to capture in string form the configuration and task allocation
for a multiple parts line (MPL). Minimal ratio of cost to throughput is used as the criterion for the fitness function. An analytical
throughput analysis engine is called during the evaluation of each solution to size and locate buffers, and to consider the
effects of machine breakdown. This method is effectively used during the initial stages of line design to guide manufacturing
engineering in evaluating different line design options.

Keywords:
Design, System, Multi-part

1 INTRODUCTION
Designing a manufacturing line is a very complicated
problem because it involves a number of issues that are
coupled with each other and increase complexity of the
problem. These issues include line balancing, machine
and buffer selection and throughput analysis. It becomes
more intertwined when the line is for multiple parts due to
interactions and interventions among different part types.

With growing trends towards great product variety and
fluctuations in market demand, building of a
manufacturing system with customized flexibility
(reconfigurability) oriented at part family has gained
increasing attention [1]. The manufacturing line studied in
this paper is exactly this kind of system, called multiple
parts line (MPL), which can produce a number of parts in
a part family. As shown in Figure 1, a MPL consists of
several serial stages and each stage contains a number of
identical parallel machines that perform the same set of
tasks. Between every two stages a finite-size buffer is
located to deal with machine failures. The use of MPLs
yields great benefits for manufacturing enterprises.
Manufacturers can convert to the other parts of the part
family quickly to meet stringent due times. Diverse
demands from customers are also satisfied while less
initial capital investment is required compared with
constructing distinctive lines for each part because the
MPL shares toolings and fixtures which need considerable
expenses.

2 LITERATURE REVIEW
Several key issues need to be considered when an MPL is
designed. First, a manufacturing line must be well
balanced such that the line attains the highest throughput.
Secondly, the machine type to be chosen for each stage
also greatly affects the effectiveness of the line for long
runs since different machines will run with different speeds
and reliability. The third issue is throughput analysis for

estimating how many parts the line can yield during a
specified time period considering machine parameters
and buffers allocation.

1

2

3

K1 K2 KM

B

Stage 1 Stage 2 Stage NS

……

Part 1
Part 2

:
:

Part NP … … …

1

2

3

1

2

3

Multiple Part Line (MPL)

Figure 1 Multiple Parts Line

To date, researchers have investigated each of the above
issues as an independent problem. In 1955 Salveson[2]
was the first researcher who constructed a mathematical
model for the line-balancing problem and provided a
solution procedure. Since then numerous optimum-
seeking algorithms and heuristic procedures that attempt
to solve different line-balancing problems for single
product or multiple products have been developed.
Basically these methods seek an optimal task allocation
scheme that minimizes the number of stations for a fixed
cycle time (Type I problem), or maximize the line
throughput for a fixed number of stations (Type II
problem)[3]. Shen and Tsai[4] propose a graph matching
approach to search for the optimal task allocation. Ercal [5]
use a simulated annealing method to find a solution.
Others, such as Yip-Hoi[6], Aoyagi[7] and Hadj-Alouane[8],
use genetic algorithm (GA) to explore the best allocation
scheme.
For the machine selection problem when designing a
manufacturing system, ElMaraghy[9] has proposed the use
of an Alternative Process Plan (APP) to describe all the

ERCuser
CIRP 2nd International Conference
on Reconfigurable Manufacturing
Ann Arbor, MI, USA
August 20-21, 2003

optional machines mapped to one task. Kiritsis and
Porchet[10] utilize a simple and safe Petri net model to
represent an APP. By reachability analysis on the Petri
net, all possible process plans can be generated and the
appropriate machines for each task can be identified.
In addition to task allocation and machine selection, the
system performance, especially the system throughput
under a long run period is of interest to designers.
Gershwin[11] applied a Markov model to a three-stage-
flow-line and obtained the exact analytical solution. For
the flow line with more than three stages, both
aggregation and decomposition techniques are employed
to approximately analyze the throughput. Yang[12]
developed an analytical model based on decomposition
technique to estimate the throughput, which is used in the
research work of this paper. Apart from analytical
methods, many simulation-based methods are used to
evaluate the performance of a manufacturing line, e.g. the
commercial software Witness@ [13] has been widely used
in the manufacturing industry.
Although great progress has been achieved in each of the
above areas, it is inadequate to build a good line
configuration if only one or two of them is concerned. For
example, a well-balanced task allocation scheme may not
yield the highest throughput if machine reliability in one
stage is much lower than those in other stages. Since
these factors are coupled together, a concurrent method
is presented to provide a more comprehensive solution.

3 NOMENCLATURE
NP: Total number of part models produced by MPL
NT: Maximum number of manufacturing tasks of a part
NS: Total number of production stages of MPL
NR: Total number of available machine types
K: Maximum number of alternative machines being
assigned to a manufacturing task
NC: Maximum number of stage capabilities
p : Index for part, p = 1, …, NP
i,j : Index for manufacturing task, i, j = 1, …, NT
s : Index for production stage in MPL, s = 1, …, NS
r : Index for available machine type, r = 1, …, NR
k : Index for alternative machine type, k = 1, …,K

4 PROBLEM FORMULATION
Given a part family with NP parts to be produced and each
part possessing up to NT manufacturing tasks (hereinafter
“tasks”), a MPL will be built to perform all these tasks. The
sequence of performing tasks of each part must conform
to basic process planning rules as well as user-specific
requirements, which are documented in a task-
precedence-graph. Each task can be performed on K
alternative machines chosen from the machine library
which contains NR candidate machines. All tasks must be
finished in NS serial production stages (hereinafter
“stages”), where identical machines are arranged in
parallel in each stage with finite-size buffers (the size can
also be zero) between stages. With cost constraints,
machine quantity limit and demands, the system designer

wishes to configure a MPL with maximum ratio of
throughput to cost. The goal is achieved by answering the
following questions:
1. How are the tasks assigned to each stage without

violating precedence constraints?
2. What machine type is used and how many machines

are required in each stage?
3. How large is the buffer size between each stage?
4. What is the estimated throughput for each part?

4.1 Assumptions

The following assumptions are made in this work:
1. The number of stages, NS, is specified by designers in

advance.
2. Each part in the family must visit all stages in the

system.
3. The machines in the same stage perform the same

tasks.
4. Each part is produced in a batch and the batch is large

enough so that the throughput for each part can be
estimated separately.

4.2 Inputs

Task-Precedence-Graphs
Each part in the part family has its own task-precedence-
graph that defines sequential constraints between tasks. A
three-dimension binary matrix Pre[1..NP][1..NT][1..NT]
has been used to represent all precedence graphs.







=
 otherwise.0

p;part of j task before
 performed bemust i task if1

]][][[jipPre

Machine Library
All available machine types comprise the machine library
from which alternative machines are specified for each
task. It is represented by a one-dimension array
ML[1..NR].

 Machinerth theof ID Unique][=rML

Machine Cost Array
An array CE[1..NR] records costs of all machines in the
machine library.

 machinerth theofCost][=rCE

Machine Reliability Martix
A matrix REL[1..NR][2] records mean-time-between failure
(MTBF) and mean-time-to-repair (MTTR) of each machine
in the machine library.

machine.rth theof MTTR [1]][
machine;rth theof MTBF [0]][

=
=

rREL
rREL

Alternative Machine Matrix and Alternative Time Matrix
Each task can be performed on alternative machines and
that may entail different working times. The Alternative
Machine Matrix AMM[1..NP][1..NT][1..K] stores the
alternative machines for every task of the part family. The

respective working times are stored in the Alternative
Time Matrix ATM[1..NP][1..NT][1..K].

NR).(1
 part of for task machine ealternativ k for the

 standing array, ML theofindex an is :]][][[
th

≤≤

=

r
pi

rrkipAMM

machine. ealternativ k the toassigned isit if ,part
 of by task needed time workingThe]][][[

thp
ikipATM =

Stage Key Characteristic Matrix
Each manufacturing stage usually has limited capabilities,
which are reflected by a group of key characteristics of the
stage. When a set of tasks are assigned to a stage, the
necessary capabilities must fall in the key characteristics
of the stage. Otherwise the task allocation is invalid. For
example, the machining stage only has several possible
cutting-tool access directions and thus the tasks assigned
to this stage must be performed on those directions.
Assuming the number of the key characteristics of each
stage is NC, a capability matrix SKC[1..NS][1..NC] stores
all possible key characteristics of each stage.

NC).1 NS,(1
 s stage of sticcharacterikey jth theis :]][[

≤≤≤≤
=

js
ddjsSKC

Task Key Characteristic Matrix
Respectively, each manufacturing task corresponds to a
key characteristic. A task key characteristic matrix
TKC[1..NP][1..NT] stores the key characteristic of each
task.

NT).1 NP,(1
ppart in i task of sticcharacterikey theis :]][[

≤≤≤≤
=

ip
ddipTKC

Throughput Demands Array
The MPL must be able to meet throughput demands of all
parts which are stored in the array TH[1..NP].

 part of demand Throughput][ppTH =

Cost bound
Maximal allowable investment on the MPL is MaxInvest.

Machine Quantity Limit
Total number of machines cannot exceed MaxNMC

Buffer Cost per Unit Size:
The average cost of each unit buffer size is BufCost.

4.3 Decision Variables

MPL Type Array

).1(stagein used be toe typ
machine thengrepresenti ML, ofindex an isr :r][

NRrs
sMPL

≤≤
=

Machine Number Array

 . stagein used being machine of Numbe][ssNMC =

Buffer Size Array

.1 and stagebetween sizeuffer][+= ssBsBUF
BUF[NS] = 0 since there is no buffer after the last stage.

Task Allocation Matrix
A two-dimensional matrix TAM[1..NP][1..NT] records the
allocation of tasks to stages of the MPL.

).1(assigned is part of
 task which the tostage ofindex an is :]][[

NSsp
i ssipTAM

≤≤
=

4.4 Throughput Function

FTH(p, MPL,NMC, BUF, TAM, REL)
The function is used to estimate the throughput of part p
under the line configuration specified by arrays MPL[],
NMC[], BUF[] and matrices TAM[][], REL[][]. A throughput
analysis engine – Performance Analysis of Manufacturing
Systems (PAMS), based on Yang’s work [12], is called to
calculate the throughput for each part.

4.5 Mathematical Model

A mathematical model has been formulated to find the
best line configuration and task allocation scheme. It is
described in the following:

()

,,,,

][][][

1

1
11][

∑
∑∑

=

−

==
+

NP
p TH

NS
s

NS
s

TAMBUFNMCMPLpF

BufCostsBUFCEsNMC
Minimize

sMPL (1)

The objective expressed in (1) is to minimize the ratio of
the total investment in machines and buffers to the total
throughput of all parts.
Subject to

1. Precedence constraints:

)1,1,1(
]][[]][[*]][][[

NTjNTiNPp
jpTAMipTAMjipPre

≤≤≤≤≤≤
≤ (2)

For two tasks i and j in part p, if task i must be performed
before j (Pre[p][i][j] = 1), it will be assigned to the same or
a preceding stage as j.

2. Functionality constraints:

)1,1(

0
1

])][][[]]][[[(

NTiNPp

K

k
kipAMMipTAMMPL

≤≤≤≤

=∏
=

− (3)

All tasks assigned to the same stage must use the same
machine type.

3. Key characteristic constraints:

)1,1(

0
1

])][[]]][][[[(

NTiNPp

NC

j
ipTKCjipTAMSKC

≤≤≤≤

=∏
=

− (4)

If the task i is assigned to the stage s, its key
characteristic must be one of those for the stage s.

4. Throughput demands:
()

)1(
][,,,,,

NPp
pTHRELTAMBUFNMCMPLpTHF

≤≤
≥ (5)

Each part must achieve its predefined throughput under
the optimal system configuration.

5. Cost bound:

MaxInvestBufCostsBUFCEsNMC
NS

s

NS

s
sMPL ≤+ ∑∑

−

==

1

11
][][][][(6)

The total cost of machines and buffers being used cannot
exceed the budget bound.

6. Machine quantity limit:

MaxNMCsNMC
NS

s
≤∑

=1
][(7)

The total number of machines cannot exceed a specified
value because of shop floor area.

The above formulation can be viewed as a Mixed Integer
Programming problem. However it contains a few complex
functions some of which do not have explicit forms like the
throughput function FTH(). Furthermore, previous studies
have shown that it is an NP-hard problem, i.e., as the
problem size increases combinatorial explosion will
happen. Therefore conventional optimization techniques,
such as gradient method and SQP, cannot find the
solution in a reasonable time.
Due to the above reasons a heuristic method utilizing a
Genetic Algorithm is used to solve this optimization
problem.

5 GENETIC ALGORITHM METHOD
Genetic algorithms (GA) have been developed as a
powerful and broadly applicable heuristic search and
optimization technique since the 1970s. For mixed integer
problems with complex functions and combinatorial
explosion on feasible space, like MPL design problem, GA
is a good and efficient way to solve them according to
Aoyagi, Hadj-Alouane, Yip-Hoi, Cheng and Gen’s
research experiences [6-8, 14].
The basic idea of a GA is to maintain a population of
strings, say P(t), for generation t. Each string represents
an encoding of a potential solution to the problem at hand
and will be evaluated to provide some measure of its
fitness. Some strings undergo stochastic transformations
by means of genetic operations. There are two types of
transformations: crossover, which creates new strings by
combining parts from two parent strings, and mutation,
which creates new strings by making changes in a single
one. New strings, called offspring C(t), are then evaluated.
By selecting the more fit strings from the parent and
offspring populations a new population is formed. After a
number of generations, the algorithm converges to the
best individual, which represents a near-optimal solution
to the problem. Due to the stochastic nature of a GA, it is
not guaranteed that a global optimum can be attained.

5.1 String Representation

The first step of applying GA is to represent a solution of
the problem by the format of a string, i.e. encoding. An
MPL design scheme is encoded by an integer double
string which consists of 5 portions, corresponding to (1)
task sequencing, (2) alternative machine selection, (3)
task allocation, (4) buffer size and (5) number of

machines, respectively. Figure 2 depicts the string that
encodes an MPL producing two parts L and R.

Integer Double String Encoding Scheme
(MPL with Two Part L & R)

14531241252132
2324212234243154412451223

14531241252132
2324212234243154412451223

(1) Part L
Task Sequencing

(2) Part 1
Alt. Machine Selection

Part R
Task Sequencing

Part 2
Alt. Machine Selection

(3) Part L
Task Alloc

Part R
Task Alloc

(4) Buffer
Size

(5) # of
M/C

1

2 3

4

5 6

A B

CD

A C

ED

B C

DE

B E

CD
E B

CD

A B

ED

1

2 3

4

5 6

A B

CD

A B

CD

A C

ED

A C

ED

B C

DE

B C

DE

B E

CD

B E

CD
E B

CD

E B

CD

A B

ED

A B

ED

7

12

9

8

11

13

A B

CD

A C

ED

B C

DE

B E

CD
E B

CD

A B

CD

10

14
B C

DA

A E

CD

7

12

9

8

11

13

A B

CD

A B

CD

A C

ED

A C

ED

B C

DE

B C

DE

B E

CD

B E

CD
E B

CD

E B

CD

A B

CD

A B

CD

10

14
B C

DA

B C

DA

A E

CD

A E

CD

Part L Part R
Figure 2 String Representation

5.2 Decoding

After an offspring is obtained by genetic operators, it has
to be translated to a corresponding solution for evaluation.
This is called decoding. The 5 portions of the string
mentioned in the preceding paragraph will be decoded to
their respective part of an MPL design solution. That is
described in the following sections.

Decoding the task sequence
Since task precedence relations are stored in a
precedence graph, a partial precedence graph sorting
technique [14] is used to translate the string to a sequence
of tasks without violating precedence constraints.
Each digit in the first portion of the string stands for an
element of the eligible task set in which no tasks have any
precedent task. The first eligible set is constructed based
on the original precedence graph and the first digit
indicates which task will be chosen as the first one in the
sequence. Then a new eligible set is generated by
removing the first task from the graph and the second digit
identifies the second task. The detailed procedure is
explained in [14]. Finally a sequence of tasks is generated
with all precedence constraints satisfied.

Decoding the task allocation
The second portion of the string determines how tasks are
assigned to each stage of the MPL. Each digit
corresponds to a stage and stands for the percentage
ratio of the number of tasks in the stage to the total
number of tasks of the part. For example, by the string 2-
4-3 it is determined that stage 1 contains 2/(2+4+3)=2/9 of
all tasks. According to the ratios the task sequence is
divided and assigned to N stages.

Decoding the alternative machine selection
Each task corresponds to a number of alternative
machines which comprise a machine set. As shown in
Figure 2, task 1 has A, B, C, D (4 machine types)
associated with it. Each digit in the third portion
corresponds to the respective task in the sequence

obtained in (1) and a machine is chosen by the value of
the digit. In the example of Figure 2, if task 1 is put in the
second place, 3 is the code for alternative machine
selection and machine C is chosen.
Since tasks assigned to the same stage (by decoding the
second portion) may select different machine types, the
code in the third portion needs to be repaired, i.e. making
the tasks in the same stage use identical machine. A
simple heuristics is employed such that the most
frequently used machine type of each stage becomes the
dominant one and all tasks in the stage must use this one.
If some tasks cannot be performed on this machine, a
penalty value is imposed.

Decoding the buffer size
The nth number stands for the size of buffer following
stage n. The buffer following the last stage is assumed to
be infinity.

Decoding the number of machines
The value of the nth digit is the number of identical
machines used in the stage n.

5.3 Fitness (Objective) Function

This is a function which measures the relative worth of the
solution when applied to a decoded string. To this
problem, the fitness function evaluates the ratio of the
total cost to the total throughput. Through the comparison
of string fitness values, the GA moves toward the optimal
solution.

5.4 Other Constraints

The decoding method above has satisfied precedence
constraints (2) and tested functionality constraints (3).
However, the remaining three constraints: key
characteristic constraints (4), throughput demands (5) and
cost bounds (6), still need to be evaluated.
To evaluate these constraints, the penalty method is used.
A penalty function is developed for each type of
constraint. If a decoded string violates any constraints, its
fitness will be added on the respective penalty value.
For each violation of key characteristic constraint, 1000
penalty value is added to the final fitness.
If the actual throughput THa (parts/hour) is less than the
throughput demand THd, a penalty value 10000*(THd -
THa) will be applied.
When the total system cost Ct exceeds the cost bound Cb,
a penalty value 10000*(Ct - Cb) will be applied.

5.5 Genetic Operators

The following three mechanisms are used to create
successive generations of strings from the parent strings.
1. Reproduction: This operator copies the individual

strings with better fitness value into the next
generation.

2. Crossover: The “genetic material” within parent strings
is broken down and then reconstituted into new

solutions. It is the primary method to introduce new
solutions into the population.

3. Mutation: This is another way to add new “genetic
material” to a population. Randomly selected strings
undergo the altercation according to the mutation rate.
The purpose of doing so is to help the GA avoid
getting trapped at a local optimum.

6 CASE STUDY
The above genetic algorithm is applied to the machining
domain by using a case study from the automotive
industry to demonstrate the MPL design approach.

6.1 Machining Domain Background

The ‘task’ in the machining domain refers to a series of
cutting operations that use the same cutting tool in the
same setup. The operations like drilling several mounting
holes on the same surface are considered as a single
task. According to the requirements of the machining
process planning, between tasks exist sequential
constraints which are represented by a task precedence
graph. The key characteristic of the task is defined as the
cutting-tool access direction (TAD). Each ‘stage’ contains
identical CNC machines or Reconfigurable Machine Tools
(RMT) that normally possess 2 or 3 possible TADs. Thus
the SKC and TKC matrix will record TADs.

6.2 Inputs

Two cylinder heads, called “left-hand” and “right-hand”
respectively (shown in Figure 3), comprise the part family
to be produced. 84 manufacturing tasks are required for a
left-hand cylinder head while 80 tasks for a right-hand
one. Both parts are supposed to visit 8 production stages
(this is an input and can also be 7 or 9).

Left-hand Right-hand

Figure 3 Cylinder Head Part Family

The precedence graphs for both parts are shown in Figure
4. The left-hand part has 106 constraints (edges) and the
right-hand part has 99 constraints.
Each task has 3 alternative machines with different task
completion time on each. In this case all alternative
machines use equal time. The TAD of the task is also
documented in the Table 1.

Task ID M/C 1 Time 1 M/C 2 Time 2 M/C 3 Time 3 TAD
101001 101 18.32 102 18.32 103 18.32 EF
101002 101 15.50 102 15.50 103 15.50 EF

… … … … … … …

Table 1 Tasks with Alternative Machines

The available machines (machine library) are listed in
Table 2.

M/C ID Name Cost(K$) MTBF(min) MTTR(min)
101 A 200 1500 8
102 B 160 1200 10
103 C 180 1300 12
104 D 225 1850 10
105 E 140 850 20

Table 2 Machine Library

The stage key characteristics, i.e., the possible TADs for
each stage are listed in Table 3.

Stage 1 2 3 4 5 6 7 8
TAD 1 FF CF CF FF CF CF CF CF
TAD 2 EF IF IF RF IF JF JF FF
TAD 3 n/a JF JF CF JF n/a n/a n/a

Table 3 Stage Key Characteristic (TAD)

It is required that both throughputs must exceed 35 parts
per hour (PPH), total cost is limited under 8400 K$ and at
most 43 machines can be used in the line.

Left-Hand Right-Hand

6.3 Results

The optimal ratio of system cost to throughput is 7.4431
where the total cost is 7,310 K$ and total throughput is
71.328 PPH. There are in total 43 machines and 14 unit
buffers being used in the line.
Figure 5 shows how tasks from each part are allocated to
8 stages. The cycle-times of both parts per stage are
shown in Figure 6. The individual cycletime distribution is
unbalanced for two reasons: one is that constraints
imposed on tasks prevent them from being performed in
any stage; the other is that some tradeoff must be made
so that the total cycletimes are more evenly distributed. As
shown in Figure 6, the total cycletime per stage is around
80 seconds.

Figure 4 Precedence Graphs

Figure 5 Cycletime Distributions Per Stage of Each

Part

Figure 6 Total Cycletime Distributions per Stage

101001 101002 101004 101006 101008 101010 101011 101012

105005
310-311 105006

218-221
105008

215 105009
211-214

105012
angle face

105013
124

105007
218-221

105010
215 105011

211-214

110001
530..fr/ch 110002

505,6/tdr
110003
505,6/tap

110005
507../tap
110006
507../ch
110007

518..rm/ch
110008
507..tap

110009
621/tap 110012

525/dr
110013
216/ddr

110014
F5.. fm

110015
515/br 111001

201..pd
111002
201..dr

111003
234..dr/ch

111004
201.34/tap

111005
201.34/rm 111006

226.23/rm
112001
JF gage
112002
JF fm

112003
JF gage

112004
F200 fm 112005

F300 fm
112006
F200 br
112007
215 br

112008
F100 br

114001
adapt gage

114002
JF111..prm

114003
JF111..frm

114004
JF119 prm

409-412 401-408
101003
409-412 415

101005
415 413-414

101007
413-414

101009
415

529 528 501-504 420-421
101013
420-421 101014

501-504
101015
420-421
401-408

101016
F400/F420

101017
F500,F502 101018

413-414
104001
226-233
104002
222-225

104003
218-221
104004
218-221

104005
324 104006

301-305
104007
301-305

104008
217 104009

125
104010

217 104011
125

104012
119-122
104013
111-118
105001
111-118 105002

119-122
105003
119-122 105004

111-118

114005
JF119 frm

117001
cam bore
117002

pcd ream
117003

pcd bore
117004
sic bore

117005
brush 117006

sic brush

110004
509,515/dr 110010

216/sp
110011
216/pdr

217005
brush 217006

sic brush

201002
409-412 201001

401-408

201003
409-412

201004
413-414
201005
413-414

201006
529 201007

528
201008
501-504

201009
501-504

201010
401-408

201011
F400

201012
F500 201013

413-414
204001
226-233 204003

218-221
204004
218-221

204005
301-305
204006
301-305

204007
217

204009
123

204008
217

204010
125

204011
119-122

204012
111-118

205001
111-118

205002
119-122

205003
119-122

205004
111-118

205005
310-311 205006

218-221
205008

215 205009
211-214

205007
218-221

205010
215 205011

211-214

204002
222-225

205012
angle face

210001
530..fr/ch 210002

505,6/tdr
210003

505,6/tap
210005
510…tdr
210006
510…ch
210007

513..rm/ch
210008
510..tap 210009

520/tap

210010
216,522/sp

210011
522/pdr

210015
F5.. fm

210016
515/br

211001
201..pdr

211002
201..dr

211003
234..dr/ch

211004
201.34/tap

211005
201../rm

211006
222..rm

212001
JF gage
212002
JF fm

212003
JF gage

212004
F200 fm 212005

F300 fm
212006
F200 br
212007
215 br

212008
F100 br

214001
adapt gage

214002
JF111..prm

214003
JF111..frm

214004
JF119 prm

214005
JF119 frm

217001
cam bore
217002

pcd ream
217003

pcd bore
217004
sic bore

210012
522/dr

210013
216/pdr

210014
216/ddr

211007
350/dr

211008
350/tap

210004
515/dr

Figure 7 MPL System Configuration

The type and quantity of machines used in each stage are
shown in Figure 7 as well as buffer sizes.
Figure 8 gives the GA convergence curves using different
control parameters. It shows the best solution of 7.4431
was found in 600 generations (curve 2). Most of the runs
converge to close to the same value with the similar
solution. The computation time required was around 66
minutes on a Pentium 4 2.0GHz PC with 512MB memory.
Compared to the large solution space, 85.(84+80)8.710 =
4.844x1030 (obtained from the following facts: each stage
can choose 5 machine types, each task can perform at
any of 8 stages, each buffer size can vary from 1 to 10),
the GA algorithm is much more efficient.

Figure 8 GA Run Convergence Curves

7 DISCUSSIONS AND FUTURE WORK
The results obtained in the case study show a good match
compared to the actual task allocation and machine
quantity distribution determined by the experts in the
industry.
Besides system cost, throughput and task precedence
issues mentioned in this paper, other optimization goals
and constraints concerned by users (if any) can be easily
integrated into the proposed approach. Only minor
changes to the genetic representation and evaluation are
needed.
There are a number of improvements that can be made in
future. The first is about the number of stages in the MPL,

which is specified by the designer in the current approach.
The MPL is divided into several stages because tasks
have different TADs that may need different setups and
fixtures. Apart from the effects of process plans, material
handling devices impose some limitations that restrict the
maximum number of stages and machines in each stage
of the line. We are currently looking at ways to include this
issue in our GA algorithm.
A second improvement focuses on routing issues in MPL.
In the current approach, it is assumed that every part will
visit every stage and every machine in each stage
undertakes identical tasks. The assumption may not be
reasonable in some manufacturing practices like assembly
where a part does not go through all stages and machines
in the same stage may perform different tasks. To cop
with this situation we need to revise our gene
representation scheme to adapt to a flexible-routing-MPL.
The third one considers how to reconfigure the MPL when
new parts are introduced into the part family to replace
existing ones. In addition to all requirements mentioned
before, we have to generate a reconfiguration plan with
minimal expense.
Some other topics such as reducing computation time,
improving algorithm efficiency and providing user-
interactive capabilities are also under investigation.

8 CONCLUSIONS
In this paper, we have studied how to design a multiple
parts line with integration of line balancing, equipment
selection and throughput analysis. It is formulated by a
mixed integer programming model and solved by a
genetic-algorithm based approach which enables us to
cope with the intrinsic complexity of configuring a
manufacturing line. Furthermore, a case study from a real-
world manufacturing application has been investigated by
our approach and a satisfying result was obtained within a
short duration. Compared to many trial-and-error
processes currently used in industry, this saves a lot of
time for line designers to come up with a final decision.

9 ACKNOWLEDGMENTS
The authors are pleased to acknowledge support of this
research by the National Science Foundation Engineering
Research Center for Reconfigurable Manufacturing
Systems under Grant # EEC-9529125.

10 REFERENCES
[1] Koren, Y., Heisel, U., Jovane, F., Moriwaki, T.,

Pritchow, G., Van Brussel, H., Ulsoy, A.G., 1999,
Reconfigurable Manufacturing Systems, Annals of
the CIRP, 48/2 (keynote paper).

[2] Salveson, M., 1955, The assembly line balancing
problem, Journal of Industrial Engineering, 6/3:18-25

[3] Ghosh, S. and Gagnon, R., 1989, A comprehensive
literature review and analysis of the design,
balancing and scheduling of assembly systems, Int.
J. Prod. Res., 27/4:637-670.

[4] Shen, C. C. and Tsai, W. H., 1985, A graph
matching approach to optimal task assignment in

102
102
102
102
102

2

103
103
103
103
103

103
103
103
103
103
103

105
105
105
105
105
105
105

2 2

105
105
105
105
105
105

2

105
105
105
105
105

102

102

102

102

102

102

102

102

1022 22

OP10 OP20 OP30 OP40 OP50 OP60 OP70 OP80

MPL System Configuration

distributed computing systems using a minimax
criterion, IEEE Trans. on Computers, 34/3:197--203.

[5] Ercal, F., Sadayappan, P. and Ramanujam, J., 1988,
Task allocation by simulated annealing, Proceeding
of International Conference on Supercomputing,
Boston, MA, 475--497,.

[6] Yip-Hoi, D., Dutta, D., 1996, A Genetic Algorithm
Application For Sequencing Operations In Process
Planning For Parallel Machining, IIE Transactions,
28/1:55-68

[7] Aoyagi, Y., Uehara, M., Mori, H. and Sato A., 1999,
GA-based Task Allocation by Throughput Prediction,
IPSJ Journal, 40/12

[8] Hadj-Alouane, A., J. Bean and K. Murty, 1999, A
Hybrid Genetic/Optimization Algorithm for a Task
Allocation Problem, Journal of Scheduling, Vol.
2:189-201.

[9] ElMaraghy, H.A., 1993, Evolution and Future
Perspectives of CAPP, Annals of the CIRP, Vol.42.

[10] Kiritsis D. and Porchet M., 1996, A generic Petri net
model for dynamic process planning and sequence
optimization, Advances in Engineering Software,
Vol.25:61-71.

[11] Gershwin S.B., 1994, Manufacturing Systems
Engineering, Prentice-Hall, Englewood Cliffs, NJ,

[12] Yang S., Wu C., Hu S.J., 2000, Modeling and
analysis of multi-stage transfer lines with unreliable
machines and finite buffers, Annals of Oper. Res.,
Vol.93:405-421.

[13] Learning Witness, 1998, Lanner Group, Inc.
[14] Gen M., Cheng R., 2000, Genetic algorithms and

engineering optimization, Wiley, New York.

