
NOTES ON TATE’S THEOREM

YIWANG CHEN

Abstract. This is the note for the talk about the Tate’s theorem for the seminar on the
local class field theory seminar.
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1. Background

Definition 1.1. Define the induced module and coinduced module for H ⊆ G and denote
them as:

IndGH(X) ∶= Z[G]⊗Z[H] X

CoIndGH(X) = HomZ[H](Z[G],X)
Define the G-induced module and G-coinduced module and denote them as:

IndG(X) ∶= Z[G]⊗X

CoIndG(X) = Hom(Z[G],X)
Also, we have a proposition and a corollary for the induced and coinduced module.

Proposition 1.2. Suppose that H is a subgroup of finite index in G and B is a H-module.
Then we have a canonical isomorphism of G-modules:

χ ∶ CoIndGH(B) ≃ IndGH(B)
ϕ↦ ∑

g∈H/G

g−1 ⊗ ϕ(g)

where for each g ∈H/G, the element g ∈ G is an arbitrary choice of representative of g.

Corollary 1.3. For G-modules A we have the exact sequence

0→ A
ιÐ→ CoIndG(A)→ A1 → 0

0→ A−1 → IndG(A) πÐ→ A→ 0

where A1 ≃ JG ⊗A ≃ HomZ(IG,A), A−1 ≃ IG ⊗Z A
1



Moreover, we also knew from the previous talk that for Tate Cohomology,

H−2(G,Z) = Gab

H−1(G,A) = A[NG]/IGA
H0(G,A) = AG/NGA

H1(G,A) = {Cross homomorphism}/{x ∶ G→ A∣x(σ) = σa − a}
The object of this talk:

Theorem 1.4 (Tate’s theorem).
For finite group G, and α ∈ H2(G,A). Suppose that for every p, we have that H1(Gp,A)
trivial and H2(Gp,A) is cyclic of order ∣Gp∣ generated by the restriction of α.

Then the map:
H i(H,Z)→H i+2(H,A)

β ↦ Res(α) ∪ β
are isomorphism for all i ∈ Z and subgroup H of G.

Now, note that given a class formation A, i.e. a G-module such that H1(G,A) = 0 for all
H ⊆ G, if further we consider G = Gal(L/K), then after checking necessary condition, from
the Tate’s theorem, we will get

Gab
L∣K =H−2(G,Z) ≃H0(G,A) ≃ AK/NL∣KAL

.

2. Cohomological Triviality

Before we talk, we need a theorem about cohomological triviality.

Definition 2.1. A G-module A is said to be cohomological trivial if H i(H,A) = 0, ∀H ⊆ G,
∀i ∈ Z.

Example 2.2. (1) Induced G-modules are cohomologically trivial.
(2) Projective G-modules are cohomologically trivial.

Proof: since if P is projective, then we have that H i(H,P ) ↪ H i(P ) ⊕H i(Q) ≃
H i(P ⊕Q).

2.1. Tate cohomology of Cyclic group.

Theorem 2.3. Given G to be the cyclic group and A be a G-module, then we have Hq(G,A) ≃
Hq+2(G,A).

Note that in this case we actually have Z[G] = ⊕nZσi, NG = 1+σ+. . .+σn−1, IG = Z[G](σ−1)
Proof. We just need to show that H−1(G,A) ≃ H1(G,A), since the other relations can be
done by dimension shifting.

Now, consider x ∈ Z1, then we have that

x(σk) = σx(σk−1) + x(σ) = . . . =
k−1

∑
i=1

σix(σ)

and
x(1) = 0.
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but then since

N(G)(x(σ)) =
n−1

∑
i=1

σix(σ) = x(σn) = x(1) = 0.

Therefore, x(σ) ∈ A[NG].
Therefore, we have that x↦ x(σ) is an isomorphism on the cocycle.
Moreover, given any x ∈ B1, we have that

x ∈ B1 ⇔ x(σk) = σka − a
⇔ x(σ) = σa − a
⇔ x(σ) ∈ IGA = B−1

Therefore, we have that for cyclic group G, the desired properties holds, and furthermore,

H2q ≃ (G,A) ≃H0(G,A)
H2n+1(G,A) ≃H1(G,A)

�

2.2. Cohomological triviality. Here I basically follows Sharifi’s note on Group cohomol-
ogy, on the part about cohomological triviality and we denote the G-invariant of A to be
AG, and the G-coinvariant of A to be AG ≃ A/IGA
Lemma 2.4. Suppose that G is a p-group and A is a G-module of exponent dividing p. Then
A = 0 if and only if either AG = 0 or AG = 0.

Proof. If AG = 0, and let a ∈ A. Then B ∶=< a >⊆ A is finite, and BG = 0. Thus the G-orbits
in B are either 0 or have order a multiple of p. Since B has p-power order, the order has to
be 1, so B = 0. Since the choice of a was arbitrary, A = 0. On the other hand, if AG = 0,
then X = HomZ(A,Fp) satisfies pX = 0 and XG = HomZ[G](AG,Fp) = 0 and thus X = 0. �

Lemma 2.5. Suppose that G is a p-group and that A is a G-module of exponent dividing p.
If H−2(G,A) = 0, then A is free as an Fp[G]-module.

Proof. Lift an Fp-basis of AG to a subset Σ of A.
For B ∶=< Σ >⊆ A generated by Σ, the quotient A/B has trivial G-invariant group, hence is

trivial by the above lemma. Thus we have that < Σ > generates A as an Fp[G]-module. Now,
if we let F be the free Fp[G]-module generated by Σ, we then have a canonical surjection
π ∶ F → A, and we let R be the kernel. Since we have that H−2(G,A) = 0 thus we have the
exact sequence

0→ RG → FG
π̂Ð→ AG → 0

By definition, we have that π̂ is an isomorphism. Therefore, we have that RG = 0, thus
pR = 0 and by the above lemma R = 0, thus π is also isomorphism. �
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We can use this to prove a proposition as following.

Proposition 2.6. Suppose that G is a p-group and that A is a G-module of exponent dividing
p. The following are equivalent:

(i) A is cohomologically trivial
(ii) A is a free Fp[G]-module.

(iii) There exists i ∈ Z such that H i(G,A) = 0

Proof. (i) proves (iii) is trivial.
(ii) proves (i) is almost immediate. If we have that A is Fp free with basis I, then

A ≃ Z[G]⊗Z (⊕i∈IFp)
and thus A is an induced module, thus cohomologically trivial.

(iii) proves (ii) is also not hard. Firstly, notice that the module after dimension shifting is
going to be killed by p since A is killed by p. By dimension shifting, we have that H i(G,A) ≃
H−2(G,A2+i) = 0, but then we know by the last lemma that A2+i is also cohomologically
trivial, thus, we have that A is also cohomologically trivial. And thus by the above lemma,
we are done. �

Now we can use this to prove one of the key proposition.

Proposition 2.7. Suppose that G is a p-group and A is a G-module with no elements of
order p. The following are equivalent:

(1) A is cohomologically trivial.
(2) There exists i ∈ Z such that H i(G,A) =H i+1(G,A) = 0.
(3) A/pA is free over Fp[G].

Proof. (1) implies (2) is trivial.
(2) implies (3) is also not hard. Since A has no p-torsion,

0→ A
pÐ→ A→ A/pA→ 0

is exact. By (2) and l.e.s. in Tate cohomology, we have H i(G,A/pA) = 0. By previous
proposition, A/pA is free over Fp[G].

Now we prove (3) implies (1). By previous proposition, A/pA is cohomologically trivial,
and therefore multiplication by p is an isomorphism on each H i(H,A) for each subgroup H
of G for every i ∈ Z. However, the latter cohomology groups are annihilated by the order of
H, so must be trivial since H is a p-group. �

Now we are actually pretty close to the result we want. However, to get the final theorem
we want, there are two more preliminary lemmas.

Lemma 2.8. Suppose that G is a p-group and A is a G-module that is free as an abelian
group and cohomologically trivial. For any G-module B which is p-torsion free, we have that
HomZ(A,B) is cohomologically trivial.

Proof. Since B has no p-torsion and A is free over Z, we have the following exact sequence:

0→ HomZ(A,B) pÐ→ HomZ(A,B)→ HomZ(A,B/pB)→ 0

and moreover, HomZ(A,B) has no p-torsion and

HomZ(A/pA.B/pB) ≃ HomZ(A,B/pB) ≃ HomZ(A,B)/pHomZ(A,B)
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Since A/pA is free over Fp[G] and if we denote the index set to be I, we have

HomZ(A/pA.B/pB) ≃∏
i∈I

HomZ(Fp[G],B/pB) ≃ HomZ(Z[G],∏
i∈I

B/qB)

Therefore we see that HomZ(A,B/pB) is G-coinduced and thus is also free over Fp[G]. Now
by the previous proposition, we have that Hom(A,B) is cohomologically trivial.

�

Proposition 2.9. Let G be a finite group and A a G-module that is free as an abelian group.
Then A is cohomologically trivial if and only if A is a projective G-module.

Proof. In the example of cohomological trivial G-module, we already see that if A is a
projective G-module, then we will have that A is cohomologically trivial.

Thus here we just need to prove the converse statement is true. Note that A is free G-
module, thus from the definition we have that IndG(A) is also free. Thus we obtained an
exact sequence as the following:

0Ð→ HomZ(A,A−1)→ HomZ(A, IndGA)→ HomZ(A,A)→ 0

Then by the last proposition we have that HomZ(A,A−1) is cohomologically trivial, and
thus by the long exact sequence of the exact sequence we have that HomZ(A, IndG(A)) →
HomZ(A,A) is surjective, and thus the identity map lifts to a map from A to IndG(A) and
thus we have that A is projective as a G-module. �

Proposition 2.10. G be a finite group and ∀p, Gp Sylow subgroup of G, if A is coho-
mologically trivial as a G-module if and only if it is cohomologically trivial as Gp-module
∀p.

Proof. (proof of the proposition) Consider now A is cohomologically trivial, then ∀Gp, H be
a subgroup of G, any Sylow p-subgroup Hp of H contained in gGpg−1, a conjugation of Gp by
cohomologically trivial of Gp. Thus we have that H i(g−1Gpg,A) = 0. As g∗ is isomorphism,
thus we have that H i(Hp,A) = 0.

Therefore, we have that Res ∶ H i(H,A) → H i(Hp,A) = 0, ∀p, and thus H i(H,A) = 0 by
one of the lemma Alex proved. �

Now, we want to prove a theorem about cohomological triviality.

Theorem 2.11. G be a finite group and A be a G-module. Then the following are equivalent:

(1) A is cohomologically trivial.
(2) For each prime p, there exist i ∈ Z such that H i(Gp,A) =H i+1(Gp,A) = 0.
(3) ∃ an exact sequence of G-modules such that

0→ P1 → P0 → A→ 0

where P1 and P0 are projective.

Proof. Note that one way is trivial. Since If A is cohomologically trivial, then we have (2)
automatically.

Now suppose (2), we want to show (3). Let F be a free G-module that surjects onto
A (Since every module is isomorphic to a free quotient), and let R be the kernel. As F is
cohomologically trivial, thus by the long exact sequence we have Hj1(Gp,A) ≃ Hj(Gp,R)
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for every j ∈ Z. It follows that Hj(Gp,R) vanishes for two consecutive values of j. Since R
is Z-free as it is a subgroup of F , we have by by the above propositions that R is projective.

(3) implies (1) follows from the fact that projective modules are cohomologically trivial
and the long exact sequence.

�

3. Tate’s theorem

Now we have the desired statement in cohomological triviality, we can show the following
proposition.

Proposition 3.1. We have ψ ∶ A→ B as an G-module homomorphism and it can be viewed
as Gp-module homomorphism, denoted as ψp. Suppose ∀p, ∃j ∈ Z such that

ψ∗p ∶H i(Gp,A)→H i(Gp,B)
is surjective for i = j − 1, isomorphism for i = j, and injective for i = j + 1 Then we have

ψ∗ ∶H i(H,A)→H i(H,A)
is isomorphism ∀i ∈ Z and ∀H ⊆ G.

Proof. Consider the map ψ ⊕ τ ∶ A → B ⊕CoIndG(A) as a canonical injection, and we let C
be its cokernel.

Note that H i(B ⊕CoIndG(A)) ≃H i(B), thus we have the long exact sequence

. . .Hj(Gp,A)
ψ∗pÐ→Hj(Gp,B)→Hj(Gp,C) δÐ→Hj+1(Gp,A)

ψ∗pÐ→Hj+1(Gp,B)→ . . .

Now if we consider j = i − 1, since it is surjective on H i−1 and is isomorphic on H i, thus
we have H i(Gp,C) = 0.

Similarly, if we take j = i, we have that H i+1(Gp,C) = 0.
Therefore, by the theorem above, we have that C is cohomologically trivial and ψ∗ is then

isomorphism. �

Now using the proposition we can prove the main theorem of today’s talk.

Theorem 3.2 (Main Theorem).

A,B,C are G-modules and θ ∶ A⊗Z B → C is a G-module map. For some k ∈ Z, we have
α ∈Hk(G,A), ∀H ∈ G,

Θi
H,a ∶H i(H,B)→H i+k(H,C)

, where
θiH,a(β) = θ∗(Res(α) ∪ β)

and for all p prime, there exists j ∈ Z such that θ∗Gp,a is surjective for i = j − 1, isomorphic

for i = j, and is injective for i = j − 1. Then ∀H ⊆ G and i ∈ Z, θiH,α is an isomorphism.
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Proof. Using the argument of dimension shifting of A, we can reduce the condition so that
we just consider k = 0, ψ ∶ B → C by ψ(b) = θ(a⊗ b), where a ∈ AG represents α.

First we can check that ψ is well defined and is a map of G-module.

ψ(gb) = θ(a⊗ gb) = θ(ga⊗ gb) = gθ(a⊗ b) = gψ(b)

Now we want, for every degree i, ψ∗(H i)(H,B)→H i(H,C) agrees with θ∗(Res(α) ∪ β).
We will do a two side induction here to prove the claim.
Base step: For degree 0, we know that psi∗ is induced by ψ ∶ BH → CH , where b↦ θ(a⊗b).
Now we consider one side first.
Note that we have the short exact sequence

0→ A−1 → IndG(A) πÐ→ A→ 0

And we have the following diagram commutes

0 //

��

A⊗Z B−1 //

≃

��

A⊗Z IndG(B) //

≃

��

A⊗Z B //

��

0

��
0 //

��

(A⊗Z B)−1 //

θ′

��

IndG(A⊗Z B) //

IndG(θ)
��

A⊗Z B //

θ

��

0

��
0 // C−1 // IndG(C) // C // 0

And we have a map ψ′ ∶ B−1 → C−1 by mapping b′ ↦ θ′(a⊗ b′) for all b′ ∈ B−1.
We then have the following two commuting diagram where one is induced by the ψ′ and

ψ, and the other is from the Θi
H,α as in the question.

H i−1(H,B) ≃ //

ψ∗

��

H i(H,B−1)
ψ′∗

��

β′
_

��
H i−1(H,C) ≃ // H i(H,C−1) (θ′)(Res(α) ∪ β′)

and

H i−1(H,B) ≃ //

Θi−1H,α
��

H i(H,B−1)
ΘiH,α
��

β′
_

��
H i−1(H,C) ≃ // H i(H,C−1) (θ′)(Res(α) ∪ β′)

We get ψ∗ = Θi−1
H,α
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Now we consider the exact sequence for coinduced module, then we get the commutative
diagram

0 //

��

A⊗Z B //

��

CoIndG(A)⊗Z B //

≃

��

A⊗Z B1 //

≃

��

0

��
0 //

��

A⊗Z B //

θ

��

CoIndG(A⊗Z B) //

CoIndG(θ)
��

(A⊗Z B)1 //

θ′

��

0

��
0 // C // IndG(C) // C1 // 0

And using a similar statement, we can prove the argument ψ∗ = Θi+1
H,α.

Now we consider a general k ∈ Z.
Note that for α ∈Hk−1(H,A), we have α′ ∶= δ(α) ∈Hk(H,A−1).
Consider the following commutative diagram:

0 //

��

(A−1 ⊗Z B //

θ′

��

IndG(A)⊗Z B //

IndG(θ)
��

A⊗Z B //

θ

��

0

��
0 // C−1 // IndG(C) // C // 0

Therefore, we see that ΘH,α′ ∶ H i(H,B) → H i+k(H,C−1) is well defined and we have the
following diagram commute:

H i(H,B)
ΘH,α′

��

H i(H,B)
ΘH,α′

��
H i+k−1(H,C) δ

≃

// H i+k(H,C−1)

Now we just apply the last proposition to ψ∗ = Θi
Gp,α

, we have that since it is surjective

for i = j − 1, isomorphic for i = j, and injective for i = j + 1, Θi
H,α is an isomorphism for all

i ∈ Z and for all H ⊆ G. �

Tate’s famous theorem is followed then as a special case of the main theorem

Theorem 3.3. Given α ∈ H2(G,A), suppose ∀p, H1(Gp,A) is trivial and H2(Gp,A) is
cyclic of order ∣Gp∣ and is generated by the restriction of α. Then the map

H i(H,Z)→H i+2(H,A)
where

β ↦ Res(α) ∪ β
are isomorphism ∀i ∈ Z and subgroup H ⊆ G.

Proof. Consider H = Gp, and then the map is surjective for i = −1 since H1(Gp,A) = 0, is
isomorphic for i = 0 since H0(Gp,Z) ≃ Z/∣Gp∣Z = H2(Gp,A) by n ↦ nRes(α), and injective
for i = 1 since H1(Gp,A) = 0. Therefore, we have the desired result. �

Note that we have H−2(G,Z) = Gab, and thus in the good cases, if we take G = Gal(L/K),
we should have Gab

L/K
≃H0(G,A) = AK/NL/KAL.
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