Math 116 - Practice for Exam 3

Generated December 1, 2020
NAME: \qquad
Instructor: \qquad Section Number: \qquad

1. This exam has 7 questions. Note that the problems are not of equal difficulty, so you may want to skip over and return to a problem on which you are stuck.
2. Do not separate the pages of the exam. If any pages do become separated, write your name on them and point them out to your instructor when you hand in the exam.
3. Please read the instructions for each individual exercise carefully. One of the skills being tested on this exam is your ability to interpret questions, so instructors will not answer questions about exam problems during the exam.
4. Show an appropriate amount of work (including appropriate explanation) for each exercise so that the graders can see not only the answer but also how you obtained it. Include units in your answers where appropriate
5. You may use any calculator except a TI-92 (or other calculator with a full alphanumeric keypad). However, you must show work for any calculation which we have learned how to do in this course. You are also allowed two sides of a $3^{\prime \prime} \times 5^{\prime \prime}$ note card.
6. If you use graphs or tables to obtain an answer, be certain to include an explanation and sketch of the graph, and to write out the entries of the table that you use.
7. You must use the methods learned in this course to solve all problems.

Semester	Exam	Problem	Name	Points	Score
Winter 2019	3	1	race	14	
Fall 2015	3	11		7	
Winter 2015	2	1	spinning	16	
Winter 2019	3	2	castar	8	
Fall 2018	3	4	butterfly	9	
Fall 2017	3	2		8	
Fall 2016	2	7		9	
Total					

Recommended time (based on points): 78 minutes

1. [16 points] Carla and Bobby run a race after spinning in circles for a good amount of time to make themselves dizzy. They start at the origin in the $x y$-plane and they race to the line $y=5$. Assume the units of x and y are meters.
Bobby's position in the $x y$-plane t seconds after the races starts is

$$
\left(-{ }^{\sqrt{ }} \overline{3} \mathrm{t} \cos \mathrm{t}, \downarrow^{1} \overline{3} \mathrm{t} \sin \mathrm{t}\right)
$$

and Carla's position in the xy -plane t seconds after the race starts is

$$
(\mathrm{t} \sin \mathrm{t},-\mathrm{t} \cos \mathrm{t}) .
$$

a. [4 points] Write an integral that gives the distance that Carla travels during the first two seconds of the race. Do not evaluate your integral.
b. [3 points] Find Carla's speed at $t=\pi$.

$$
\text { Carla's speed at } t=\pi \text { is }
$$

\qquad
c. [4 points] Carla and Bobby are so dizzy that they run into each other at least once during the race. Find the first time $t>0$ that they run into each other, and give the point (x, y) where the collision occurs.

They first run into each other at $\mathrm{t}=$ \qquad
The collision occurs at $(x, y)=$ \qquad
d. [5 points] Bobby's phone flies out of his pocket at $t=\pi / 2$. It travels in a straight line in the same direction as he was moving at $\mathrm{t}=\pi / 2$. Find the equation of this line in Cartesian coordinates.

The equation for the line is \qquad
2. [8 points]

The castar, a coin widely used in Middle-Earth, allegedly has the shape graphed to the right. The outer perimeter can be modeled by the implicit equation

$$
x^{4}+y^{4}=1
$$

and the perimeter of the hole in the middle is a square To help his fellow Hobbits detect counterfeit coins, Samwise Gamgee, the Mayor of the Shire, is working on obtaining the specifications of a genuine castar. Sam
 needs your help.
a. [2 points] Find a function $f(\theta)$ so that the outer edge of the castar is given by the function $r=f(\theta)$.

Answer: $f(\theta)=$ \qquad
b. [3 points] Write an expression involving one or more integrals that gives the total area of the quarter of a castar in the first quadrant (shaded above).

A nswer:
c. [3 points] A pproximate the area of a castar by estimating your integral(s) from part (b) using TRAP(2). Write out all the terms in your sum(s).

A nswer: \qquad
4. [9 points] The polar curver $=\sin (4 \theta) \cos (\theta)$ for $0 \leq \theta \leq \pi$ is shown below.

Note that there are two "large loops" and two "small loops".
For reference, note that for this curve, $\frac{d r}{d \theta}=4 \cos (\theta) \cos (4 \theta)-\sin (\theta) \sin (4 \theta)$
a. [3 points] For what values of θ does the polar curve $r=\sin (4 \theta) \cos (\theta)$ trace once around the "small loop" in the third quadrant? (This portion of the curve is indicated by the dotted line.) Give your answer as an interval of θ values between 0 and π.

A nswer:
2. [8 points] For this problem, consider the family of polar curves described for each positive integer $n \geq 1$ by

$$
r=\frac{\cos (2 n \theta)}{n}
$$

for $0 \leq \theta \leq 2 \pi$.
a. [2 points] Consider the polar curve described by $r=\cos (2 \theta)$ for $0 \leq \theta \leq 2 \pi$. (Note that this is the case of $n=1$.) Find all values of θ between 0 and 2π for which the curve $r=\cos (2 \theta)$ passes through the origin.

A nswer: $\theta=$ \qquad
b. [3 points] For $n \geq 1$, find all x-intercepts of the polar curver $=\frac{\cos (2 n \theta)}{n}$. Your answer(s) may involven.

Answer: $x=$ \qquad
c. [3 points] For $n \geq 1$, let A_{n} be the ardength of the polar curve $r=\frac{\cos (2 n \theta)}{n}$ for $0 \leq \theta \leq 2 \pi$. Write, but do not evaluate, an expression involving one or more integrals that gives the value of A_{n}.

Answer: $A_{n}=$

