Chapter 6: Finding Antiderivative, introduction

Anti-derivative of usual functions

1. Try to find the antiderivatives by the graphs
2. Compute an antiderivative using definite integrals.

Suggested Problems: § $6.13,7,9,13,17,29,31,33$
Construct antiderivative analytically
Definition 0.1. We define the general antiderivative family as indefinite integral.
Remark.

$$
\begin{gathered}
\int C d x=0 \\
\int k d x=k x+C \\
\int x^{n} d x=\frac{x^{n+1}}{n+1}+C,(n \neq-1) \\
\int \frac{1}{x} d x=\ln |x|+C \\
\int e^{x} d x=e^{x}+C \\
\int \cos x d x=\sin x+C \\
\int \sin x d x=-\cos x+C
\end{gathered}
$$

Properties of antiderivatives:
1.

$$
\int(f(x) \pm g(x)) d x=\int f(x) d x \pm \int g(x) d x
$$

2.

$$
\int c f(x) d x=c \int f(x) d x
$$

Suggested Problems: § 6.2 51-59, 65,71,75

Second FTC (Construction theorem for Antiderivatives)

Theorem 0.1. If f is a continuous function on an interval, and if a is any number in that interval then the function F defined on the interval as follows is an antiderivative of f :

$$
F(x)=\int_{a}^{x} f(t) d t
$$

Suggested Problems: § 6.4 5,7,9,11,17,27,31-34

