Parametrization and Polar Coordinates

1 Parametric Equations and Polar Coordinate

1.1 Parametric Equations

To represent the motion of a particle in the $x y$-plane we use two equations, $x=f(t)$ and $y=g(t)$, then at the time t the particle is at the location $(f(t), g(t)$. In this case, we call the equations for x and y the parametric equations, with parametrization t.
Remember that, in parametric equation, for the same line, the parametrization is not unique, and the different parametrization encodes two information:

1. Speed of the particle.
2. Direction of the motion.

1.1.1 Special Parametric Equations

- Parametric Equations for a Straight Line

An object moving along a line through the point $\left(x_{0}, y_{0}\right)$, with $d x / d t=a$ and $d y / d t=b$, has parametric equations $x=x_{0}+a t, y=y_{0}+b t$. The slope of the line is $m=b / a$.

- Parametric Equations for a circle with radius k

An object moving along a circle of radius k counterclockwise has parametric equations $x=k \cos (t), y=k \sin (t)$.

1.1.2 Slope and concavity of the curve

As we discussed in class, we can think of this as a result due to chain rule if we have that $y=F(x)$ as well.
But to summarize, we have the slope of the parametrized curve to be

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}
$$

and the concavity of the parametrized curve to be

$$
\frac{d^{2} y}{d x^{2}}=\frac{(d y / d x) / d t}{d x / d t}
$$

1.1.3 Speed and distance

The instantaneous speed of a moving object is defined to be

$$
v=\sqrt{(d x / d t)^{2}+(d y / d t)^{2}}=\sqrt{\left(v_{x}\right)^{2}+\left(v_{y}\right)^{2}}
$$

. The quantity $v_{x}=d x / d t$ is the instantaneous velocity in the x-direction; $v_{y}=d y / d t$ is the instantaneous velocity in the y-direction. And we call that $\left(v_{x}, v_{y}\right)$ to be the velocity vector.
Moreover, the distance traveled from time a to b is

$$
\int_{a}^{b} v(t) d t=\int_{a}^{b} \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t
$$

1.2 Polar Coordinate

Polar coordinates is the coordinates determined by specifying the distance of the point to origin and the angle measured counterclockwise from positive x-axis to the line joining the line connecting the point and the origin.

1.2.1 Relation between Cartesian and Polar

Cartesian to Polar:

$$
(x, y) \rightarrow\left(r=\sqrt{x^{2}+y^{2}}, \theta\right)\left(\text { Here we have that } \tan \theta=\frac{y}{x}\right)
$$

Note that θ does not have to be $\arctan \left(\frac{y}{x}\right)$!
Polar to Cartesian:

$$
(r, \theta) \rightarrow(x=r \cos \theta, y=r \sin \theta)
$$

1.2.2 Slope, Arc length and Area in Polar Coordinates

By the relation $x=r \cos \theta, y=r \sin \theta$, given a curve $r=f(\theta)$, we have that $x=$ $f(\theta) \cos \theta, y=f(\theta) \sin \theta$, and thus are parametrized equations of parameter θ. Therefore we have that the slope of to be

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}
$$

The arc length from angle a to b is

$$
\int_{a}^{b} \sqrt{(d x / d \theta)^{2}+(d y / d \theta)^{2}} d \theta
$$

Moreover, due to the fact that the area of the sector is $1 / 2 r^{2} \theta$, we have that for a curve $r=f(\theta)$, with $f(\theta) \geq 0$, the area of the region enclosed is

$$
\frac{1}{2} \int_{a}^{b} f(\theta)^{2} d \theta
$$

