
Final Exam Summary(After Exam 2)

1 Power Series

Definition 1.1. A power series about x = a is a sum of constants times powers of
(x− a): C0 + C1(x− a) + C2(x− a)2 + . . .+ Cn(x− a)n + . . . =

∑∞
n=0Cn(x− a)n.

If we fix a specific value of x, we can just consider plugging x with the value we have,
and convergence here makes sense.

Definition 1.2. For a fixed value of x, if this sequence of partial sums converges to a
limit L, that is, if limn→∞ Sn(x) = L, then we say that the power series converges to L
for this value of x.

Based on the discussion we will see that, The interval of convergence for a power series
is usually centered at a point x = a, and extends the same length to both side, thus we
denote this length as radius of convergence.

Moreover, each power series falls into one of the three following cases, characterized by
its radius of convergence, R.

• The series converges only for x = a; the radius of convergence is defined to be
R = 0.

• The series converges for all values of x; the radius of convergence is defined to be
R =∞.

• There is a positive number R, called the radius of convergence, such that the series
converges for |x− a| < R and diverges for |x− a| > R.

The interval of convergence is the interval between a − R and a + R, including any
endpoint where the series converges.

Then there is a question arises, how to find this radius of convergence then?

This question can be determined by considering using ratio test on the series, assuming
x 6= a. The details are included in Chapter 9.5 in the book.
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2 Taylor Polynomial and Taylor Series

2.1 Taylor Polynomial

If we try to approximate the function locally using a polynomial, there is one thing we
want to acquire, i.e. we want the polynomial P (x) with the property that P (n)(a) =
f (n)(a) if we approximate the function at the point x = a. Considering merely the
situation about x = 0, recall what we did in the class, we will have the following.
Taylor Polynomial of Degree n Approximating f(x) for x near 0 is

f(x) ≈ Pn(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 +

f (4)(0)

4!
x4 + . . .+

f (n)(0)

n!
xn

We call Pn(x) the Taylor polynomial of degree n centered at x = 0, or the Taylor poly
nomial about x = 0.

More generally, Taylor Polynomial of Degree n Approximating f(x) for x near a is

f(x) ≈ Pn(x) = f(a)+f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2+

f ′′′(a)

3!
(x−a)3+ . . .+

f (n)(a)

n!
(x−a)n

We call Pn(x) the Taylor polynomial of degree n centered at x = a, or the Taylor poly
nomial about x = a.

Notice that Taylor Polynomial of Degree n Approximating f(x) for x near a will have

the property that P
(m)
n (a) = f (m)(a) for 0 ≤ m ≤ n.

2.2 Taylor Series

Notice that in the Taylor polynomial, if we let n here goes to infinity, we will get a series
P (x) with P (m)(a) = f (m)(a) for 0 ≤ m < ∞ and thus we will expect that the series
gives a good approximation about f(x) around a, and actually when it converges, it is
exactly the value you will get in f(x), and this is called the Taylor Series.
Taylor Series for f(x) about x = 0 is

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 +

f (4)(0)

4!
x4 + . . .+

f (n)(0)

n!
xn + . . .

We call Pn(x) the Taylor polynomial of degree n centered at x = 0, or the Taylor poly
nomial about x = 0.

More generally, Taylor Series for f(x) about x = a is

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + . . .+

f (n)(a)

n!
(x− a)n + . . .
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We call Pn(x) the Taylor polynomial of degree n centered at x = a, or the Taylor poly
nomial about x = a.

Moreover, there are several important cases that we consider, each of them is an Taylor
expansion of a function about x = 0:

•

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+
x6

6!
+
x7

7!
+
x8

8!
+ · · · converges for all x

•

sin(x) =
∞∑
n=0

x2n+1

(2n+ 1)!
· (−1)n = x− x3

3!
+
x5

5!
− x7

7!
+ . . . converges for all x

•

cos(x) =
∞∑
n=0

x2n

(2n)!
· (−1)n = 1− x2

2!
+
x4

4!
− x6

6!
+ . . . converges for all x

•

(1 + x)p =
∞∑
k=0

(
p

k

)
xk =

∞∑
k=0

p!

k!(p− k)!
xk =

1 + px+
p(p− 1)

2!
x2 +

p(p− 1)(p− 2)

3!
x3 + · · · converges for − 1 < x < 1.

•

ln(1 + x) =
∞∑
n=0

(−1)nxn+1

n+ 1
= x− x2

2
+
x3

3
− x4

4
+ · · · ,

Moreover, we can definitely find Taylor Series based on the existing series using four
methods:

• Substitude

Example: Taylor Series about x = 0 for f(x) = e−x
2

• Differentiate

Example: Taylor Series about x = 0 for f(x) = 1
(1−x)2

• Integrate

Example: Taylor Series about x = 0 for f(x) = arctan x (Hint: What is d
dx

(arctanx)?)

• Multiply

Example: Taylor Series about x = 0 for f(x) = x2 sinx
Example: Taylor Series about x = 0 for f(x) = sinx cosx
Example: Taylor Series about x = 0 for f(x) = esinx
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3 Parametric Equations and Polar Coordinate

3.1 Parametric Equations

To represent the motion of a particle in the xy-plane we use two equations, x = f(t)
and y = g(t), then at the time t the particle is at the location (f(t), g(t). In this case,
we call the equations for x and y the parametric equations, with parametrization t.
Remember that, in parametric equation, for the same line, the parametrization is not
unique, and the different parametrization encodes two information:
1. Speed of the particle.
2. Direction of the motion.

3.1.1 Special Parametric Equations

• Parametric Equations for a Straight Line

An object moving along a line through the point (x0, y0), with dx/dt = a and
dy/dt = b, has parametric equations x = x0 + at, y = y0 + bt. The slope of the line
is m = b/a.

• Parametric Equations for a circle with radius k

An object moving along a circle of radius k counterclockwise has parametric equa-
tions x = k cos(t), y = k sin(t).

3.1.2 Slope and concavity of the curve

As we discussed in class, we can think of this as a result due to chain rule if we have
that y = F (x) as well.
But to summarize, we have the slope of the parametrized curve to be

dy

dx
=
dy/dt

dx/dt

and the concavity of the parametrized curve to be

d2y

dx2
=

(dy/dx)/dt

dx/dt

3.1.3 Speed and distance

The instantaneous speed of a moving object is defined to be

v =
√

(dx/dt)2 + (dy/dt)2 =
√

(vx)2 + (vy)2
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. The quantity vx = dx/dt is the instantaneous velocity in the x-direction; vy = dy/dt is
the instantaneous velocity in the y-direction. And we call that (vx, vy) to be the velocity
vector.
Moreover, the distance traveled from time a to b is∫ b

a

v(t)dt =

∫ b

a

√
(dx/dt)2 + (dy/dt)2dt

3.2 Polar Coordinate

Polar coordinates is the coordinates determined by specifying the distance of the point
to origin and the angle measured counterclockwise from positive x-axis to the line joining
the line connecting the point and the origin.

3.2.1 Relation between Cartesian and Polar

Cartesian to Polar:

(x, y)→ (r =
√
x2 + y2, θ) (Here we have that tan θ =

y

x
)

Note that θ does not have to be arctan( y
x
)!

Polar to Cartesian:
(r, θ)→ (x = r cos θ, y = r sin θ)

3.2.2 Slope, Arc length and Area in Polar Coordinates

By the relation x = r cos θ, y = r sin θ, given a curve r = f(θ), we have that x =
f(θ) cos θ, y = f(θ) sin θ, and thus are parametrized equations of parameter θ. Therefore
we have that the slope of to be

dy

dx
=
dy/dθ

dx/dθ

The arc length from angle a to b is∫ b

a

√
(dx/dθ)2 + (dy/dθ)2dθ =

∫ b

a

√
r2 + (dr/dθ)2dθ

Moreover, due to the fact that the area of the sector is 1/2r2θ, we have that for a curve
r = f(θ), with f(θ) continuously of the same sign, the area of the region enclosed is

1

2

∫ b

a

f(θ)2dθ
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