Final Exam Summary (Everything, formula)

1 Integral

2 Riemann Sums

1. $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$ (Limit of Right-hand sum RIGHT(n))
2. $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} f\left(x_{i}\right) \Delta x$ (Limit of Left-hand sum LEFT(n))
3. $\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n-1} f\left(\frac{x_{i}+x_{i+1}}{2}\right) \Delta x$ (Limit of Mid sum MID($\left.\left.\mathbf{n}\right)\right)$
4. $\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n-1} \frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2} \Delta x$ (Limit of Trapezoid sum TRAP(n))
5. $\Delta(x)=\frac{b-a}{n}$
6. $\frac{\operatorname{LEFT}(n)+\operatorname{RIGHT}(n)}{2}=\operatorname{TRAP}(n)$
7. $\operatorname{MID}(n) \neq \operatorname{TRAP}(n)$
8. Error estimation: $|\operatorname{LEFT}(n)-f(x)|<|\operatorname{LEFT}(n)-R I G H T(n)|=(f(b)-$ $f(a)) \Delta x$. This usually gives a bound for n.

2.1 Properties of Riemann sums:

1. If the graph of f is increasing on $[a, b]$, then $\operatorname{LEFT}(n) \leq \int_{a}^{b} f(x) d x \leq \operatorname{RIGHT}(n)$
2. If the graph of f is decreasing on $[a, b]$, then $\operatorname{RIGHT}(n) \leq \int_{a}^{b} f(x) d x \leq \operatorname{LEFT}(n)$
3. If the graph of f is concave up on $[a, b]$, then $\operatorname{MID}(n) \leq \int_{a}^{b} f(x) d x \leq \operatorname{TRAP}(n)$
4. If the graph of f is concave down on $[a, b]$, then $\operatorname{TRAP}(n) \leq \int_{a}^{b} f(x) d x \leq M I D(n)$

2.2 Properties of Definite Integrals

1. $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$
2. $\int_{b}^{a} f(x) d x+\int_{c}^{b} f(x) d x=\int_{c}^{a} f(x) d x$
3. $\int_{b}^{a}(f(x) \pm g(x)) d x=\int_{b}^{a} f(x) d x \pm \int_{b}^{a} g(x) d x$
4. $\int_{b}^{a} c f(x) d x=c \int_{b}^{a} f(x) d x$
5. Symmetry due to the oddity of the function.
6. Average value of function $f(x)$ in $[a, b]$ is $\frac{1}{b-a} \int_{a}^{b} f(x) d x$.

Theorem 2.1. The Fundamental Theorem of Calculus:
If f is continuous on interval $[a, b]$ and $f(t)=F^{\prime}(t)$, then $\int_{a}^{b} f(t) d t=F(b)-F(a)$.
Second FTC (Construction theorem for Antiderivatives) If f is a continuous function on an interval, and if a is any number in that interval then the function F defined on the interval as follows is an antiderivative of f :

$$
F(x)=\int_{a}^{x} f(t) d t
$$

1. $\int C d x=0$
2. $\int k d x=k x+C$
3. $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C,(n \neq-1)$
4. $\int \frac{1}{x} d x=\ln |x|+C$
5. $\int e^{x} d x=e^{x}+C$
6. $\int \cos x d x=\sin x+C$
7. $\int \sin x d x=-\cos x+C$

Properties of antiderivatives:

1. $\int(f(x) \pm g(x)) d x=\int f(x) d x \pm \int g(x) d x$
2. $\int c f(x) d x=c \int f(x) d x$

2.3 Integration Techniques

1. Guess and Check
2. Substitution $d u=f(x)^{\prime} d x$ if $u=f(x)$
3. By parts $\int u d v=u v-\int v d u$
4. Partial fractions $\frac{p(x)}{\left(x+c_{1}\right)^{2}\left(x+c_{2}\right)\left(x^{2}+c_{3}\right)}=\frac{A}{x+c_{1}}+\frac{B}{\left(x+c_{1}\right)^{2}}+\frac{C}{x+c_{2}}+\frac{D x+E}{x^{2}+c_{3}}$
5. Trig substitution: If the above method does not work and you have terms of $A \pm B x^{2}$, then we will do trig substitution.
If you have terms of $A-B x^{2}$, you should try substitute $x=\sqrt{\frac{A}{B}} \sin \theta$.
If you have terms of $A+B x^{2}$, you should try substitute $x=\sqrt{\frac{A}{B}} \tan \theta$.
Using the relation, $\sin ^{2} \theta+\cos ^{2} \theta=1$ and $\tan ^{2} \theta+1=\sec ^{2} \theta$ to simplify.

3 Find Area/Volumes by slicing

1. Compute the area: Think about slicing the area into parallel line segments.
2. Disk Method:

Horizontal axis of revolution (x-axis): $V=\int_{a}^{b} \pi\left(f(x)^{2}-g(x)^{2}\right) d x$
Vertical axis of revolution (y-axis): $V=\int_{a}^{b} \pi\left(f(y)^{2}-g(y)^{2}\right) d y$
3. Shell Method:

Horizontal axis of revolution (x-axis): $V=\int_{a}^{b} 2 \pi y(f(y)-g(y)) d y$
Vertical axis of revolution (y-axis): $V=\int_{a}^{b} 2 \pi x(f(x)-g(x)) d x$

3.1 Mass

The basic formula we are doing is:

1. One dimensional: $M=\delta l$ where M is the total mass, δ is the density, l is line.
2. Two dimensional: $M=\delta A$ where M is the total mass, δ is the density, A is Area.
3. Three dimensional (real world): $M=\delta V$ where M is the total mass, δ is the density, V is Volume.

3.2 Work

Key formula we are using:
Work done $=$ Force \cdot Distance or $W=F \cdot s$
Integration version: $W=\int_{a}^{b} F(x) d x$

3.3 L'Hopital's rule

L'Hopital's rule: If f and g are differentiable and (below a can be $\pm \infty$)
i) $f(a)=g(a)=0$ for finite a,

Or ii) $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)= \pm \infty$,
Or iii) $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} g(x)=0$ then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$

4 Improper integral

There are two types of improper integral.

- The first case is where we have the limit of the integration goes to infinity, i.e. $\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x$.
- The integrand goes to infinity as $x \rightarrow a$.

4.1 Converges or diverges?

1. Check by definition, this means check the limit directly.
2. p-test.

	$\boldsymbol{p}<\mathbf{1}$	$\boldsymbol{p}=\mathbf{1}$	$\boldsymbol{p}>\mathbf{1}$
Type I : $\int_{a}^{\infty} \frac{1}{x^{p}} d x$	diverges	$=\left.\ln x\right\|_{a} ^{\infty} \Rightarrow$ diverges	converges
Type II : $\int_{0}^{a} \frac{1}{x^{p}} d x$	converges	$=\left.\ln x\right\|_{0} ^{a} \Rightarrow$ diverges	diverges

3. Exponential decay test. $\int_{0}^{\infty} e^{-a x} d x$ converges for $a>0$.
4. Comparison test.

If $f(x) \geq g(x) \geq 0$ on the interval $[a, \infty]$ then,

- If $\int_{a}^{\infty} f(x) d x$ converges then so does $\int_{a}^{\infty} g(x) d x$.
- If $\int_{a}^{\infty} g(x) d x$ diverges then so does $\int_{a}^{\infty} f(x) d x$.

5. Limit Comparison theorem.

Limit Comparison Test. If $f(x)$ and $g(x)$ are both positive on the interval $[a, b)$ where b could be a real number or infinity. and $\lim _{x \rightarrow b} \frac{f(x)}{g(x)}=C$ such that $0<C<$ ∞ then the improper integrals $\int_{a}^{b} f(x) d x$ and $\int_{a}^{b} g(x) d x$ are either both convergent or both divergent.

5 Probability

5.1 PDF and CDF

Definition 5.1. A function $p(x)$ is a probability density function or PDF if it satisfies the following conditions

- $p(x) \geq 0$ for all x.
- $\int_{-\infty}^{\infty} p(x)=1$.

Definition 5.2. A function $P(t)$ is a Cumulative Distribution Function or cdf, of a density function $p(t)$, is defined by $P(t)=\int_{-\infty}^{t} p(x) d x$, which means that $P(t)$ is the antiderivative of $p(t)$ with the following properties:

- $P(t)$ is increasing and $0 \leq P(t) \leq 1$ for all t.
- $\lim _{t \rightarrow \infty} P(t)=1$.
- $\lim _{t \rightarrow-\infty} P(t)=0$.

Moreover, we have $\int_{a}^{b} p(x) d x=P(b)-P(a)$.

5.2 Probability, mean and median

Probability

Let us denote X to be the quantity of outcome that we care (X is in fact, called the random variable). $\mathbb{P}\{a \leq X \leq b\}=\int_{a}^{b} p(x) d x=P(b)-P(a)$
$\mathbb{P}\{X \leq t\}=\int_{-\infty}^{t} p(x) d x=P(t)$
$\mathbb{P}\{X \geq s\}=\int_{s}^{\infty} p(x) d x=1-P(s)$

The mean and median

Definition 5.3. A median of a quantity X is a value T such that the probability of $X \leq T$ is $1 / 2$. Thus we have T is defined such that $\int_{-\infty}^{T} p(x) d x=1 / 2$ or $P(T)=1 / 2$.
Definition 5.4. A mean of a quantity X is the value given by
Mean $=\frac{\text { Probability of all possible quantity }}{\text { Total probability }}=\frac{\int_{-\infty}^{\infty} x p(x) d x}{\int_{-\infty}^{\infty} p(x) d x}=\frac{\int_{-\infty}^{\infty} x p(x) d x}{1}=\int_{-\infty}^{\infty} x p(x) d x$.

Normal Distribution

Definition 5.5. A normal distribution has a density function $p(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$ where μ is the mean of the distribution and σ is the standard deviation, with $\sigma>0$. The case $\mu=0, \sigma=1$ is called the standard normal distribution.

6 Sequences and Series

6.1 Sequence

If a sequence s_{n} is bounded and monotone, it converges.

6.2 Series

Convergence Properties of Series:

1. If $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converge and if k is a constant, then
$\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ converges to $\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}$.
$\sum_{n=1}^{\infty} k a_{n}$ converges to $k \sum_{n=1}^{\infty} a_{n}$
2. Changing a finite number of terms in a series does not change convergence,
3. If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ or $\lim _{n \rightarrow \infty} a_{n}$ does not exist, then $\sum_{n=1}^{\infty} a_{n}$ diverges. (!)
4. If $\sum_{n=1}^{\infty} a_{n}$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges if $k \neq 0$.

Moreover, there are several test to determine if a series is convergent.

1. The Integral Test

Suppose $a_{n}=f(n)$, where $f(x)$ is decreasing and positive.
a. If $\int_{1}^{\infty} f(x) d x$ converges, then $\sum_{n=1}^{\infty} a_{n}$ an converges.
b. If $\int_{1}^{\infty} f(x) d x$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ an diverges.
2. p-test

The p-series $\sum_{n=1}^{\infty} 1 / n^{p}$ converges if $p>1$ and diverges if $p \leq 1$.

3. Comparison Test

Suppose $0 \leq a_{n} \leq b_{n}$ for all n beyond a certain value.
a. If $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
b. If $\sum_{n=1}^{\infty} a_{n}$ diverges, then $\sum_{n=1}^{\infty} b_{n}$ diverges.
4. Limit Comparison Test

Suppose $a_{n}>0$ and $b_{n}>0$ for all n. If $\lim _{n \rightarrow \infty} a_{n} / b_{n}=c$ where $c>0$, then the two series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ either both converge or both diverge.
5. Convergence of Absolute Values Implies Convergence

If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, then so does $\sum_{n=1}^{\infty} a_{n}$.
6. The Ratio Test For a series $\sum_{n=1}^{\infty} a_{n}$, suppose the sequence of ratios $\left|a_{n+1}\right| /\left|a_{n}\right|$ has a limit: $\lim _{n \rightarrow \infty}\left|a_{n+1}\right| /\left|a_{n}\right|=L$, then

- If $L<1$, then $\sum_{n=1}^{\infty} a_{n}$ converges.
- If $L>1$, or if L is infinite, then $\sum_{n=1}^{\infty} a_{n}$ diverges.
- If $L=1$, the test does not tell anything about convergence of $\sum_{n=1}^{\infty} a_{n}(!)$.

7. Alternating Series Test A series of the form $\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}=a_{1}-a_{2}+a_{3}-$ $a_{4}+\ldots+(-1)^{n-1} a_{n}+\ldots$ converges if $0<a_{n+1}<a_{n}$ for all n and $\lim _{n \rightarrow \infty} a_{n}=0$. Error of alternating test: let $S=\lim _{n \rightarrow \infty} S_{n}$, then have $\left|S-S_{n}\right|<a_{n+1}$.

Notably, We say that the series $\sum_{n=1}^{\infty} a_{n}$ is

- absolutely convergent if $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty}\left|a_{n}\right|$ both converge.
- conditionally convergent if $\sum_{n=1}^{\infty} a_{n}$ converges but $\sum_{n=1}^{\infty}\left|a_{n}\right|$ diverges.

Series with infinite negative terms: $\sum_{n=1}^{\infty} a_{n}$

Test we consider for proving convergence: Test we consider for proving divergence:

1. The integral test
2. p-test
3. Comparison test
4. Limit comparison test
5. Check the absolute convergence of the series
6. Ratio Test
7. Alternating Series Test
8. The integral test
9. p-test
10. Comparison test
11. Limit comparison test
12. Ratio Test
13. Check $\lim _{n \rightarrow \infty} \neq 0$ or $\lim _{n \rightarrow \infty}$ does not exist.

6.3 Geometric Series

There is a special series that we learn about, which is the Geometric Series, notice that the formula on the right hand side is what we called closed form. A finite geometric series has the form

$$
a+a x+a x^{2}+\cdots+a x^{n 2}+a x^{n 1}=\frac{a\left(1-x^{n}\right)}{1-x} \text { For } x \neq 1
$$

An infinite geometric series has the form

$$
a+a x+a x^{2}+\cdots+a x^{n 2}+a x^{n 1}+a x^{n}+\cdots=\frac{a}{1-x} \text { For }|x|<1
$$

6.4 Power Series

Definition 6.1. A power series about $x=a$ is a sum of constants times powers of $(x-a)$:
$C_{0}+C_{1}(x-a)+C_{2}(x-a)^{2}+\ldots+C_{n}(x-a)^{n}+\ldots=\sum_{n=0}^{\infty} C_{n}(x-a)^{n}$.
Moreover, each power series falls into one of the three following cases, characterized by its radius of convergence, R.

- The series converges only for $x=a$; the radius of convergence is defined to be $R=0$.
- The series converges for all values of x; the radius of convergence is defined to be $R=\infty$.
- There is a positive number R, called the radius of convergence, such that the series converges for $|x-a|<R$ and diverges for $|x-a|>R$.

How to find radius of convergence: consider ratio test
The interval of convergence is the interval between $a-R$ and $a+R$, including any endpoint where the series converges.

6.5 Taylor Polynomial

Taylor Polynomial of Degree n Approximating $f(x)$ for x near a is
$f(x) \approx P_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}$
We call $P_{n}(x)$ the Taylor polynomial of degree n centered at $x=a$, or the Taylor poly nomial about $x=a$.

6.6 Taylor Series

Taylor Series for $f(x)$ about $x=a$ is
$f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\ldots$
We call $P_{n}(x)$ the Taylor polynomial of degree n centered at $x=a$, or the Taylor poly nomial about $x=a$.
$f^{(n)}(a)=\left\{\right.$ coefficient of $\left.x^{n}\right\} * n!$.
Moreover, there are several important cases that we consider, each of them is an Taylor expansion of a function about $x=0$:

- $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}+\frac{x^{7}}{7!}+\frac{x^{8}}{8!}+\cdots$ converges for all x
- $\sin (x)=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!} \cdot(-1)^{n}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots$ converges for all x
- $\cos (x)=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!} \cdot(-1)^{n}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots$ converges for all x
- $(1+x)^{p}=\sum_{k=0}^{\infty}\binom{p}{k} x^{k}=\sum_{k=0}^{\infty} \frac{p!}{k!(p-k)!} x^{k}=1+p x+\frac{p(p-1)}{2!} x^{2}+\frac{p(p-1)(p-2)}{3!} x^{3}+$ \cdots converges for $-1<x<1$.
- $\ln (1+x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{n+1}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots$,

Moreover, we can definitely find Taylor Series based on the existing series using four methods:
Substitude/Differentiate/Integrate /Multiply

7 Parametric Equations and Polar Coordinate

7.1 Parametric Equations

Summarize, we have the slope: $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$ and the concavity of the parametrized curve to be $\frac{d^{2} y}{d x^{2}}=\frac{(d y / d x) / d t}{d x / d t}$
The quantity $v_{x}=d x / d t$ is the instantaneous velocity in the x-direction; $v_{y}=d y / d t$ is the instantaneous velocity in the y-direction. And we call that $\left(v_{x}, v_{y}\right)$ to be the velocity vector.
The instantaneous speed $: v=\sqrt{(d x / d t)^{2}+(d y / d t)^{2}}=\sqrt{\left(v_{x}\right)^{2}+\left(v_{y}\right)^{2}}$.
Moreover, the distance traveled from time a to b is $\int_{a}^{b} v(t) d t=\int_{a}^{b} \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t$

7.2 Polar Coordinate

7.2.1 Relation between Cartesian and Polar

Cartesian to Polar: $(x, y) \rightarrow\left(r=\sqrt{x^{2}+y^{2}}, \theta\right)$ (Here we have that $\left.\tan \theta=\frac{y}{x}\right) \theta$ does not have to be $\arctan \left(\frac{y}{x}\right)$!
Polar to Cartesian: $(r, \theta) \rightarrow(x=r \cos \theta, y=r \sin \theta)$

7.2.2 Slope, Arc length and Area in Polar Coordinates

slope of to be $\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}$
The arc length from angle a to b is $\int_{a}^{b} \sqrt{(d x / d \theta)^{2}+(d y / d \theta)^{2}} d \theta=\int_{a}^{b} \sqrt{r^{2}+(d r / d \theta)^{2}} d \theta$ Fact: area of the sector with angle θ is $1 / 2 r^{2} \theta$, we have that for a curve $r=f(\theta)$, with $f(\theta)$ continuously of the same sign, the area of the region enclosed is $\frac{1}{2} \int_{a}^{b} f(\theta)^{2} d \theta$.

