Chapter 5: Definite integral

Definition 0.1. A definite integral of f from a to b is definted as

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x(\text { Limit of Right-hand sum })
$$

or

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} f\left(x_{i}\right) \Delta x(\text { Limit of Left-hand sum })
$$

Here, Left-hand sum and Right-hand sum are equal after taking limits and it the the so-called Riemann Sum.

There are two more type of Riemann sum I would like to discuss in the future, which is the Mid sum and the Trapezoidal sum.
I will only give definition here.

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n-1} f\left(\frac{x_{i}+x_{i+1}}{2}\right) \Delta x(\text { Mid sum })
$$

and

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n-1} \frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2} \Delta x(\text { Trapezoid sum })
$$

In all these Riemann sum we discussed, we are assuming $\Delta(x)=\frac{b-a}{n}$, thus as $n \rightarrow \infty$, $\Delta x \rightarrow 0$.
Note that

$$
\frac{\operatorname{LEFT}(n)+R I G H T(n)}{2}=T R A P(n)
$$

$$
M I D(n) \neq T R A P(n)
$$

Remark. Properties of definite integral:
1.

$$
\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x
$$

2.

$$
\int_{b}^{a} f(x) d x+\int_{c}^{b} f(x) d x=\int_{c}^{a} f(x) d x
$$

3.

$$
\int_{b}^{a}(f(x) \pm g(x)) d x=\int_{b}^{a} f(x) d x \pm \int_{b}^{a} g(x) d x
$$

4.

$$
\int_{b}^{a} c f(x) d x=c \int_{b}^{a} f(x) d x
$$

5. Symmetry due to the oddity of the function.

Remark. Interpretation of Define Integral as Area under graph of f between $x=a$ and $x=b$, counting positivity.
Important cases discussed on Friday's course:

1. Compute

$$
\int_{-1}^{1} \sqrt{1-x^{2}} d x
$$

2. How about

$$
\int_{-1}^{1}\left(\sqrt{1-x^{2}}-1\right) d x ?
$$

3. Maybe try

$$
\int_{-0.5}^{0.5} \tan (x) d x
$$

Find out the answer yourself only geometrically, even you know more techniques! More Importantly there are two major topics I want to mention here and maybe discuss:

- When is the estimation done by Riemann sum a underestimate/overestimate?

It is also covered in 7.5 , check it out and try problem 2.

- Error estimation

Think about the case where you know that $f(x)$ lies between any pair of $\operatorname{LEFT}(n)$ and $\operatorname{RIGHT}(n)$, then we see that $|\operatorname{LEFT}(n)-f(x)|<|\operatorname{LEFT}(n)-\operatorname{RIGHT}(n)|=$ $(f(b)-f(a)) \Delta x$. This usually gives a bound for n.

Theorem 0.1. The Fundamental Theorem of Calculus is basically the theorem defined below.
If f is continuous on interval $[a, b]$ and $f(t)=F^{\prime}(t)$, then

$$
\int_{a}^{b} f(t) d t=F(b)-F(a)
$$

Application of Definite Integral

1. Average value of function $f(x)$ in $[a, b]$ is

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Here, think about the integration is analogue to summation in the discrete world, then this average value is the analogue of

$$
x_{\text {average }}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{1+1+1+\ldots}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n} .
$$

where in the integration case is actually

$$
x_{\text {average }}=\frac{\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} f\left(x_{i}\right) \Delta x}{\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} 1 \times \Delta x}=\frac{\int_{a}^{b} f(x) d x}{\int_{a}^{b} 1 d x}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

