
MODULAR FORM

Abstract. This is a note for Jeffery Lagarias course in Modular Form.

1. Overview and History

1.1. The modular jungle.

Definition 1.1.1. Modular group is defined as Γ ∶= Γ(1) = PSL(2,Z) = SL(2,Z)/ ± I.
Note that we can view Γ as a group of Mobius transformation=FLT/LFT, τ ↦ aτ+b

cτ+d where
τ = x + iy ∈ H, acting more generally on Riemann Sphere:=P1(C) = C ∪ {∞}.

(Note that H can be viewed as hyperplane with constant negative curvature −1, and FLT
act as hyperbolic isometry.)

Moreover, Γ acts on H discretely and the quotient have finite hyperbolic-volume π/3.
(Note that the hyperbolic defect=π − α − β − γ=hyperbolic area of triangle.)

Definition 1.1.2. A holomorphic modular function: f(z) is a meromorphic function f(z) ∶
H→ C which is invariant under PSL(2,Z), i.e. f(aτ+bcτ+d) = f(z) for every matrix ( a bc d )∈ Γ.

Example 1.1.3.
1. f(τ) = 1.
2. The Klein invariant j(τ).

Note that Γ = PSL(2,Z) has a hyperbolic translation element ( 1 n
1 0 ), thus holomorphic

modular form has period 1 and thus has an fourier expansion.

Definition 1.1.4. We also have: A (holomorphic) modular form g(τ) of weight k if it is
holomorphic function such that f(aτ+bcτ+d) = (cz + d)kf(z) (and holomorphic at the cusp.)

Example 1.1.5. Ramanujan τ -function is an arithmetic function τ ∶ N→ N.

∆(z) = q
∞

∏
i=1

(1 − qn)24

where ∆(z) is a weight k = 12 holomorphic cusp form. Note that holomorphic means no
negative terms, and cusp form eliminate the possibility of having constant.
Now note that ∆(z) = ∑∞

n=1 τ(n)zn.
Moreover, τ(mn) = τ(m)τ(n) (Multiplicity for (m,n) = 1). And ∣τ(p)∣ ≤ 2p11/2 (p is prime.)

Φ(s) = ∫
∞

0 ∆(2t)ts dtt (Mellin Transform)=π−sΓ(s)L(s,∆), where L(s,∆) = ∑∞
n=1

τ(n)
ns (Con-

verge R(s) > 12, has Euler product and has functional equation on R(s) = 12).

1.2. Generalizaiton.

Definition 1.2.1. Γ is called a Fushion group of the first kind if Γ is a discrete subgroup of
PSL(2,R) and the quotient H/Γ has finite hyperbolic volume.

Example 1.2.2. Γ = PSL(2,Z)
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Definition 1.2.3.
Fundamental domain: F = {z ∈ H ∶ hyper dist(z, x) ≤ hyper dist(γz, x)∀γ ≠ id ∈ Γ}.

Example 1.2.4. Finite index N subgroup of PSL(2,Z). vol(H/Γ) = Nπ
3 .

Problem: Γ =< g1, . . . , gk > finitely generated group in PSL(2,R).
Test if Γ is a discrete group, test if it has finite volume.

1.3. Summary of generalizations.

1.3.1. Vary group from PSL(2,Z). Consider a finite index subgroup of SL(2,Z). Principlal
congrouence subgroup Γ(N) = {( a bc d )= ( 1 0

0 1 ) mod N} ⊆ SL(2,Z)

Definition 1.3.1. Γ ⊆ SL(2,Z) is congruence subgroup if there is some Γ(N) ⊆ Γ ⊆ SL(2,Z),
this is also called arithmetic group.

-Known: Noncongruence subgroups exists and are majority.

1.3.2. Vary the multiplier.
g(γ(z)) = χ(γ)g(τ)∀γ ∈ Γ

. In particular, weight k also makes sense for some suitable k.

1.3.3. Vary the homogeneous space. Replace PSL(2,R) with (reductive) arithmetic group.

Example 1.3.2. Γ = Gl(n,Z) or Gl(n,R)

Example 1.3.3. Hilbert modular forms: X = H ×H × . . .H

Example 1.3.4. Siegel modular forms: Sp(n,Z) or Sp(n,R)

1.4. History. <1820 Gauss (Not published)
1831 Gauss: (Lattice version of quadratic forms)
1825-1828 Legendre: elliptic integral
1829 Abel: abelian function over abelian int (multiply periodic function on Abelian variety)
1829 Jacobi: Fundamenta Nova Theoriae Functionum Ellipticarum (Theta function.) (In-
verse function of elliptic integral are elliptic function, parallel to trig function.)
1840’s: Eisenstein: beautiful theory of elliptic functions (Parallel to trig).
1850’s Riemann: theta function (General Riemann surface)
1854 Weierstrass: book on abelian functions.
1862 Weierstrass: Lectures in Berlin, introduce Weierstrass elliptic form.
1880’s Uniformization theorem is conjectured.

Poincare: get automorphic form by averaging.
1890/1910 Trika-Klein elliptic
1890 Dedekind: sum ⇒ Dedekind θ function.
1890 Kronecker’s limit formula
1893 Hilbert: modular forms/function
1901 Otto Blumner: Hilbert modular form
1915 Ramanujan: τ function, weight 12 cusp form
1918 Hecke: Hecke operators
1939 Siegel: Modular forms attached to symplectic group (Siegel modular form)
1942 Maass: Maass forms (weak the condition to satisfies hyperbolic laplacian)
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1948 Selberg Selberg trace formula
1970’s Langland’s program
Principle: (almost) all special functions in mathematical physics occurs as matrix coefficient
of representation of ”nice” Lie group over R or C.
1980’s connection to infinite dimensional Lie algebra.
1980’s - 1990’s Monster moonshine: generating function to monster simple group are mod-
ular.
2002 Mock theta functions explained by Zwegers in terms of nonholomorphic modular form.
2016 Dimension 8 sphere packing.

2. Lattice and binary quadratic forms

Start with a real 2-dimensional lattice in R2. Let Λ = Z[v,w] (v = (v1, v2),w = (w1,w2)
linear independent over R). Here the pair of vector v and w forms an oriented basis of Lattice
Λ. ( Note that the basis of the lattice is not unique.) Moreover, we can denote it as BΛ, a 2
by 2 matrix ( v1 v2

w1 w2 ).
Each basis has associated a tiling of space of R2 into parallelograms.
PBλ ∶= {(x, y) = λ1v + λ2w,0 ≤ λ1, λ2 ≤ 1}. Note that Λ is a discrete group inside the

real Lie group R2, and moreover Λ is abelian, the quotient space R2/Λ ≃ 2−dim real torus.
Moreover, the function on the torus lifes to the function on the cover R2 which is doubly
periodic function.

Here, we will say PBλ is a fundamental domain for the action of group Λ (Compact
quotient).

2.0.1. Invariants of a 2-dimensional lattice. One of the invariant of a 2-dimensional lattice
is ∣det(Λ)∣ =∶ covol(Λ) = Area of fundamental domain = ∣det( v1 v2

w1 w2 )∣.
Back up: Invariant of an oriented lattice basis is det( v1 v2

w1 w2 )= oriented area.
We can think about change of basis of lattice Λ by having a U ∈ GL(2,Z) acting on the

left (i.e. B′
Λ = UBΛ).

2.0.2. Another invariant: set of equal length of vectors in lattice.

Definition 2.0.1. To a basis matrix as defined before, we can associate a quadratic form
f(x, y) = ax2 + 2bxy + cy2 given by the matrix of the scalar product.

Gram matrix

GΛ = BΛB
T
Λ = ( v1 v2

w1 w2 )( v1 v2
w1 w2 )

T= ( <v,v> <v,w>
<w,v> <w,w> )=∶ ( a bb d )

Remark 2.0.2. By a polarization identity there is an symmetric bilinear form:

f(m,n) = am2 + 2bmn + cn2 = [mn]( v1 v2
w1 w2 )[mn]T = (mv + nw)2

which is the square length of lattice vector.
Notice that the polarization identity: ∣∣x + y∣∣2 − ∣∣x − y∣∣2 = 4 < x, y >

Note: If one change the basis so that Bn ↦ UBn for U ∈ GL(2,Z), then the distance
quadratic form changes.

GΛ′ ↦ UGΛU
T
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However, if we change the lattice by an euclidean isometry, i.e. rotate the lattice by an
element Q ∈ O(2,R), we see that it does not changes the distance quadratic form.

GΛ = BΛB
T
Λ = BQΛB

T
QΛ = GQΛ

Moreover, we denote a symmetric bilinear form associated to the quadratic form to be
Mf = ( a bc d ). Note that if Mf is associated to some lattice matrix, then det(Mf) = ac − b2 > 0
since det(Mf) = det2(Bn) > 0.

Moreover, for the quadratic form f(x, y), we can define the discriminant of f as

Disc(f) = 4(b2 − ac) < 0

And Mf is positive definite matrix iff a > 0 and det(Mf) > 0

2.0.3. Correspondence between the two dimension lattice and Equivalence class of quadratic
form.

Definition 2.0.3. Call two positive definite binary form to be (Lagrange) equivalent f1 ∼ f2

if there is U ∈ GL(2,Z) to be the change of basis matrix such that

f1(x, y) = f2((x, y)U)
(Note that if they are equivalent, then the distance quadratic form of them represent exact
same vaslue).

Definition 2.0.4. Call two positive definite binary form to be (Gauss) equivalent f1 ∼ f2 if
there is U ∈ SL(2,Z) to be the change of basis matrix such that

f1(x, y) = f2((x, y)U)

Theorem 2.0.5. There is a (natural) bijection

{Lattices in R2/O(2,R)}⇔ {GL(2,Z) − equivalence class of positive quadratic form Mf}

Proof. Check the onto. Given positive definite quadratic form f = ax2 + bxy + cy2. Find the
lattice Λ such that Mf = BΛBT

Λ .
Note that f(1,0) = a⇒ v = (

√
a,0), f(0,1) = c⇒ lattice vector of length c. get < v,w >= b.

Therefore, cosφ = b√
ac

.

Can do this if ∣ b√
ac
∣ ≤ 1 ⇐⇒ b2 ≤ ac. Uniqueness is not checked. �

2.1. Reduction theory.

Theorem 2.1.1. Given any positive definite quadratic form. There exists a form g = Ax2 +
2Bxy+Cy2 which is GL(2,Z) equivalent to f with 0 ≤ 2B ≤ A ≤ C. (Lagrange reduced form.)

Given any positive definite quadratic form. There exists a form g = Ax2 + 2Bxy + Cy2

which is SL(2,Z) equivalent to f with 0 ≤ ∣2B∣ ≤ A ≤ C. (Gauss reduced form.)
Remark: This is almost unique.

Proof. Given f(x, y) find lattice Λ have f(x, y) as its distance quadratic form. Λ = Z[v,w]
where ∣∣v∣∣2 = a, ∣∣w∣∣2 = c, < v,w >= b.

Choose the basis of the lattice to Z[v′,w′] such that v′ is shortest nonzero vector in lattice
and w′ is second shortest such that they are linearly independent.

Claim: f ′ = BΛ′BT
Λ′ has the required property. �
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3. Supplements

3.1. Uniformization of Riemann Surfaces. A (compact) complex manifold is (compact)
Riemann surface. All compact Riemann surfaces are complete nonsingular algebraic curves.
(Chow’s theorem: n-dimensional curve for compact n-dimensional compact manifold.)

Theorem 3.1.1. (Uniformization theorem)

Given a compact Riemann surface R, its universal cover is Ĉ = P1(C)(g = 0), C(g = 1),
or H(g ≥ 2).

Moreover, the covering map lifts π1(R) to Γ acting on the universal covering such that
R = C/Γ where C is the universal cover for R.

Consequence: Algebraic function on R lifts functions to modular function on H/Γ.

Example 3.1.2. Case where g = 1. Under this case the uniformization gives that E(C) =
C/Λ, where if we rescale it we get that Λ = Z[1, τ] for some τ ∈ H.

We can also view the elliptic curve as the algebraic curve, i.e. y2 = x3 + g2(τ)x + g3(τ).
Where we see that Γ parametrize the genus 1 surface and that g2 and g3 are modular form
for PSL(2,Z) of weight 4 and weight 6.

3.2. Poisson summation formula. Poisson summation formula: sum of values of a func-
tion f(x) on a lattice points Λ ⊆ Rn = sum of values of Fourier transform f̂(ξ) on lattice
points of a dual lattice Λ∗ ⊆ (Rn)∗ (Multiplied by a normalization constant independent of
the function f(x)).

Provide the function nice enough.

∑
x∈Λ

f(x) = C ∑
ξ∈Λ∗

f̂(ξ)

Where here C is a normalizing constant depends on the definition of dual lattice and defini-
tion of Fourier transform.

Definition 3.2.1. (Schwartz functions: nice ones)
Let f(x1, . . . xn) ∈ S(Rn)(Schwartz space), which are C∞-function of n variables that

rapidly decreases as ∣x∣→∞, and all the partial derivatives rapidly decreasing.

Example 3.2.2. (Prototypical example.)
Gaussian: f(x1, . . . , xn) = e−x

2
1+...x

2
n .

Note that the quadratic terms on the top can be any general positive definite quadratic
form.

Remark 3.2.3. Closure of spae of Gaussian + with translation and differentiation + linear
transformation of variable = Schwartz space.

Definition 3.2.4. Fourier transform.

f̂(ξ) = ∫
f(x)e2πi<x,ξ>dx

Rn

Where < x, ξ >= x1ξ1 + . . . xnξn real scalar product.
x = time variable (particle)

ξ = Frequency variable (wave)

Theorem 3.2.5. The Fourier transform f(x)↦ f̂(ξ) take the Schwartz space to itself.
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Definition 3.2.6. (Lattice)
Let Λ = Z[v1, . . . , vn] be an n dimensional lattice in Rn. Then

∣det(Λ)∣ = ∣det[v1, . . . , vn]∣ = det ∣V tV ∣1/2 = vol(∣Rn/Λ∣) > 0

The dual lattice (or reciprocal lattice Λ∗ ⊆ Rn)
Λ∗ = Z[w∗

1 , . . . ,w
∗
n] with Λ∗ = {w∗ ∈ Rn ∶< v,w∗ >∈ Z∀v ∈ Λ}.

Λ∗ is then spanned by the dual basis (w∗
1 , . . . ,w

∗
n), where < w∗

i , vj >= {1 j = i
0 j ≠ i

.

Theorem 3.2.7. Poisson summation formula, For f(x) ∈ S(Rn, x), Λ is lattice, then ξ̂ ∈
S(Rn, ξ). Then with the fourier transformation e2πi<ξ,x> have:

∑
x∈Λ

f(x) = 1

det(Λ) ∑y∈Λ∗
f̂(y)

Example 3.2.8. For Λ = Z then Λ∗ = Z with fourier transforma normalized f̂(ξ) = ∫
∞

−∞
f(x)e2πixξdx,

det(Λ) = 1.

Proof. General case can be reduced to dim 1 and we do the work there. �

Remark 3.2.9. Consider 1-dimensional case. Can weaken hypothesis on test functions f(x)
allowed in Poisson summation formula to be C2-functions, with sufficiently rapid decay at
∞.

Example 3.2.10. (Bad example) f ∈ L1(R) ∩ L∞(R) and f̂ ∈ L1(R) ∩ L∞(R) integrals on
both sides converge absolutely but do not agree.

Key ingredients: The poisson respects translation, multiplication by e2παx, and linear
transformaiton of Rn.

Note that it is one of the basic ingredients in the proof of Jacquet langlands.

4. Elliptic function: Weierstrass ℘ function

Given lattice Λ = Z[ω1, ω2].

Definition 4.0.11.

℘(z,Λ) = 1

z2
+ ∑
ω∈Λ∖{0}

[ 1

(z − ω)2
− 1

ω2
]

Here we think about 1
ω2 as the convergence factor, term must be grouped to get the uniform

convergence on compact subsets of C (avoiding poles on the lattice Λ).

Theorem 4.0.12. ℘(z,Λ) is an even elliptic function, singularities are double poles on Λ.
It is of order 2. (2 poles = 2 zeroes on the fundamental parallelogram).

Proof. Want to show uniform convergence on compact subspace of C on DR for fixed R.

℘(z,Λ) = 1

z2
+ ∑
ω∈Λ∖{0},∣w∣<2R

[ 1

(z − ω)2
− 1

ω2
] + ∑

ω∈Λ∖{0},∣w∣>2R

[ 1

(z − ω)2
− 1

ω2
]

Note the first two terms are finite.
Also ∣z −ω∣ ≥ ∣ω∣− ∣z∣. Take ∣ω∣ > 2R ≥ 2∣z∣, z ∈ BR. In particular, we have ∣ω − z∣ > ∣ω∣2 for ω.
Have equation.
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∣ 1

(z − ω)2
− 1

ω2
∣ = ∣z∣∣ zω − z

(z − ω)2ω2
∣ ≤ R(5/2∣w∣

∣w∣4
/4) ≤ 10

∣ω∣3
Now boundary lemma applies we have that ∑ fω(z) with ∣fω(z)∣ ≤ 10

∣ω∣3 for z ∈ BR, ∑ 10
∣ω∣3 <∞

by boundary lemma.
Thus we have the uniform convergence of sum on BR, and thus we get a holomorphic

function in BR for ℘(z,Λ,R).
Moreover, due to the fact that under the symmetry z ↦ −z, the formula remains the same,

and thus we obtained the fact that it is an even function.
Double periodicity

Claim 4.0.13.

℘′(z,Λ) = −2(∑
ω∈Λ

1

(z − ω)3
)

differentiation term by term of the grouped factors.
Here no problem of the convergence and manifestly is doubly periodic.
This is doubly periodic by the ”average” construction, i.e. ℘(z,Λ) = −2(∑ω∈Λ f(z − ω))

where f(z) = 1
z3 .

Claim 4.0.14. First look at the fω(z) ∶= ℘(z + ω,Λ) − ℘(z,Λ) for given ω ∈ Λ.
We then have that f ′ω(z) = 0 by the double periodicity.
So fω(z) = cω for some constant.
Now use the fact that ℘ is an even function, let z = −ω1

2 , then we have that

cω1 = ℘(ω1/2,Λ) − ℘(−ω1/2,Λ) = 0

. Similarly,
cω2 = ℘(ω2/2,Λ) − ℘(−ω2/2,Λ) = 0

.

Thus we get the double periodicity of ℘. �

4.1. Laurent expansion of ℘(z,Λ).

Theorem 4.1.1.

℘(z,Λ) = 1

z2
+

∞

∑
n=1

(2n + 1)G2n+2(Λ)z2n

Where for all m ≥ 3 we can se that

Gm(Λ) = ∑
ω∈Λ∖{0}

1

ωm

which converges.

Note that

(1) G2n+1(Λ) ≡ 0 since ℘ is even function.
(2) Write Λ = ω2Z[τ,1] where τ = ω1/ω2 ∈ H.

Then we have that

G2n(Λ) = 1

(ω2)2n
G2n(Z[τ,1])

7



G2n(τ) ∶= G2n(Z[τ,1]) turns out to be a weight 2k holomorphic modular form for
Γ = PSL(2,Z).

Proof. (Power series manipulation.)
Note that

1

(1 − z)2
=

∞

∑
n=0

(n + 1)zn

converges on ∣z∣ < 1 uniformly on ∣z∣ < 1 − ε.
If ω ≠ 0, we has that

1

(z − ω)2
= 1

ω2

∞

∑
n=0

(n + 1)(z/ω)n =
∞

∑
n=0

(n + 1)(zn/ωn+2)

So now the congruence factor appears

1

(z − ω)2
− 1

ω2
=

∞

∑
n=1

(n + 1) zn

ωn+2

Take ∣z∣ small, near 0, then we have that ∣z∣ < ∣ω∣ for all ω ∈ Λ ∖ {0}.
Then we have that

℘(z,ω) = 1

z2
+ ∑
ω∈Λ∖{0}

∞

∑
n=1

(n+1) zn

ωn+2
= 1

z2
+

∞

∑
n=1

∑
ω∈Λ∖{0}

(n+1) zn

ωn+2
= 1/z2+

∞

∑
m=1

(m+1)G2m+2(Λ)z2n

using Tonelli-Fubini, and the odd term vanishes since it is even function. �

Theorem 4.1.2. The function ℘(z,Λ) satisfies the nonlinear first order differential equation,
let y = ℘(z,Λ)

(y′)2 = 4y3 − g2(Λ)y − g3(Λ)
, where g2(Λ) = 60G4(λ), g3(Λ) = 140G6(λ)

Proof. Treat Λ fixed.
Elliptic function f(z) are meromorphic in C and satisfies that ∂

∂zf(z) = 0.

Operator ∂
∂z preserves the property of the elliptic function.

Since f(z + ω) = f(z), thus we have that f ′(z + ω) = f ′(z).
Now look at the function

f(z) ∶= (y′)2 − (4y3 − g2(Λ)y − g3(Λ))

which is an even function.
These function has pole in the fundamental domains only at z = 0, where (y′)2 has a 6th

order pole , and y3 has a 6th order pole, both at z = 0. So we can take conbination of 1 ,
(y′)2, y3, y to kill terms z2k where k = 0,1,2,3 in the Laurent expansion at z = 0, and thus
we get a bounded elliptic function with f(0) = 0, thus f ≡ 0.

Now we have that A℘′(z)2 +B℘(z)3 + C℘(z) +D ≡ 0. Now we write down exactly what
the Laurent expansion, we will have that (℘′(z))2 − 4℘3(z) = −60G4

℘
(z) − 140G6 + ...

Thus done. �

Satisfy second order differential equation ℘′′(z) = 6(℘)2 − 1
2g2(Λ).
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Corollary 4.1.3. Set ω3 = ω1 + ω2, Let Λ be the fixed lattice.
Let ei = ℘(ωi/2,Λ), i = 1,2,3.
Then 1) 4x3 − g2(Λ)x − g3(Λ) = 4∏3

i=1(x − ei). All three roots are distinct.
2) Let z0 ≠ Λ, then we have f(z) = ℘(z,Λ)−℘(z0,Λ) has exactly 2 distinct zeroes z = ±z0(

mod Λ), unless z0 is a 2-dim point where it has a double zero at z = z0.

Proof. Note that ℘′(z) is odd function.

℘′(ei,Λ) = −℘′(ei,Λ)

Thus ℘′(ei) = 0. These are 3 distinct zeros of ℘′(z), thus all the zeros of ℘′(z) are
simple. �

4.2. 2-division points.

Corollary 4.2.1. Let ℘(w,Λ) for Λ = Z[ω1, ω2],
(1) Set ω3 ∶= ω1 + ω2 on period parallelogram.

Set

ei = ℘(ωi/2,Λ)
for i − 1,2,3, these are the 2−division points, then 4X3 − g2(Λ)X − g3 = 4∏(x − ei)
and all three roots are distinct.

g2(Λ) = G4(Λ)

g3(Λ) = 140G6(Λ)
where G2k(Λ) = ∑′ 1

ω2k

(2) Let z0 /∈ Λ, then the function f(z) = ℘(z,Λ) − ℘(z0,Λ) has exactly two distinct zeros,
and z ≡ ±z0 mod Λ, unless z0 is a 2-division point (z1, z2, z3) when it has a double
zero at z = z0.

Proof. (1) Have differential equation

(℘(z)′)2 = 4℘(z)3 − g2(Λ)y − g3(Λ)

So want to show that ℘′(wωi/2) = 0, by evenness we have that ei = ℘(ωi/2) is a zero of
the equation 4X3 − g2X − g3, and ei are distinct. Since first that ωi, (i = 1,2,3) are the only
distinct zeros of ℘′(z) mod Λ, then we consider fi(z) = ℘(z) − ei is an elliptic function of
order 2, and it is even since ωi/2 is 2-division point, then fi(z) has double zero at ωi/2 and
no other zeros, and thus we have that ei distinct.

(2) Suppose z0 /∈ Λ, and z0 ∈ 1
2Λ, then we have that ℘(z,Λ)−℘(z0,Λ) ≡ ℘(z,Λ)−℘(−z0,Λ)

is even elliptic function of order 2.
If clearly has a zero at z = z0 and z = −z0, z0 /≡ −z0 mod Λ, so have 2 zeros and all of them

since it is order 2. If z0 ∈ 1
2Λ, then has a double zero at z = z0, accounts for all zeros. �

Proposition 4.2.2. For a fixed lattice Λ, any elliptic function for Λ is a rational function
in C(x, y) pf x = ℘(z), y = ℘′(z), subject to relation y2 = 4x3 − g2x − g3.

The field K of elliptic function is isomorphic to the field of fraction of C[x, y]/(y2−(4x3−
g2x − g3))
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Proof. Reduction to even function case. Since f(z) is elliptic function for Λ, then so is f(−z)
(since lattice Λ = −Λ). So is g(z) = 1

2(f(z)+f(−z) even function, and h(z) = 1
2(f(z)−f(−z).

Since ℘(z) is even function and ℘′(z) is odd function, then h(z)
℘′(z) is even function.

So it suffice to construct h(z)
℘′(z) and g(z) both are even function, ⇒ cab recover f(z) from

these two function.
We have reduced problem to construct all even elliptic function.
Claim: All even elliptic unction g(z) is rational function of ℘(z), i.e. g(z) = R(℘(z)).
Proof of the claim: build up an elliptic function h̃(z) having the same zeros and poles as

h(z), all of the lattic Λ where h̃(z) is built using translation of ℘(z) − ℘(z0) for various z0.

Suppose we not constructed h̃(z), then we see that h(z)/h̃(z) is an elliptic function with
all zeros and poles on the lattice Λ, must be of order zero since it has no poles nor zeros,
thus its nonzero constant k, then h(z) = k(h̃(z)), done

Recipe: the order of zero or pole of h(z) at z = z0 denote as νz0(h).Fudge factor at z0 ∈ Λ,
w(z0) = 2 if 2z0 /∈ Λ, w = 1 if 2z0 ∈ Λ.

Let ˜h(z) = R(℘(z)) = N(℘(z))
D(℘(z)) , goal: kill zeros and poles Z at a time, which we can do since

h(z) is an even function.
Take

N(z) = ∏
z∶ zeroes of h, in period parallelagram.

(℘(z) − ℘(z0))
νz0 (h)
w(z0) )

D(z) = ∏
z∶ poles of h, in period parallelagram.

(℘(z) − ℘(z0))
−νz0 (h)
w(z0) )

Observe that N(z) and D(z) have poles only on the lattice Λ.

Now h̃(z) is an even elliptic form has the certain property that when w(z0) = 2, then z0,
−z0 are both zeros, and 2z0 /∈ Λ.

Factors combine in pair to

(℘(z) − ℘(z0))
νz0 (h)
w(z0) )(℘(z) − ℘(−z0))

−νz0 (h)
w(z0) )

has a zero of multiplicity 1 at both z0 and −z0, other wise for the 2-division point (℘(z) −
℘(z0))

νz0 (h)
1 ) works. �

4.3. Fourier expansion of G2k(Λ) and Eisenstein Series.

Definition 4.3.1. For even 2k ≥ 4, we have holomorphic Eisenstein series

G2k(Λ) =
′

∑(1/ω2k) = 1

ω2k
2

G2k(Z[τ,1])

, note that this 1/ω2k
2 is a constant depends on choice of the basis. Note that holomorphic

means holomorphic function of τ on H.

Set G2k(Z[τ,1]) =∶ 2G2k(τ) = 2∑′ 1
cτ+D

2k
, Called holomorphic Eisenstein series.

It is invariant under τ ↦ τ + 1 and preserves the lattice Λ when z = x+ iy then G2k(τ) has
a Fourier expansion in the x variable, with y as the parameter.
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Definition 4.3.2. For τ ∈ H, 2k ≥ 4 even integer. The weight 2k ∈ 2Z nonholomorphic
Eisenstein series.

G2k(s, τ) =
1

2

′

∑
(c,d)∈Z2

ys

(cτ + d)2k∣cτ + d∣s

And the weight 2k holomorphic Eisenstein series:

1

2
G2k(Z[τ,1]) = G2k(τ) ∶=

1

2

′

∑
(c,d)∈Z2

1

(cτ + d)2k

where we have τ = x + iy so y > 0. that the series converges absolutely and uniformly to
an complex analytic function of s for fixed τ ∈ H, R(s) > 1 −K.

This function is real analytic in τ(non-holomorphic): y = I(τ) is not a holomorphic on H.
It satisfies a Laplacian type pde, Eigen function of a cer tain hyperbolic Laplacian in

variable x and y.(elliptic pde).

∆k = y2( ∂2

∂x2 +
∂2

∂y2 ) − 2ky( ∂2∂x).
Fact:

(1) ∆K(G(τ, s)) = s(s−1)E(τ, s) eigenfunction of Laplacian ∆K eigenvalue continuously
varies with s.

(2) G(τ, s) satisfies a functional equation. Fix τ takes s ↦ ck − s after multiplying by
some Γ(s) factor.

If you specialize to point s = 0, we then recover the holomorphic Eisenstein seriesm since
we have that G2k(0)(τ) = G2k(τ)

For s = 0, we have that ∆KG2k(τ) = 0 ”holomorphic condition”.

Note that Eisenstein series also makes sense for k = 2,0,−2, . . .. For R(s) big enough,
R(s) > 1 − k, however, the point s = 0 is not in the correspondence domain for 2k ≤ 2.

Note: Selberg did prove the analytic continuation and functional equation. One way to
do it is to compute the Fourier expansion of nonholomorphic Eisenstein series in x-variable.
It transforms nicely under PSL(2,Z).

Claim: invariant under τ ↦ τ + 1 in the lattic Z[τ,1], G2k(s, τ) = G2k(s, τ + 1), where
R(s) > 1 − k.

Proposition 4.3.3. Fourier expansion of G2k(τ).

G2k(τ) = ζ(2k) +
(2πi)2k

(k − 1)!

∞

∑
n=1

σ2k−1(n)e2πinτ

Definition 4.3.4. Normalized G2k(τ),

E2k(τ) ∶=
1

2

′

∑
(c,d)∈Z2,gcd(c,d)=1

1

(cτ + d)

2k

Reason: Formula look nicer unfolding.

G2k(τ) =
∞

∑
m−1

1

2

′

∑
(c,d)∈Z2,gcd(c,d)=m

1

(cτ + d)

2k

=
∞

∑
m=1

1

2

1

m2k
(

′

∑
(c,d)∈Z2,gcd(c,d)=1

1

(cτ + d)

2k

).

Note that ∑′
(c,d)∈Z2,gcd(c,d)=1

1
(cτ+d)

2k = E2k(τ)∑∞
m=1

1
m2k = ζ(2k)E2k(τ)

11



Fourier expansion of E2k(τ),

E2k(τ) = 1 + (−1)k
(2k − 1)!

(2π)2k

ζ(2k)

∞

∑
k=1

σ2k−1(k)e2πiτ

Note that e2πinτ = e2πinxe−2πny

Proposition 4.3.5. E2k(τ) = 1 − 4k
B2k

(∑∞
n=1 σ2k−1(n)qn) where q ∶= e2πiτ , positive parameter.

And 0 ≤ ∣q∣ < 1 makes sense.

Definition 4.3.6. Due to the above, we have that

E2(τ) = 1 − 24
∞

∑
n=1

σ1(n)qn = 1 − 24
∞

∑
n=1

σ1(n)e−2pinye2πinx

where e2πiy is the Whittaker function.
Good news: it is holomorphic in q

Bad news: not modular, thus quasimodular

E∗
2 (τ) = E2(τ) −

3

πy
Good news: modular of weight 2
Bad news: not holomorphic in τ .

Quasimodular property:

E2(
aτ + b
cτ + d

) = (cτ + d)2E2(τ) +
12c(cτ + d)

2πi
This is the solution to the Ramanujan mock theta function.
Certain q-series that kind of behave like theta functions with modular form property,

holomorphic q-expansion.
Solution due to Zagier: add a non-holomorphic piece (”shadow”) and resulting modular

form (non holomorphic).

4.4. ”Fourier Series” expansion of ℘(z,Λ). Suppose Λ = C[ω1, ω2] lattice.
Let τ = ω1/ω2, with Im(τ) > 0.
q = e2πiτ (τ ∈ H means 0 < ∣q∣ < 1, use invariance under τ → τ + 1 to make q-variable well

defined.)
u = e2πiz/ω2(u ∈ C).
Double periodic: invariance under z ↦ ω1 + z, z ↦ ω2 + z gives q ↦ q, u ↦ qu, and q ↦ q,

u↦ u. Fourier expansion in powers of q.

Theorem 4.4.1. (”Fourier” expansion of ℘ and ℘′)
(1)

℘(z,Λ) = (2πi

ω2

)2{( 1

12
+ u

(1 − u)2
) +

∞

∑
n=1

qn[ u

(1 − qnu)2
+ 1

(qn − u)2
− 2

(1 − qn)2
]}

(”Pade approximation”)
(2)

℘′(z,Λ) = (2πi

ω2

)3{ 1 + u
(1 − u)3

+
∞

∑
n=1

qn[1 + qnu
1 − qnu

3

+ qn + u
(qn − u)3

]}
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Remark 4.4.2. (1) Formula for ℘ gives that for ℘′ by applying d
dz .

(2) Double periodicity almost visible.
z ↦ z +w2 holomorphic since q, u does not change
z ↦ z + w1 says changes u to qu and hope the expansion becomes equal to it-
self.(Exercise)

(3) This is a horrible opaque formula.
(4) z = 0 gives that u = 1 and thus we can see that u

(1−u)2 is the double pole at z = 0.

Proof. Introduce and study a magic function which corresponds to ℘(z).

℘(z,Λ) = 1

z2
+

∞

∑
n=1

(2n + 1)G2n+2(Λ)z2n

Study magic function

Z(z,Λ) ∶=
∞

∑
n=1

G2n(Λτ)z2n

Note that :

(Z(z) −G∗
2(Λ)z2 − 1

z
)′ = ℘(z)

Step 1:
Claim:

Z(z) − 1

z
= 2πi

ω2
( 1 + u
2(1 − u)

+
∞

∑
n=1

qn( u

1 − qnu
− 1

u − qn
) = 2πi

ω2
( 1 + u
2(1 − u)

+
∞

∑
n=1

qn( 1

1/u − qn
− 1

u − qn
)

Step 2:
Assume the claim and derive the Fourier series.
Note that we have du/dz = 2πi

ω2
u and dq/dz = 0.

℘(z) +G∗
2(Λ) = (2πi

ω2

)2(− 1

2(1 − u)
+ (1 + u)

2(1 − u)2
+

∞

∑
n=1

qn( u

(1 − qnu)2
+ 1

1 − qnu
+ 1

(u − qn)2
)

Now we shift G∗
2 to the right side and we use the fourier expansion of G∗

2

Lemma 4.4.3.

G∗
2 = (2πi

ω2

)2(− 1

12
+

∞

∑
m=1

σ1(m)qmn) = (2πi

ω2

)2(− 1

12
+

∞

∑
n=1

nqn

1 − qn
) = (2πi

ω2

)2(− 1

12
+ qn

(1 − qn)2
)

Proof of the lemma:
Note that σ1(m) = ∑d∣m d = sum of divisor of m = ∑de=m d = ∑de=m e.
Now we can get result by interchanging d and e.

∞

∑
m=1

σ1(m)qm =
∞

∑
m=1

∑
m=de

dqde =
∞

∑
e=1

(
∞

∑
d=1

dqde) =
∞

∑
e=1

qe

(1 − qe)2
=

∞

∑
d=1

dqd

1 − qd
=

∞

∑
d=1

(
∞

∑
e=1

dqde)

and then we plug in ζ(2) = π2/3, we are done. �
And using the lemma into our result we have the desired thing.
Step 3: Prove the claim.
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Z(z) =
∞

∑
n=1

G2n(Λ)z2n

=
∞

∑
n=1

z2n

ω2n
2

(2ζ(2n) + 1
(2πi)2n

(2n − 1)!

∞

∑
m=1

σ2n−1(m)qm)

= 2
∞

∑
n=1

ζ(2n)( z
ω2

)2n + 2
∞

∑
m=1

qm(
∞

∑
n=1

σ2n−1(m)(2πiz

ω2

)2n 1

(2n − 1)!
)

Proposition 4.4.4.

∞

∑
n=1

ζ(2n)xn = 1 − πx cot(πx)
2

=
1 − iπx( e2πix+1

e2πix−1
)

2

Proof of the above identity is left as hw, related to the partial fraction expansion of
cotangent which is

π cot(πz) = 1

z
+

∞

∑
m=1

( 1

z +m
− 1

z −m
)

Suppose this is true hen we can just take x = z
ω2

,

2(
∞

∑
n=1

ζ(2n)( z
ω2

)2n) = 1 − ( iπz
u+1
u−1

)

Now we are done with the first term.
For the second term. For fix m, qm term

∞

∑
n=1

σ2n−1(m)(2πiz

ω2

)2n 1

(2n − 1)!
=

∞

∑
n=1

∑
d∣m

d2n−1(2πiz

ω2

)2n 1

(2n − 1)!

=∑
d∣m

∞

∑
n=1

d2n−1(2πiz

ω2

)2n 1

(2n − 1)!

= 2πiz

ω2
∑
d∣m

∞

∑
n=1

d2n−1(2πidz

ω2

)2n−1 1

(2n − 1)!

= 2πiz

ω2

(∑
d∣m

sinh(2πiz

ω2

))

= 2πiz

ω2
∑
d∣m

(u
d − u−d

2
)

Now we interchange the d and e summation, we have the second term to be

2πiz

ω2
∑
d∣m

(u
d − u−d

2
)(

∞

∑
e=1

)

= 2πiz

ω2

∞

∑
d=1

∞

∑
e=1

(qeu)d − qdeu−d

= 2πiz

ω2

∞

∑
e=1

qe( u

1 − qnu
− 1

u − qe
)
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And now we are done. �

5. Quasi elliptic function

5.1. Weierstrass ζ-function: Quasi elliptic function.

Definition 5.1.1. Weight 2 holomorphic eisenstein series before.

E2(τ) = 1 − 24
∞

∑
n=1

σ1(n)qn

G2(ω1, ω2) =
π2

3

1

ω2
2

E2(τ)

Theorem 5.1.2. (1)There is a unique meromorphic function ζ(z,Λ) satisfying ζ ′(z,Λ) =
−℘(z,Λ) which is an odd function (at z = 0).

(2)It is meromorphic, simple poles on lattices and

ζ(z,Λ) = 1

z
+

′

∑
ω∈Λ

( 1

z − ω
+ 1

ω
+ z

ω2
) = 1

z2
+ z2(∑

ω∈Λ

1

ω2(z − ω)
)

(3)Quasiperiodic
ζ(z +m1ω1 +m2ω2) = ζ(z,ω) +m1η1 +m2η2

where η1, η2 ∈ C are quasi periods.
In fact, ηi = 2ζ(ωi/2,Λ) for i = 1,2.
(4)Fourier expansion

Note that we still use the notation that q = e2πiτ , u = e
2πiz
ω2

ζ(z,Λ) = π2

3ω2
2

E2(τ)z −
2πi

ω2

( 1 + u
2(1 − u)

+
∞

∑
n=1

qn( u

1 − qnu
+ 1

qn − u
)

where π2

3ω2
2
E2(τ)z is the connecting factor for E2(τ) and G2(ω1, ω2)

(5) Formula for quasiperiod as a function of τ .

η1 =
π2

3ω2

τE2(τ) −
2πi

ω2

η2 =
π2

3ω2

E2(τ)

and satisfies the Legendre-Weierstrass relation:

ω1η2 − ω2η1 = 2πi

Proof. (1) and (2):
Define H(z) =RHS of the equation. Check the converges uniformly on the compact subsets.
Differentiate term by term formula in (2), we have ∂

∂zH(z) = ℘(z). Check it is an odd
function.

(3):
Give ωΛ. Look at fω(z) = f(z + ω) − f(z) for f(z) = ζ(z,ω). Also we have f ′ω(z) = f ′(z +
ω) − f ′(z) + ℘(z + ω) + ℘(z) ≡ 0.

Thus we have that fω(z) = constant = ηω. Define

η1 = ζ(z + ω1) − ζ(z)
15



η2 = ζ(z + ω2) − ζ(z)
Set z = −ωi/2 and get the basis case, then we induct on m,n, we then get the desired

result.
(4)Fourier expansion.

Claim:
Z(z)−1−G∗

2(Λ)z
2−1

z = ζ(z,Λ), and we are then done.
(5)Fourier expansion to get value for η1, η2.
Start with η2, use variable u in the fourier expansion is invariant under z ↦ z + ω2, then

we have

η2 ∶ ≡ ζ(z + ω2,Λ) − ζ(z,Λ)

= π2

3ω2
2

E2(τ)[(z + ω2) − z]

= π2

3ω2
2

E2(τ)ω2

= π2

3ω2

E2(τ)

Legendre-Weierstrass equation: Integrate ζ(z,Λ) around the period parallelogram (Along
a + ω2, a + ω1 + ω2, a + ω1 counterclockwisely) and we have that

1

2πi ∮
ζ(z)dz =∑Residue(ζ(z)) = 1

Integrate around the side we have that

I = 2πi = ∫
II
+∫

IV
+∫

I
+∫

III
= ω1η2 − ω2η1

Now we can solve η1 using the Legendre-Weierstrass relation. �

5.2. Quasimodularity of E2(τ).

Proposition 5.2.1. ( a bc d )∈ SL2(Z)

E2(
aτ + b
cτ + d

) = (cτ + d)2E2(τ) +
12c(cτ + d)

2πi

Proof. Change basis of Λ = Z[ω1, ω2], let (ω′1, ω′2)T = ( a bc d )(ω1, ω2)T .
Key point: E2(τ) depends only on lattice Λ through parameter τ , not an basis, but

G2(ω1, ω2) does depends on the basis.
In new basis ζ(z + ω′2,Λ).

ζ(z + ω′2,Λ) − ζ(z,Λ) = η′2 =
π2

3ω′2
E2(τ ′)

but ω′2 = cω1 + dω2, so evaluate this we have in the old basis,

ζ(z + ω′2,Λ) − ζ(z,Λ) = cη1 + dη2

Thus we have cη1 + dη2 = η′2.
Thus we have that

π2

ω2

(cτ + d)E2(τ) − c
2πi

ω2

= π
2

ω′2
E2(

aτ + b
cτ + d

) = π2

ω2(cτ + d)
16



Use identity
ω′2 = cω1 + dω2 = ω2(cτ + d)

Here τ ′ = aτ+b
cτ+d =

ω′1
ω′2

in new basis.

(cτ + d)2E2(τ) − c
2πi

ω2

(3π2(cτ + d)) = (cτ + d)2E2(τ) +
12c(cτ + d)

2πi
�

5.3. Quasi-elliptic function: Weierstrass σ function. Weierstrass theory of theta func-
tion.

Theorem 5.3.1. Let Λ = Z[ω1, ω2].
(1) There is unique entire function σ(z,Λ), the Weierstrass σ function with the following

property.
d

dz
(log(σ(z))) = σ

′

σ
(z; Λ) = ζ(z,Λ)

lim
z→0

σ(z,Λ)
z

= 1

σ(z,Λ) has a simple zero at z = 0.
(2) Function σ(z,Λ) is an odd function, simple zeros at all points of Λ, no other zero.

σ(z,Λ) = z
ω≠0

∏
ω∈Λ

(1 − z

ω
)e

z
ω
− z2

2ω2

It is an entire function of order 2. (Infinite product that converges uniformly on
compact subsets of C)

(3) Multiplicative quasiperiodisity.
For any ω =m1ω1 +m2ω2 ∈ Λ = Z[ω1, ω2]

σ(z + ω,Λ) = ±eηω(z+ω/2)σ(z,Λ)
Where ηω is the quasi period of the Weiersrass ζ function.

Where sign is 1 if ω ∈ 2Λ, −1 otherwise.
(4) Fourier expansion of σ: Product expansion.

σ(z,Λ) = ω2

2πi
eηω2/ω2(u1/2 − u−1/2) ×

∞

∏
n=1

(1 − qnu)(1 − qn/u)
(1 − qn)2

with the notation q = e2πiτ , u = e2πiz/ω2 as usual.

Proof. (1), (2), (3) as exercise.
(4) Use the Fourier Expansion of ζ(z,Λ)[Partial factor expansion]

ζ(z,Λ) = π2

3ω2
2

E2(τ)z −
2πi

ω2

( 1 + u
2(1 − u)

+
∞

∑
n=1

qn( u

1 − qnu
+ 1

qn − u
)

We should guess that

σ(z, τ) = Ceη2(
z2

ω2
)z(u1/2 − u−1/2)∏(1 − qnu)

And then we take a log of it and take a derivative., we can determine the normalizing
factor C.
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lim
z→0

σ(z,Λ)
z = 1, and u→ 1, and z → 0. Then we have that

C(2πi

ω2
∏(1 − qn)2) = 1

�

Proposition 5.3.2. Assume a /∈ Λ.
Then we get

℘(z,Λ) − ℘(a,Λ) = −σ(z − a,Λ)σ(z + a,Λ)
σ(a,Λ)2σ(z,Λ)2

Note d2

dz2 (log(σ(z,Λ))) = −℘(z,Λ).

Proof. To prove the identity:
(a)Check right hand side is an elliptic function.
(b) Check poles on both sides match.
(c)Check the Laurant expansions of both sides at z = 0 match down h constant term.
For (a), RHS

σ(z − a + ω1,Λ) = (−1)eη1(z−a+ω1/2)σ(z − a,Λ)

σ(z + a + ω1,Λ) = (−1)eη1(z+a+ω1/2)σ(z + a,Λ)

σ−2(z + ω1,Λ) = (−1)2e2η1z+ω1/2σ−2(z,Λ)
The checking for ω2 is similar.
Therefore it is elliptic function.
For (b) RHS has double pole at z = 0(z ∈ Λ). has two zeros at z = ±a1. σ(z,Λ) has a zero

at z = 0 (Only singularity), has no pole. Therefore, 1
σ2(z,Λ) has double pole at z = 0.

σ(z − a,Λ), σ(z + a,Λ) has 2 simple zeros at z = ±a, double zero at z = ±a if 2a ∈ Λ.
Therefore, zeros and poles match.
For (c)

LHS = 1

z2
+O(1)

around z=o.

RHS = (−σ(−a,Λ)σ(a,Λ)
(σ(0,Λ))2

) 1

z2
+O(1)

Since σ(z) is an odd function, and limz→0
σ(z,Λ)
z = 1.

Claim: There is no 1
z term on the RHS.

Then we are done. �

6. Theta functions

Definition 6.0.3. A holomorphic function f(z) ∶ C → C is a theta function for a lattice Λ
if for λ ∈ Λ it transforms multiplicatively as

f(z + λ) = eλ(z)f(z)

Where eλ(z) is an entire function with no zeros.
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Example 6.0.4. Reimann theta function is defined as the following:

Θ(z, τ) =∑
n∈Z

eπi(n2τ+2nz)

for given lattice Λ = Z + τZ. Moreover, we have that

Θ(z + 1, τ) = Θ(z)

Θ(z +mτ ; τ) =∑
n∈Z

eπi(n+m)2τ+2(n+m)(z)−m2−2mz = e−πi(m2τ+2mz)Θ(z, τ)

Big picture:

(1) Theta function expansion converge rapidly if y = I(τ) is large suitable for numerical
computation (under modular change, we can make y large).

(2) Can recover elliptic function as quotients.
(3) Satisfies important PDE’s.
(4) Use to embed abelian varieties in projective space.
(5) Get modular form at point z = 0. (”Theta nulls”)

6.1. Classifying theta factors.

Lemma 6.1.1. The theta factors satisfies the cocycle condition(Z1(Λ,O∗(C))):

eγ+γ′(z) = eγ(z + γ′)eγ′(z).

Proof. Calculate two ways. �

Consider rescaling by

f(z)↦ φ(z)f(z) =∶ g(z)
where φ(z) is an entire function nowhere zero. Now φ(z) = exp(h(z)).

Conclude that g(z) is a theta function g(z + λ) = ˜eλ(z)g(z), with the theta factor

ẽλ(z) = eλ(z)φ(z + λ)(φ(z))−1

So we call the change of θ factor by φ(z + λ)φ(z)−1 a coboundary condition.

Definition 6.1.2. Call two theta function f(z) and g(z) equivalent if you can take on to
another one by operations.

f(z)↦ f(z + µ)
by translation.

or by

f(z)↦ h(z) = f(z)φ(z)
where φ(z) is entire with no zeros, and we choose ˜eλ(z) = eλ(z)[φ(z + λ)φ−1(z)]

Note: don’t require φ(z) to have any symmetries with respect to Λ.

Proposition 6.1.3. Any theta function on C/Λ, Λ = Z[τ,1] is equivalent to one have theta
factors that are exponential of linear functions, i.e. ẽλ(z) = e−2πi(aλz+bλ)

Proof. prove or accept as given. �
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Lemma 6.1.4. Any theta function on C/Λ is equivalent to eλ(z) = e−2πi(aλz+bλ) such that

f̃(z + 1) = f̃(z)
f̃(z + τ) = e−2πi(kz+b̃)f̃(z)

where k ∈ Z.

Proof. Step 1.
f(z + 1) = e−2πi(z1z+b1)f(z)

Guess to choose
f̃(z) = f(z)e2πi( 1

2
a1z

2−()b1−
1
4
)z

φ1(z) ∶= 2πi(1

2
a1z

2 − ()b1 −
1

4
)z

Check by calculation f(z + τ) = e2πi(aτ z+bτ ). Now

˜f + 1(z) = f̃(z)

f̃(z + τ) = e−2πi(kz+b̃)f̃(z)
ẽ1(z) = φ(z + 1)φ(z)−1e1(z) = e2πi( 1

2
a1(z+1)2−(b1−

1
4
a1)(z+1) = . . .

Second to show ã ∈ Z. �

Definition 6.1.5. For a theta function of Λ = Z[tau,1], we call k the order of a theta factor
of the form

f(z + 1) = f(z)
f(z + τ) = e−2πikz−2πib̃f(z)

6.2. Construction of theta function for Λ = Z[τ,1].

Definition 6.2.1. We define that for k ≥ 1 and 0 ≤ s ≤ k − 1, we have the Riemann theta
function is defined as

Θs(z, τ)k ∶=∑
n∈Z

eπi((s/k+n)2kτ)e2πiz((s/k+m)k) =∑
n∈Z

(qk)
n+s/k

2 (uk)n+s/k

With the Riemann Theta factor e1(z) = 1 and eτ(z) = e−2πikz

Definition 6.2.2. The vector space of order k theta function is

Th(k,Λ) ∶=< Θs, (z, τ)k >

Theorem 6.2.3. Let Λ = Z[τ,1], τ ∈ H.

(1) Each theta function is equivalent to one having a theta factor of form

em+nτ(z) = e−2πik(nz+n
2

2
τ)

where k ∈ Z. Call the space of such theta function Th(k,Λ).

(2) The space Th(k,Λ) has dimension

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 k < 0

1 k = 0

k k ≥ 1

For k ≥ 1, Th(k,Λ) is spanned by Θs, (z, τ)k.
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Proof. Use the fourier series expansion f(z + 1) = f(z).
Note em(z) = 1 for m ∈ Z.
It has a fourier expansion

f(z) =
∞

∑
n=−∞

cne
2πinz

Because it is a C1- function on horizontal line I(z) = y.

f(x + iy) =
∞

∑
n=−∞

cn(y)e2πinx

In fact cn(y) = cne−2πny.
Anyhow, for fixed y this is a L1-function of x, periodic with period 1, and hence ∣cn∣→ 0 ≡

Riemann Lebesgue lemma.
Know ∣cn∣ = ∣ ∫

1

0 F (x)e−2πinxdx∣ ≤ ∫
1

0 ∣F (x)∣dx ≤ c0.
But we may compute f(z + τ) = e−2πi(kτ+b)f(z). Compute the fourier series in two ways.

f(z + τ) =
∞

∑
n=−∞

(cne2πnτe2πinz)

Another way, we can have that f(z + τ) =
∞

∑
n=−∞

(cne−2πnb̃e2πi(n−k)z))
Since k is integerm then we can shift the indices and have that

cne
2πinτ = cn+ke−2πib̃

and this gives a recurrence fir cn.
Now we consider the case k = 0, we have that

cne
2πinτ = cne−2πib̃

and thus since b̃ is fixed and τ is also fixed, so at most one n can work.

Therefore, we have f(z, τ) = ce2πiNz, now we just renormalized this so that ˜f(Z) =
f(z)e−2πinz, and now we have em+nτ=1 for all m, n.

Case k < 0, suppose some cn ≠ 0, then if we suppose also n ≥ 0, then

cn+ke
−2πib̃e2πinτ = cn ≠ 0

We repeat the term j times, we will have that cn+jke−2πib̃ej(j−1)/2∗2πikτ = cn with τ = u+ iv,
for j > 0, as j →∞, we have that the polynomial is really large.

Note that we can run the similar argument for the other side.
In the case where k > 0, we will get

cn+jke
−2πib̃e−j(j−1)/2∗2πikτ = cn

and e−j(j−1)/2∗2πikτ is very large since R(−2πi( j(j−1)
2 kτ)) = +2π( j(j−1)

2 kI(k) > 0
Get k linearly independent terms since the periodicity depends on the modulo class

mod k. Now we get set of fourier coefficient is arithmetic progression, and there are k such
solutions, and note that thus they are linearly independent, we have the vector space of
dimension k.

Furthermore, we can rescale the theta function by translation, therefore, we can rescale

f(z)↦ ˜f(z) = f(z + τ/2− b̃/k), and we have that ˜f(z + 1) = ˜f(z), f̃(z + τ) = e−2πi(kz+ kτ
2
)f̃(z)

�
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Alternative: The following note is the proof by Dolgachev on the same theorem.

Proof. There are two kinds of proof available.
One of them is the AG proof, based on the definition and the Riemann Roch theorem, we
have that dimH0(L) = k since degL = k on an elliptic curve.
Another is the barehand proof.

Since f(z + 1) = f(z), thus we have an Fourier expansion for f(z) = ∑ cnqn.
Compare the Fourier expansion we have for f(z) and f(z+τ), we have that cn+k = cneπi(2n−k)τ ,
and moreover cj+sk = eπi(j+sk)2τ/k.

Therefore

f(z) =
k−1

∑
j=0

cjθj(z, τ)k,

where Θj(z, τ)k ∶= θj/k,0(kz, kτ) �

Remark 6.2.4. Note that k is the number of the zeros and the zeros lies on the points
1
2τ +

1
2k +

s
kτ +

i
k for i = 0, . . . , k − 1.

Lemma 6.2.5. There is a bilinear pairing of Riemann theta function

Th(k,Λ) × Th(k′,Λ)→ Th(k + k′,Λ)

Proof. Check action on theta factors. �

6.3. Theta function with characteristics(Jacobi Theta funciton.) The effect of trans-
lation in z-variable on a theta function gives a new theta function (With same number of
zeros), but its theta factor changes.

Definition 6.3.1. The theta function with rational characteristics a, b ∈ Q is

θab(z, τ) ∶=∑
s∈Z
eπi((a+s)2τ+2(z+b)(s+a)

The lattice is Z[1, τ] and the theta factors depends on (a, b).

Note that:

● a, b ∈ C should still makes sense.
● Riemann theta function Θs(z, τ)k = θs/k,0(kz, kτ)

Definition 6.3.2. We can then define the four basic Jacobi theta function as the following:

θ1(z, τ) ∶= θ1/2,1/2

θ2(z, τ) ∶= θ1/2,0

θ3(z, τ) ∶= θ0,1/2

θ0(z, τ) ∶= θ0,0

And θ1 is odd function while the others are even.
Moreover,

Z(θ1/2,1/2(z, τ)) = 0 +Λ = Λ

Z(θ0,0(z, τ)) = 1/2 + τ/2 +Λ = Λ

Z(θ0,1/2(z, τ)) = τ/2 +Λ = Λ

Z(θ1/2,0(z, τ)) = 1/2 +Λ = Λ
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Lemma 6.3.3. (1)

θa,b(z, τ) = e2πia(b−b′)θa′,b′(z, τ) for a′ − a, b′ − b ∈ Z

(2)

θa,b(z, τ) = e2πiaθa′,b′(z, τ)
(3)

θa,b(z, τ) = e−2πibe−τ−2zθa′,b′(z, τ)
(4)

θa,b(z, τ) = eπi(a2τ+2(z+b)a)Θ(z + b + aτ)

Lemma 6.3.4. There is a bilinear pairing of spaces of theta function Th(k,Λτ)a,b
Th(k,Λ)ab × Th(k′,Λ)a′b′ → Th(k + k′,Λ)(a+a′)(b+b′)

Where Th(k,Λ)ab ∶= {f(τ) ∶ em+nτ=e−2πi(nb−ma)}
And we have the transition formula applies on the space nicely as well.

6.4. Hesse cubic embedding. There is an embedding E = C/Λ → (Θ0, . . . ,Θk−1)(k ≥ 3).
In the case where k = 3, we have that it lies on the Hesse cubic: x3 + y3 + z3 + γxyz = 0.

This descent from the lifted map from C→ C3 .
Observation, there is a group action on C3 of order 27, which is the Heisenberg group of

order 27.

G = {(
1 0 0
0 ζ3 0

0 0 ζ23
), ( 0 1 0

0 0 1
1 0 0

)}
It has a center which is Z(G = (I, ζ3I, ζ2

3I)), and the projective group G/Z(G) ≃ Z/3Z⊕
Z/3Z of order 9, and it acts on the Hesse cubic on P2(C).

6.5. Theta null=theta function. Set z = 0, for Riemann theta function Θ(0, τ) = ∑n∈Z qn
2/2un =

1 + 2(∑∞
n=1 q

n2)

Theorem 6.5.1. (Theta product formula)

Θ0(z, τ) = Q(q)
∞

∏
m=1

(1 + q 2m−1
2 e2πiz)(1 + q 2m−1

2 e−2πiz)

for an analytic function Q(q) defined in ∣q∣ < 1 with Q(0) = 1.

Proof. Take P (z, q) =∏∞
m=1(1 + q

2m−1
2 u)(1 + q 2m−1

2 u−1).
We want to show the zeros are 1+τ

2 +Λ. Note that the zeros are at 2(z∗) = (1+2m)τ+(1+2n).
Now we exponentiate we get ,

eπi2z∗ = (−1)eπiτ(2m−1)

Now, we see that if m ≥ 1, we recover all zeros of first factor, if m ≤ 0, we recover the zeros
in the second factor.

Therefore, we can conclude that Θ0(z,τ)
P (z,q) is a function that has no zeros, and we want it is

a constant Q(q).
Periodic with period 1 in z variable, thus claim that we can show that it is bounded in

the strip and then we can compute by Liouville theorem.
�
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Remark 6.5.2. Our goal is to determine Q(q). Actually, we know that Q(q) =
∞

∏
n=1

(1 − qn),
this is almost a modular form.

The modular form is η(q) = q1/24
∞

∏
n=1

(1− qn) which is a 1/2 modular form with a multiplier

system (12
n ) which is Kronecker symbol and is periodic of modulo 24.

6.6. Jacobi triple product formula. Λ = Z[τ,1] as usual, q = eπiτ , u = e2πiz

Theorem 6.6.1. For ∣q∣ < 1, u ∈ C ∖ {0}, there is a formula
∞

∏
n=1

(1 − qnu)
∞

∏
n=1

(1 − qn)
∞

∏
n=0

(1 − qn/u) =
∞

∑
k=0

(−1)k(uk − u−(k+1))q
k(k+1)

2

And further more we have the right side
∞

∑
k=0

(−1)k(uk − u−(k+1))q
k(k+1)

2 =
∞

∑
−∞

(−4

n
)q n

2−1
2 u

n−1
2

And moreover,
∞

∏
n=1

(1 + q n−12 u)(1 + q n−12 /u)(1 + qn) =
∞

∑
n=−∞

qn
2/2un

as in the last theorem.

Corollary 6.6.2. Weierstrass σ function for Λ = Z[ω1, ω2], and τ = ω1

ω2
.

σ(z,Λ) = ω2

2πi
eη2z

2/(2ω2)(∑k=
den

)

(Missing, need Angus.)

Proof. Plug into the Fourier expansion. �

Aside,

Theorem 6.6.3. (Finite Jacobi triple product identity.)

(1 − u)
N

∏
n=1

(1 − qnu)∞(1 − qn/u) =
N

∑
k=−N

(−1)k(uk)q
k(k−1)

2

k+N

∏
n=1

(1 − q2(N+1)−n

1 − qn
)

6.7. Jacobi’s Theorem+Corollary.

Definition 6.7.1. A theta null, or theta constant is θ(0, τ) where θ(z, τ) is the theta func-
tion.

Now we view it as a function of τ . We will show Θ00(0, τ) behaves like a weight 1/2
modular form.

Now we define θ(τ) ∶= θ00(0, τ).
We then have

θ(aτ + b
cτ + d

) = A(cz + d)1/2θ(z)

for any matrix in Γ0(4).
Now we see that all the four basic theta function except θ1/2,1/2(0, τ) is modular form with

weight 1/2, and θ′
1/2,1/2

(0, τ) is also a modular form of weight 3/2.
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Theorem 6.7.2.
(−π)θ00(0, τ)θ0,1/2(0, τ)θ1/2,0(0, τ) = θ′1/2,1/2(0, τ)

Remark 6.7.3. In the proof show that theta null equation satisfies

θ′′′
1/2,1/2

(0, τ)
θ′

1/2,1/2
(0, τ)

−
θ′′′

0,1/2
(0, τ)

θ′
0,1/2

(0, τ)
=
θ′′′

1/2,0
(0, τ)

θ′
1/2,0

(0, τ)
+
θ′′′0,0(0, τ)
θ′0,0(0, τ)

Theorem 6.7.4. Other Jacobi theta function have the product that

θ0,1/2(z, τ) = Q(q)
∞

∏
m=1

(1 − q 2m−1
2 e2πiz)(1 + q 2m−1

2 e−2πiz)

θ1/2,0(z, τ) = Q(q)q1/8(eπiz + e−πiz)
∞

∏
m=1

(1 + qme2πiτ)(1 + qme−2πiτ)

θ1/2,1/2(z, τ) = Q(q)q1/8(eπiz − e−πiz)
∞

∏
m=1

(1 − qme2πiτ)(1 − qme−2πiτ)

Corollary 6.7.5. We then have the following formula:

θ0,0(0, τ) = Q(q)
∞

∏
m=1

(1 + q 2m−1
2 )2

θ0,1/2(0, τ) = Q(q)
∞

∏
m=1

(1 − q 2m−1
2 )2

θ1/2,0(0, τ) = Q(q)2q1/8
∞

∏
m=1

(1 + qm)2

θ1/2,1/2(0, τ) ≡ 0

θ′1/2,1/2(0, τ) = −Q(q)2πq1/8
∞

∏
m=1

(1 − qm)2

6.8. Modularity of Theta null products. Let θ(τ) = θ0,0(0, τ), Let θk(τ) = θ0,0(0, τ)k.

Theorem 6.8.1.
θ(( 1 2

0 1 )τ) ∶= θk(τ + 2) = θk(τ)

θk(( 0 −1
1 0 )τ) ∶= θk(−

1

τ
) = (−iτ)k/2θk(τ)

This states that θk is weight k/2 modular forms on Γ(2) =< −I, ( 1 2
0 1 ), ( 1 0

2 1 )>

Proof. It suffices to prove for k = 1 since θk functional equation follows by exponentiation.
Note that (1) is clear.

(2) is proved using the Poisson summation formula applied to lattice Λ = Z, dim(Λ) = 1,
τ = iy where y > 0, fy(x) = eπix2(iy) = e−πx2y.

Consider the test function f(x) = eπix2τ = e−πx2y ∈ S(R).
Use the poisson, Λ = Z, Λ∗ = Z, det(Λ) = 1.

θ00(0, iy) = ∑n∈Z e−πn
2y = ∑n∈Z fy(n) = ∑m∈Z f̂y(m) = ∑m∈Z ∫

∞

−∞
f(x)e2πixmdx = ∑m∈Z ∫ e−πx

2ye2πixmdx =
∑m∈Z

1
√
y ∫

∞

−∞
e
−π(x̃− im√

y
)2

dx̃eπm
2/y = ∑m∈Z

1
√
ye

−πm2/y = 1
√
yθ00(0, i

y), thus done with a small gap.

�
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Note that we now see that θ(0, τ transform as a weight 1/2 modular form on Γ(2) with
multiplier system. (Actually it lives a conguence group, the theta group Γθ)

Jacobi theta function are entire function in z variable where the modular parameter q =
e2πiτ has ∣q∣ < 1, holomorphic in both (z, q) in this domain.

They have nice infinite product expansions and we know the zeros. Assuming lattice
contains 1, we get infinite products in q variables.

Also Jacobi theta function has rapidly convergent expansion in the q variables. In general
for fixed z, f(q, τ) = ∑anqn convergent for q < 1, but jacobi theta has Lacuna expansion
which means a large block of an to be 0.

Jacobi theta functions satisfies important diff eq, Heat equation/KdV-equation.

7. Euler identity

Theorem 7.0.2. Euler’s identity.
∞

∏
m=1

(1 − qm) =∑
r∈Z

(−1)rqr(3r+1)/2

Remark 7.0.3. The first part is related to the theta function and the right is related to some
triangular numbers.

The right side encodes a kind of fourier expansion of Dedekind η function, taking q = e2πiτ

η(τ) ∶= q1/24
∞

∏
m=1

(1 − qm) = q1/24∑
r∈Z

(−1)rqr(3r+1)/2

where r(3r + 1)/2 is the pentagonal number.

Proof. Expand θ1/6,1/2(0,3τ) two ways.
1.

θ1/6,1/2(0,3τ) = ∑
m∈Z

eπi(m+1/6)2(3τ)+0+2(m+1/6)1/2 = eπi/6eπiτ/2 ∑
m∈Z

(−1)mq(m2+3m)/2

2.

θ1/6,1/2(0,3τ) = eπi/6eπiτ/2θ0,0(1/2+τ/2,3τ) = eπi/6eπiτ/2
∞

∏
m=1

(1−e6πimτ)
∞

∏
m=1

(1−e(6m+1)πiτ)(1−e(6m+2)πimτ)

�

8. Importance of Dedekind eta function.

-Theta function forms a family where τ varies. They form a real analytic family in τ
parameter, we have seen product formulas for jacobi theta which require a scaling factor
Q(q) outside the infinite product which is essentially Dedekind eta.

-Show up in the transformation laws for theta function under modular transformation.
-Show up in real analytic modular forms, the real analytic eisenstein series of weight zero.

E(τ, s) = ∑
(m,n)∈Z2∖{(0,0)}

ys

∣mτ + n∣2s

Here E(τ, s) is real analytic in τ ∈ H, complex analytic in s variable and is converge for
R(s) > 1.

Moreover,
∆E(z, s) = s(s − 1)E(z, s)
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where ∆ = y2( ∂2

∂x2 +
∂2

∂y2 ), the hyperbolic laplacian.
Fact:

1. For τ ∈ H, E(τ, s) analytically continuous to s ∈ C to a meromorphic function, with simple
poles at s = 1,0, residues −π/3
2. Functional equation. Ê(τ, s) = Ê(τ,1 − s), where Ê(τ, s) ∶= π−sΓE(τ, s)
3. Modular form with weight zero for PSL(2,Z)
4, Moderate growth at the cusp

- Fourier series expansion at cusp.

E(τ, s) = CT () +∑
n≠0

an(s)Wk,s−1/2(4π(n)y)e2πnx

Where Wk,µ is the Whittaker function (confluent hypergeometric function.).
And CT satisfies the funcitonal equation and almost RH.

- η(τ) = q1/24∏∞
n=1(1 − qn) = q1/24Q(q).

Proposition 8.0.4. (Kronecker’s first limit formula)
Laurent expansion at s = 1 of E(τ, s)

E(τ, s) = π

s − 1
+ 2π(γ − log(2) − log(√y∣η(τ)∣2))

8.1. Dedekind eta function.

Definition 8.1.1. η(τ) = q1/24∏∞
n=1(1 − qn) = q1/24Q(q).

Theorem 8.1.2. Dedekind eta function is a weight 1
2 modular form on Γ(1) with multiplier

system:
(1)

η(τ + 1) = e πi12η(τ)
(2)

η(−1/τ) =
√
−iτη(τ)

Remark 8.1.3. Dedekind actually show that η(aτ+bcτ+d) = ε(a, b, c, d)(cτ + d)1/2η(τ).
Where, we have ε(a, b, c, d) = e2π a+d

12c
−s(d,c)−1/4 for c = 1, where s(d, c) is the Dedekind sum,

i.e. s(h, k) ∶= ∑k−1
n=1

n
kB1(hnk ).

Proposition 8.1.4. Jacobi theta nulls expression in terms of eta function.

θ0,0(τ) =
η(τ)5

η(τ/2)2η(2τ)2

θ0,1/2(τ) = e
2πi
24

η(τ)5

η((τ + 1)/2)2η(2τ)2

θ1/2,0(τ) = 2
η2(2τ)
η(τ)

= 2e
2πi
24

η(τ)5

η((τ + 1)/2)2η(2τ)2

θ0,0(τ) = −2π(η(τ)3)
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8.2. Transformation laws for theta function Th(k,Γτ)a,b with characters. Given Γτ
as before. Now definition of theta function with characteristics applies for a fixed τ . For τ ,
Th(k,Γτ)a,b has a nice basis of function, which naturally extend to all τ ∈ H, and we get
such a continuous extension on τ for all functions in Th(k,Λτ)a,b.

Theorem 8.2.1. Let f(z, τ) ∈ Th(k,Γτ)a,b be level k thetafunction with characteristics.

Consider τ ′ =Mτ = ατ+β
γτ+δ . Then

g(z, τ) = eπiγ(γτ+δ)z2f(z(γτ + δ), τ) ∈ Th(k,Γτ ′)a′,b′
where the new characteristics are

a′′ = δa − γb + kγδ
2

mod 1

b′′ = −βa + αb − kαβ
2

mod 1

Dolgachev has a different but equivalent version in his note, which is not written down
here.

Proof. Claim 1:(Dilations)
If f(z, τ) ∈ Th(eτ ,Γτ), then for any t ∈ C∗, φ(z, τ) = f( zt , τ) ∈ Th(eλ′ , tΛτ) where e′λ(z) =

eλ′
t
(z/t)

φ(z + tτ, tΛτ) = f(
z + tλ
t

,Λτ) = f(z/t + λ,Λτ) = eλ(z/t)φ(z, tΛτ) = eλ′/t(z/t)φ(τ, tΛτ)
.

Claim 2:
For M and τ ′ as in the question, and t = 1

γτ+δ . Then have tΛτ = Λτ ′

Direct calculation shows it.
Claim 3:
Apply t and λ′ ∈ Λ′

τ .
Claim 1 gives f(z(γτ + δ), τ) ∈ Th(eλ′ , tΛτ) = Th(eλ′(γτ+δ),Λτ ′).
Compute for f ∈ Th(e,Λτ)a,b.
... Check photo for note.

�

Application:

Theorem 8.2.2. Action τ → τ + 1.

(1)

θ1/2,1/2(z, τ + 1) = −eπi/4θ1/2,1/2(z, τ)
(2)

θ0,0(z, τ + 1) = θ0,1/2(z, τ)
(3)

θ0,1/2(z, τ + 1) = θ0,0(z, τ)
(4)

θ1/2,0(z, τ + 1) = e−πi/4θ1/2,0(z, τ)
28



Theorem 8.2.3.

(1)

e−iπz2/τθ1/2,1/2(z/τ,−1/τ) = (
√

iτ)3θ1/2,1/2(z, τ)
(2)

e−iπz2/τθ0,0(z/τ,−1/τ) =
√

iτθ0,1/2(z, τ)
(3)

e−iπz2/τθ0,1/2(z/τ,−1/τ) =
√

iτθ0,0(z, τ)
(4)

e−iπz2/τθ1/2,0(z/τ,−1/τ) =
√

iτθ1/2,0(z, τ)
Proof. Step 1: Transformation law
Step 2: Match the correct a′ and b′

Step 3: Set z = 0 and use information of theta nulls. �

Then we can derive a corollary.

Corollary 8.2.4. Let f(τ) = θ′
1/2,1/2

(0, τ), then for any matrix M in SL(2,Z)

f(ατ + β
γτ + δ

) = φ(M)(γτ + δ)f(τ)

where φ(M)8 = 1 is some 8-th root of unity.
In q-series, θ′

1/2,1/2
(0, τ) = −2πη(τ)3

Proof. Suffice to check for the map τ ↦ τ + 1 and τ ↦ −1/τ , apply the first two theorem and
do derivative and we are done. �

Remark 8.2.5. Theta transformation law works best for the matrix with αβ ≡ 2 mod 0,
γδ ≡ 0 mod 2, this forms a subgroup of Γ(1), which is Γθ = {( a bc d )= ( 1 0

0 1 ), ( 0 1
1 0 ) mod 2}

Corollary 8.2.6. Assume ( a bc d )∈ Γθ theta group. Then we have that

θ0,0(z(γτ + δ)−1, (ατ + β)(γτ + δ)−1) ˜φ(M)(γτ + δ)1/2eπiγz2/(γτ+δ)

Proof. Similar to the last corollary. �

9. Modular forms form Jacobi form

Theorem 9.0.7. (DiDimensionvision point Laurent series)
Let Φ(z, τ) be a meromorphic function of z, (doubly) periodic in z for the lattice Λτ =

Z[1, τ] of finite index.
Φ( z

γτ+δ ,
ατ+β
γτ+δ ) = (γτ + δ)mΦ(z, τ) for ( α β

γ δ )∈ Γ ⊂ Γ(1) (Transform like a modular form of

weight m, but can have poles.)
Now at z0 = xτ + y, let Φ(z, τ) has a Laurent expansion Φ(z, τ) = ∑∞

n=−k gn(τ)(z − z0)m
Then we get modularity of gn for some M ∈ SL(Z) such that

(∗)(x′, y′) = (x, y)M ≡ (x, y) mod Z2

Here (∗) holds for some congruence subgroup of Γ with (x, y) ∈ Q2.

Proof. By Cauchy theorem.gn(ατ+βγτ+δ ) =
(γτ+δ)m

2πi 2πi(γτ +δ)ng(τ). Details see Dolgachev’s note.
�
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9.1. Weak modularity.

Definition 9.1.1. A function f(τ) is call weakly modular of weight k on a group Γ ⊂
PSL(2,Z).

If (f ∣kM)(τ) = f(τ) for all M ∈ Γ where (f ∣kM) ∶= (γτ +δ)−kf(ατ+βγτ+δ ) = j(M,τ)k/2f(ατ+βγτ+δ ).
It is modular if it is meromorphic at cusp and holomorphic in H.

Proposition 9.1.2. The theta constants θ4
0,0(τ), θ4

1/2,0
(τ), θ4

0,1/2
(τ), θ4

1/2,1/2
(τ) are weak

modular form of weight 2 on Γ(2)

Proof. Can extract this from the propositions proved before which are the theta identities.
then calculate using the modular transform of them over generators of Γ(2). �

Three examples:
Γ, Γtheta, Γ(2) as before. Consider: (holomorphic) modular form (like differential form),

modular function (weight 0).

Remark 9.1.3. -Generally infinite dual vector space on C
-Often one puts on a growth condition at cusp.

10. topics

Goal: Classify generators of the algebra of holomorphic modular form. M(Γ) for Γ =
PSL(2,Z) and dimension M2k(Γ) for k ≥ 0.(Serre, course in Arithmetic.)

Prelimary remarks on cusps and holomorphic function at cusps.

10.1. cusps. Treat group Γ ⊆ PSL(2,Z) of finite index.

Definition 10.1.1. Extend upper half plane H∗ = H ∪Q ∪ {∞} = H ∪ P1(Q), where P1(Q)
are the possible cusps.

Proposition 10.1.2. Let Γ ⊆ PSL(2,Z) be finite index. Then Gamma acts on P1(Q) by
linear fractional transformation.

(1) SL(2,Z) acts transitively on P1(Q) and the fixed transformation are M = ±I.
(2) Any finite index Γ has finitely many orbits on P1(Q) of number ≤ [Γ(1) ∶ Γ]

(Orbits are called cusps and compactify H/Γ ∪ {cusp}).

Proof. Check the action on P1(Q). For this find M ∈ SL(2,Z) that sends r to ∞, then the
action is acing transitively.

Now write given Γ. Γ(1) = ∪Γai, each coset gives an orbit Γai, each gives [Γ(1) ∶ Γ] orbits,
apriori could be fewer of some. �

Proposition 10.1.3. Given Γ ⊆ Γ(1) finite index. For each x ∈ P1(Q) in a cusp, if there is
a subgroup Γx of Γ that stablizes the point x ∈ {cusp}, Γx = {M ∶ Mx = x}, there is g that

takes g(∞) = 0, now we see that g−1Γxg = {( 1 w
0 1 )k}, where w is called the width of the cusp

and 1 ≤ w ≤ [Γ(1) ∶ Γ].

Remark 10.1.4. Such Γx are called parabolic subgroup of Γ if under conjugate it is ( 1 w
0 1 ).

The FLT has only one fixed point ∞.
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Remark 10.1.5. Classify ( a bc d )∈ SL(2,R) as

elliptic↔ Two complex fixed point↔ ∣Tr∣ < 2

parabolic↔ One real fixed point↔ ∣Tr∣ = 2

hyperbolic↔ two real fixed point↔ ∣Tr∣ > 2

Proof. Check Shimura ”Intro to arith theory of auto forms” Page 7. �

Example 10.1.6. Γ(1) has one cusp and with width one.

Example 10.1.7. Γ(2) has 3 cusps, 0, 1, ∞.
[Γ(1) ∶ Γ(2)] = 6, and it is a normal subgroup of Γ(1) with Γ(1)/Γ(2) ≃ PSL(Z/2Z).
Note, all cusps of a normal subgroup of Γ(1) has same width.

Example 10.1.8. (Theta group Γθ).
Here Γθ has two cusps 1 and ∞, with width 1 and 2, respectively.

Proposition 10.1.9.

a. Γ(2) ⊆ Γθ ⊆ Γ(1).
b. Γθ is not a normal subgroup of Γ(1).
c. Γθ =< ( 0 1

1 0 ), ( 1 2
0 1 )>

d. Γθ is conjugate inside Γ(1) to Γ0(2) and also to Γ0(2).

Proof. take g = ( 1 −1
1 0 ) for b. �

10.2. Modular form at cusp. Want a notion of ”holomorphic” at cusps. Can compactify
open Riemann orbifold H/Γ by gluing cusps.

To get a holomorphic structure, have to correct the surface at elliptic points, and correct
at cusps with exponential change of vanishing, take q = e2πiτ/w, where w is the width of the
cusp.

Definition 10.2.1. If ( 1 w
0 1 )∈ Γ. Have fourier expansion of function F (τ) in H/Γ at the cusp

∞.
F (τ) = ∑∞

−∞ anq
n/w where q = e2πiτ . Then F (τ) is meromorphic at cusp if an = 0 for all

n ≤ −N0, holomorphic if an = 0 for n ≤ −1, cuspidal if an = 0 for n ≤ 0.

Definition 10.2.2. A weak modular form is holomorphic if holomorphic at all cusps and
also inside H.

A weak modular form is meromorphic if meromorphic at all cusps and also inside H.

Definition 10.2.3. A holomorphic modular form f(τ) is cusp form if it is cuspidal at all
cusps of Γ (This condition make the corresponding L-function has Euler product.)

10.3. Algebra of Modular form. Γ ⊆ PSL(2,Z) finite index.

Definition 10.3.1. M2k(Γ)= holomorphic modular form with weight 2k.
S2k(Γ) ∶=M0

2k = cusp form with weight 2k of Γ.

Remark 10.3.2. Weight gives a grading on modular forms.
Mk(Γ)ML(Γ) ⊆Mk+l(Γ) Sk(Γ)SL(Γ) ⊆ Sk+l(Γ)
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Theorem 10.3.3. so M(Γ) = ⊕M2k(Γ) is a graded algebra over C.
M0(Γ) = holomorphic modular form of weight 0 = C ⋅ 1
and cusp form
S(Γ)⊕ S2k(Γ) is an ideal of M(Γ)

10.4. Finite dimensionality of space M2k(Γ). Goal:
1.M(Γ) is a ring over C and is generated by holomorphic Eisenstein series G4(τ) and

G6(τ).

2. dim(M2k(Γ(1))) is finite and = {[k/6] k ≡ 1 mod 6

1 + [k/6] else

Minimal cusp form has weight 12 and c∆(τ) = q∏(1 − qn)24 = η(τ)24.
Need to count order of zero and pole of holomorphic modular function f(τ).
Convention: at point τ ∈ H, ordτ(f(τ)) ≡ i, ρ,∞ mod Γ.

Definition 10.4.1. Order at τ = i∞. Set ν∞(f(τ)) = ordq=0(f(q)).
Then we have the order f(τ) at an elliptic fixed point τ of order j, counted with weight

mτ = 1/j Then νρ(f(τ)) = 1/3 (order of zero or pole of f(τ)), νi(f(τ)) = 1/2 (order of zero
or pole of f(τ))

(ρ = e2πi/3)

Proposition 10.4.2. Let f(τ) be meromorphic modular form with weight 2k, Then

∑
regular τ

ντ(f) + ν∞(f) + νi(f)
2

+
νρ(f)

3
= k/3.

(

∑
τ∈H∗

ντ(f)
mτ

= k
6

in the second class)
ντ(f) = order of zero or pole at z = τ .
Check: GTM 7: Serre, Course of Authentic, Chapter 3, P85.

Proof. Integrate 1
2πi

f ′
f (τ) over a path on the modular surface, which basically a closed path

along the side but avoiding the cusps.
Suppose f has no zero or pole on the vertical line R(τ) = ±1/2, ∣τ ∣ > 1.
Method 1: Integration = ∑all zeros and poles inside contoure with multiplicity νp(f), which excludes

the zeros and poles excluding ∞, τ , ρ.
Method 2:
integration of top = −ν∞(f) by change variable to q = e2πiτ and the minus sign due to the

orientation.
integration of left and integration of right cancels.
(Side note: Holomorphic(conformal) functions on H are contracting with respect to hyper-

bolic area. Moreover, either they are strictly contracting or they are hyperbolic isometries.)
integration of bottom left is −1

6 νρ(f)
integration of bottom right is −1

6 νρ′(f) =
−1
6 νρ(f) since it is modular form.

Integration of middle cusp i is −1
2νi(f)

Modular form of weight k: Arc of bot left and arc of bot right are related under the action
S ∶ τ ↦ 1/ − τ , so they cancelled out except weight 2k of modular form has a contribution.
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df(sτ)
f(sτ) =

df(τ)
f(τ) + 2k dττ .

Thus integration on the bottom arc is k
6 .

Now, adding all the parts up, we have the proof of the proposition. �

Proposition 10.4.3. Dimension of holomorphic form.

(1) M2k(Γ(1)) = 0 if k ≤ 0 and if k = 1.
(2) dim(M2k(Γ(1))) = 1 for k = 0,2,3,4,5 with basis 1,G4,G6,G2

4,G4G5 respectively.
(3) (Weight 12 form ∆ is a cusp form). ∆ = g3

x − 27g2
3 = (60G4)3 − 27(140G6)2, and

multiplication by ∆ give an isomorphism M2k−12(Γ(1)) = S2k(Γ(1)) = M0
2k(Γ(1)) =

{0 k ≤ 5

1 k = 6.

Proof. Use the last proposition and basic number theory, we have 1.
Moreover,

Weight 0 case, it can only be constant function.
Weight 4 case, must have zero at ρ.
Weight 6 case, must have zero at i.
Weight 8 case, must have double zero at ρ.
Weight 10 case, must have zero at i and zero at ρ. Weight 12 case, there is ∆, which is a
linear combination of G4 and G6, that is a cusp form, Note that multiplicaiton of the cusp
form increase the multiplicity of the zero at infinity by 1, and thus it is an isomorphism.

�

Corollary 10.4.4. dim(M2k(Γ(1))) is finite and = {[k/6] k ≡ 1 mod 6

1 + [k/6] else

Proof. By induction. �

Proposition 10.4.5. The space Mk has for basis the family of monomials Gα
4G

β
6 and 2α +

3β = k if α and β are nonnegative.
And we have that M(Γ(1)) ≃ C[x, y], x = G4(τ), y = G6(τ).

11. Delta function

∆(τ) as before.
∆(τ) = (2π)12q(∑∞

h=1 τ(n)qn) = (2π)12q(1 − 24q + 252q2 + . . .) = (2π)12q∏∞
r=1(1 − qr)24.

Ramanujan conjecture that (1916):

(1) Multiplicity
(2) Formula for prime powers in terms of τ(p)

These are established soon after Mordell related to Hecke correspondence symme-
try.

(3) Ramanujan conjecture ∣τ(p)∣ < 2p11/2, parallel to the function field RH.

There is a Fourier coefficient bound for the cusp form. ∣a(n)∣ ≤≤ nK (Hecke).
Note that 3 is proved by Deligne from RH on the AV on function field.

11.1. Modular invariant j(τ).

j(τ) = 1728J(τ) = 1728
g32(τ)

∆(τ) .
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Have J(τ) to be weight 0 meromorphic modular function.
Moreover,
j(τ) = ∑∞

n=−1 q
n has a simple pole at τ =∞ and is 1

q + 744 + 196884q + 21493760q2.

Theorem 11.1.1. ● The function j is a meromorphic modular form at 0 on H/Γ(1).
● It is holomorphic in H and has a single pole at the cusp i∞.
● It defines a bijection H/Γ(1) ≃ C.

Proof. (1) Note that G4 is non-cusp form, ∆ is cusp form, thus done.
(3) Check, know that j(τ) has a simple pole at infinity, and has exactly one zero by the

valuation argument. Then we can see that j(τ) take any value in C exactly once. �

Proposition 11.1.2. (”j(τ) generates all the meromorphic modular form of H∗/Γ(1)”)
TFAE:

(1) f(τ) is meromorphic function of weight 0 for Γ(1) .
(2) f(τ) is the quotient of two holomorphic modular forms of equal weight.
(3) f(τ) is a rational function of j(τ)

Proof. Ignored. �

11.2. Numerology of j(τ). 1
q + 744 + 196884q + 21493760q2 + . . ..

And we have that j(τ) has the terms c(1) = 196884 = 23 ⋅ 33 ⋅ 1823 = 196883 + 1, c(2) =
1 + 196883 + 21296876 coefficients grows in a rate exp(c

√
n).

D.H.Lehmer showed:

● n ≡ 0( mod 2a) then c(n) ≡ 0 mod 23a+8

● n ≡ 0( mod 3a) then c(n) ≡ 0 mod 32a+3

● n ≡ 0( mod 5a) then c(n) ≡ 0 mod 5a+1

● n ≡ 0( mod 7a) then c(n) ≡ 0 mod 7a

● n ≡ 0( mod 11a) then c(n) ≡ 0 mod 11a

John Mckay observed that coincidence with the character table of the monstrous group
M = 246 ⋅ 320 ⋅ 59 ⋅ 76 ⋅ 112 ⋅ 133 ⋅ 17 ⋅ 19 ⋅ 23 ⋅ 29 ⋅ 31 ⋅ 41 ⋅ 47 ⋅ 59 ⋅ 71.

Conjecture: c(n) is the degree pf the irreducible representation of monster group.
Numerology that Jeff has: 196883 − 1 = 2 ⋅ 74 ⋅ 41, 21296876 − 1 = 5⋅29 ⋅ 47.

11.3. Coefficients at holomorphic modular form. f(q) = ∑n=0 anq
n a weight 2k holo-

morphic form.

Proposition 11.3.1. If f(τ) = G2k(τ) is Eisenstein series of 2k, then the function coeffi-
cients an has that an = O(n2k−1). Have An2k−1 ≤ ∣an∣ ≤ Bn2k−1.

Proof. Note that an = ±Ak(σ2k−1(n)). σs(n) = ∑d∣n ds.
Then we know that c ⋅ n2k−1 ≥ σ(n) ≥ n2k−1, and c ≤ ∑m ∈ N 1

m2k−1 ≤ φ(2k − 1) �

Theorem 11.3.2. (Hecke).
If f(τ) is a holomorphic cusp form of weight 2k on Γ(1), then we have that an = O(nk).

Proof. Here a0 = 0 since cusp. f(τ) = O(q) = O(e−2πiτ). decreases
Consider nonholomorphic function ψ(τ) = ∣f(τ)∣yk. This function is invariant under Γ(1),

and thus is bounded on H ∪ {cusp}, call M the bound.
We then integrate by Cauchy an = 1

2πi ∫ f(q)q−n
dq
q . Then ∣an∣ ≤ e−2πnyMy−K . Pick y = 1/n.

Done. �
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