INFORMATION AND CONTROL 37, 302-320 (1978)

Complexity of Automaton Identification from Given Data*
E Mark Gorp'

Département dInformatique, Université de Montréal, Montréal, Canada

The question of whether there is an automaton with #n states which agrees
with a finite set D of data is shown to be NP-complete, although identification-
in-the-limit of finite automata is possible in polynomial time as a function of the
size of D. Necessary and sufficient conditions are given for D to be realizable
by an automaton whose states are reachable from the initial state by a given
set T of input strings. Although this question is also NP-complete, these
conditions suggest heuristic approaches. Even if a solution to this problem were
available, it is shown that finding a minimal set T does not necessarily give the
smallest possible T'.

Contents. 1. Introduction. NP-complete; Minimum automaton identification from
given data is NP-complete; Nerode algorithm; Automaton identification from finite data.
2. Summary of Complexity Results. Attributes of automaton identification rules; State
characterization from requested data; State characterization from given data; Data-time
tradeoff. 3. Terminology and Notation. Strings; prefix- and suffix-complete; Finite automata
and black boxes: reachable states; Experiments; Data; State characterization matrix.
4. State Characterization from Given Data. Transition assignment problem Prpass(D, T);
Data matrix M(D, T, E); obviously different rows; Automaton FA(M) constructed from
state characterization matrix M; Hole filling problem Pgorn(D, T, E); Augmentation of
test states. 5. Theorem 1: Data Matrix Agreement. 6. Theorem 2: Transition Assignment Is
NP-Complete. Statisfiability question which will be reduced to Qr;ass ; Proof of Theorem 2.
7. Theorem 3: Minimal Set of Test States May Not Be Minimum. 8. Theorem 4: Automaton
Identification-in-the-Limit with Polynomial Time and Data. Timid state characterization;
Feasible automaton identification by table construction; Feasible modification of timid
state characterization.

1. INTRODUCTION

NP-Complete

A predicate P(x) which is NP-complete is difficult to compute: P(x) can be
compute in exponential time as a function of the size of the input «, but it is
believed that polynomial time computation is not possible; see Karp (1975)
and Aho et al. (1974).

* This work received support from the National Research Council of Canada.

+ Present address: Computer Science Dept., University of Rochester, Rochester, N.Y.
14627.

302
0019-9958/78/0373-0302$02.00/0
Copyright © 1978 by Academic Press, Inc.

[4
A}

COMPLEXITY OF AUTOMATON IDENTIFICATION FROM GIVEN DATA 303

Minimum Automaton Identification from Given Data is NP-Complete

Suppose that we are given data D consisting of a finite number of observationg
of the I/O behavior of an unknown black box with I/O function b. The principal
objective of this paper is to show that the problem of finding a minimum state
finite automaton which agrees with D is “NP-complete” in the following
sense: Theorem 2 (transition assignment is NP-complete) implies that the
question “Is there an automaton with 7z states which agrees with D?’ is NP-
complete.

Nerode Algorithm

The complexity results of this paper resulted from efforts to adapt the Nerode
algorithm to the problem of automaton identification from given d?ta. The
Nerode (1958) algorithm for the problem of automaton synthesis yields the
minimum finite state automaton which realizes a given black box function b.
Automaton synthesis assumes that the entire function b is given. In particular,
the Nerode algorithm assumes that means are available for determining if
b; = b for any pair @, @ of input strings, where b is the black box which results
if @ is applied to b. The Nerode algorithm can be used with a finite amount of
data if the number of states needed to realize the unknown black box is specified,
and if the experiments which produce the data can be chosen. .

The Ho algorithm adapts the Nerode algortihm to the synthesis of linear
automata, see Zeiger (1967). Application of the Nerode approach to more
general classes of automata is straightforward, e.g., see Arbib and Zeiger §1969.).
Arbib and Manes (1974) discuss further generalization to abstract machines in
a category-theoretic framework.

Automaton Identification from Finite Data

The work referenced above is concerned with generalization of the Nerode
algorithm to larger classes of machines. The work which led to this paper was
concerned with the adaption of the Nerode algorithm to the problem f)f afttomaton
identification from finite data: One wishes to identify a black box which is known
to be realizable by a finite (state) automaton, but the necessary number of. states
is not known. Only a finite amount of data is available, so it is not possible to
prove b; = b;. o

There are 2 variations of this problem: automaton identification from requested
data, and automaton identification from given data. In the case of requested data,
any finite number of experiments, chosen at will, can be performed on the 1?1ack
box which can be reset to its initial state before each experiment. The identifica-
tion algorithm must choose the experiments as well as use the res.ults of these
experiments to guess a finite automaton which, hopefully, real.lzes '.che I |0
function b of the unknown black box. In the case of automaton identification

643/37/3-5

CE

T

ERNT A\ A

304 E MARK GOLD

from given data, the identification algorithm has no choice about the data, it ig
given.

In Gold (1972) I discuss a straightforward adaption of the Nerode algorithm,
which I call state characterization, to the problem of automaton identification
from requested data. The results of that paper were not original, but I reference
it because it introduces the notation and terminology used in this peper.

Concerning automaton identification from given data, one approach is dis-
cussed by Bierman and Feldman (1972). An obvious approach is minimum
automaton identification: Construct a finite automaton with the minimum number
of states which agrees with the given data D. This approach has many desirable
properties discussed in the next section, such as efficient use of data. However,
it is the objective of this paper to show that the construction of a2 minimum
state automaton which agrees with given data is, in general, computationally

difficult.

2. SuMMARY OF COMPLEXITY RESULTS

Attributes of Automaton Identification Rules

An automaton identification rule is a computable function g which, given data D
about black box b, produces a finite automaton g(D) (g for “guess”). In the case
of requested data, an automaton identification rule also generates the experi-
ments which produce a growing sequence of data D, , D, ,... . The rule will be
said to have the identification-in-the-limit property if it can be guaranteed that
for every black box b realizable by a finite automaton there is an 7 such that g(D),
£(D;11),-.. are the same and realize b. In the case of given data, g will be said
to have the identification-in-the-limit property if for every such b there is a data
set D, such that for all data sets D which include D, the guesses g(D) are the
same and realize b.

An automaton identification rule is feasible if g(D) always agrees with D
(defined formally in next section). The stronger minimum automaton identification
property requires that g(D) have the minimum number of states. Since D is
finite, there can be nonequivalent g(D) with this property.

Suppose g has the identification-in-the-limit property. Its space, time, and
data requirements are of interest. Space complexity is not discussed here.
Time complexity refers to the time required to compute g(D) as a function of
the size of D if the fastest algorithm is used. Presumably, polynomial time is
practical and NP-complete is impractical.

Concerning data requirements, in a somewhat different context (Gold, 1967)
I introduced the following notion: g is optimally data efficient if there is no g’
which, for all b, correctly identifies b from as small a data set as g and sometimes
smaller. I will not try to formalize this notion in the present context because I
only use it to motivate the interest in minimum automaton identification:

COMPLEXITY OF AUTOMATON IDENTIFICATION FROM GIVEN pATA 305

Suppose our guessing rule tries all finite automata in order of increasing
number of states, and chooses g(D) to be the first finite automaton which agrees
with D. This is a minimum automaton identification rule. Also, it is an example
of identification-by-enumeration. In Gold (1967) I showed that all identification-
by-enumeration rules are optimally data efficient.

State Characterization from Requested Data

In the case of requested data I showed in Gold (1972) that state characteriza-
tion has the following properties:

1. Minimum automaton identification.
2. Identification-in-the-limit (implied by 1).

3. Computationally trivial.

State Characterization from Given Data

The complexity results of this paper are an outgrowth of attempts to adapt
state characterization to the problem of automaton identification from given
data. The proposed method of adaption is straightforward: In the c.ase.of
requested data, one can request the data needed by the state characterlzz.ltlon
algorithm. In the case of given data the data which is needed by the algorithm
and not provided is guessed. The problem is to guess the missing data in such
a way that the constructed finite automaton will be small.

Theorem 1 (Data Matrix Agreement) is the fundamental theorem of the state
characterization approach to automaton identification from finite data. It gives
sufficient constraints on the use of the state characterization approach to
guarantee that the constructed finite automaton will agree with the data from
which it was constructed.

This theorem is of interest in itself. Indeed, it is necessary to show the validity
of the earlier results on the application of state characterization to the requested
data problem (Gold 1972). '

Furthermore, Theorem 1 assures the validity of the zimid state characterization
algorithm for given data, in the proof of Theorem 4, which has the following

properties:
1. Feasible automaton identification.
2. Identification-in-the-limit (not implied by 1).
3. Polynomial time computation.
However, the main reason for including the Data Matrix Agreement Theorem

in this paper is that it serves as a lemma in the proof of the principal result,
Theorem 2, which says that minimum automaton identification from given data

is NP-complete.

iy

=

T TR 5

YR

N

7

e

206 E MARK GOLD
Data—Time Tradeoff

Timid state characterization is very inefficient in its use of data. So, concerning
the given data problem, the results of this paper suggest that a data—time
tradeoff is necessary: Identification-in-the-limit can be achieved in polynomial
time at the cost of additional data being required to correctly identify the
unknown black box. The most obvious approach to obtaining optimal data
efficiency is computationally impractical.

However, there is still the possibility that optimal data efficiency can be
achieved in polynomial time.

The timid state characterization approach to given data is as follows: The
given data D is searched for a subset D, such that the state characterization
algorithm can be applied to D, without having to guess missing data. If the
resulting finite automaton agrees with all of D then it is taken to be the guess

g(D). Otherwise, a feasible finite automaton gy (D) for D is constructed in .

the easiest way. gi.p1(D) is easy to compute but doesn’t have the identification-
in-the-limit property.

The timid state characterization algorithm uses data efficiently in the following
sense: If we are lucky, and we are given just the right type of data D, then timid
state characterization will obtain a correct, minimum state realization for the
unknown black box from a quantity of data which is a polynomial function of
the required number of states. The timid state characterization algorithm uses
data inefficiently if we are not lucky and are given data which is not directly
usable by the state characterization algorithm. The timid state characterization
algorithm essentially ignores data which it cannot use easily.

It is straightforward to adapt state characterization to minimum automaton
identification from given data if we are not interested in computation time:
A backtracking algorithm can be used to guess the missing data. Varying degrees
of “timidity’’ can be introduced to give varying data-—time tradeoffs. Namely,
the backtracking can be truncated at some prior time limit.

In summary, state characterization requires a certain type of data (the results
of certain experiments) and so is well suited to the requested data problem:
The required data is requested and a trivial computation is capable of correctly
identifying the unknown black box from a small amount of data. State characteri-
zation can be adapted to the given data problem by the use of 2 types of timidity
in order to reduce computation time: A tractable subset of the given data is
selected and backtracking is truncated.

By means of an appropriate combination of these 2 types of timidity I believe
that reasonably data efficient identification from given data should be possible
with computation time asymptotically linear. Namely, let the unknown black
box be fixed and suppose that we are given an enormous body of data which
resulted from a not very bizarre set of experiments. It should be possible to
select a small subset of the data, correctly identify the black box without much

COMPLEXITY OF AUTOMATON IDENTIFICATION FROM GIVEN DATA 307

backtracking, then make one pass through the entire body of data to check the
finite automaton which was constructed from the subset.

3. TERMINOLOGY AND NOTATION

Strings: Prefix- and Suffix-Complete

An alphabet U is a finite set. # denotes an element of U, & denotes a finite
string of elements of U, and ¢ denotes the null string. U* denotes the set of
all # including ¢, and U™ denotes the set of all # excluding ¢. A subset X' of U*
will be called prefix-complete if @ € 2 implies all prefixes of # are elements of X
including ¢, suffix-complete if # € 2 implies all suffixes of # € 2' excluding ¢.

Finite Automata and Black Boxes: Reachable States

A finite automaton will mean a Mealy model finite state automaton with
initial state specified, namely, a 6-tuple

F4 = <U; S: Yaftr,fout) SO>;

where U is the input alphabet, S is the state alphabet, Y is the output alphabet,
firs S X U — S is the state transition function, fou: S X U — Y is the output
function, and s, is the initial state. For any @ e U*, s; denotes the state reachable
by i, namely the state which results if F/4 is started in state s, and input string # is
applied. In particular, s, = sy . For any subset 7' of U*, Sy denotes the set of
states which are reachable by some # e T.

A black box is a triple (U, Y, b) where U is the input alphabet, Y is the output
alphabet, and b: Ut — Y is the I/O function of the black box. The black box
will be denoted b. The intended interpretation is that y = b(#) is the final
output if # is applied to the black box. For any it € U*, b, denotes the black box
state which results if # is applied to b. Namely, b is the /O function defined by

by(7) = b(ww) for all e U+
In particular, by = b. The I/O function of a finite automaton FA is a black box

which will be denoted B(FA). FA will be said to realize b if B(FA) = b. The
black box value () is undefined because finite automata are Mealy model.

Experiments

For any @ € U* the experiment e is the functional

ez(b) = b(w) for all b,

308 E MARK GOLD

Therefore,
e5(by) = b(@®).
The output ez(b) is the result of experiment e; performed on b. e5(FA) means

e5(B(FA)). The experiment ¢, is undefined because finite automata are Mealy
model.

Data

Data (set of data, body of data) is a finite set of pairs

D - {(171 y yl)v-', (ﬁn ’ yn)}’

where @; € Ut, y; € Y, and the u; are all different. Each pair (&, , y;) is a datum.
D(i) will mean y if (%, y) is a datum of D, undefined otherwise. A black box B
agrees with D if

(@) = v, for 7= 1,.., n

A finite automaton FA4 agrees with D if B(FA) agrees with D. 1 will use the follow-
ing notation to specify D:

00 —2
D = {01 — 1.
1 -2

If D is prefix-complete, i.e., if its set of input strings is prefix-complete, then
the abbreviated notation

p_ {10 —10
= 10110 — 0111,
means
1 -1
10 —0
b o
~Yo1 -1
o1 — 1
0110 — 1.

State Characterization Matrix

A set of test states is a finite set of input strings

T = (@)y &} with & = 6.

COMPLEXITY OF AUTOMATON IDENTIFICATION FROM GIVEN DATA 309

Define the set of transition states to be
X(T)=TUu~-T
={wm:ucT,uec U, itu ¢ T).
A set of experiments will ambiguously mean a set of non-null input strings
with @; #~ ¢.

The elements of E will sometimes be considered to be the experiments eg

. - %
determined by the @, . A state characterization matrix is a triple (T, E, M
where M is a matrix with labeled rows and columns such that

1. The rows are labeled with the elements of T'U X(T).

2. The columns are labeled with the elements of E.

3. Each entry of M is either an element of ¥ or a “hole.”’

4. If 771 N ‘177' eTuy X(T) and ‘Z_(fl' s ‘i‘v‘, € E a.nd 77,-17,- = 77]'@" then the (171) ﬁi)
and (7; , @;) positions in M will be called tied. Tied positions must have the
same entry.

The data contained in M is
D(M) = {(@@, y): 5 T U X(T), @ € E, the (7, @) entry of Mis ye Y}.

4. STATE CHARACTERIZATION FROM GIVEN DaTa

Transition Assignment Problem Prpac(D, T)

Given data D, to use state characterization a set T of test states is chosen and
the hypothesis is made that D agrees with some finite automaton FA whose
states are reachable by T, i.e., sy = S. In order to construct FA, note that its
input set U and output set Y are determined by D. For the present we can take
its state set S to be T, although we may later find that some of these states can
be identified. It is assumed that each state ¢; € T will be reachable by #, i.e.,
s; = tz . So the initial state of F4 must be s, = 1, € T. So it only remains to
construct fir and fou¢ -

The problem of constructing fir will be called the transition assignment
problem Pryass(D, T).Since t; is to be reachable by &, if %, wu € T then necessarily
firltz, w) = tz, . So the transition assignment problem is to identify each
transition state x € X(T') with some test state t € 7' in a way which is consistent
with the data D.

If fir can be constructed it is easy to construct f,u; S0 that FA has the desired
property. This justifies the definition:

——

XU

310 E MARK GOLD

Transition assignment question Qrrass(D, T). Given: data D, test states T.
Question: Is there a finite automaton with states reachable by T' which agrees
with D ?

Data Matrix M(D, T, E); Obviously Different Rows

Given D and having chosen T we now choose a set E of experiments. The data
matrix M(D, T, E) is the state characterization matrix with rows T'U X(T)and
columns E such that for e T U X(T'), @ € E the (@, @) entry is D(#) if defined
by D, a hole otherwise (see Fig. 1). Given D, T'it is always possible to choose F
large enough so that all the data of D is contained in (the entries of)y M(D, T, E),
but this is not required by the definition.

The i,- and i,-rows of M(D, T, E), or of any state characterization matrix M, :
will be called obviously different if for some e € E the entries (i, , ¢) and (& , ¢)
of M are different and neither is a hole. In this case @, , #, will be said to be
obviously different in M. If M has no holes, then 2 rows are either identical or
obviously different.

If we wish to construct FA4 in agreement with M such that the states of F4
are the row labels of M, then each row of M is a vector of characteristics (attri-
butes) of the state of F4 which corresponds to its row label. The holes are
“don’t cares.”’ So, 2 states of FA can’t be identified if their rows of M are
obviously different.

set of E
experiments
ewt .
t
"] . S=TuX
set of T :
test states ts .y Entry of M at (G, W) ,
H : y = eglsg)
= D(uw)
seflolf X(T) = black fb_g)(w value
t tio X=
rg?:tesn u specified by D

Fic. 1. Data matrix M(D, T, E).

Automaton FA(M) Constructed from State Characterization Matrix M

Let M be a state characterization matrix with no holes such that every x-row
is identical to some t-row. The constructed automata FA(M) are defined non-
deterministically as follows. The definition is nondeterministic, but all the
constructed automata are deterministic, and all of them satisfy Theorem 1.

The input, output alphabets U, Y of FA(M) are specified by M. The state
alphabet S of FA(M) is any partitioning of " into equivalence classes such that
if 7, 5 T are in the same equivalence class [#] € S then (1) the #- and g-rows
of M are identical, and (2) for all u € U, if wtu, ou € T then [iu] = [7u], otherwise

COMPLEXITY OF AUTOMATON IDENTIFICATION FROM GIVEN DATA 311

the #zu- and du-rows of M are identical. The initial state s, of FA(M) is [¢]. For
all e T, u € U, the dynamics of FA(M) are defined by

(@, u)-entry of Mifue E
arbitrary otherwise,

Jour([#], u) =

[ou] if there is a ¢ € [a] such that tue T
Jullie), u) = otherwise any [7] such that 7 € T and the ¥-row of M
is identical to the #u-row.

The Data Matrix Agreement Theorem says that if T is prefix-complete and £
is suffix-complete then the states of FA(M) are reachable by T and FA(M) agrees
with the data in M.

Hole Filling Problem Py (D, T, E)

Given data D, test states 7T, experiments E the hole filling problem
Puoirn(D, T, E) is to fill the holes of the data matrix M(D, T, E) to obtain a
state characterization matrix M’ such that every x-row is identical to some ¢-row.
If some x-row was obviously different from every t-row in M(D, T, E) then there
is no solution to the hole filling problem. Otherwise, the hole filling question
“Is there a solution to Pgqei(D, T, E)?’ may be difficult to decide because
tied holes must be filled with the same y € Y for M’ to be a state characterization
matrix. An example is shown in Fig. 2.

Suppose we are given data D and a prefix-complete set T of test states. We
can choose any set of experiments such that all the data of D is in M(D, T, E)
and augment it to obtain a set E(D, T') of experiments with the additional
property of being suffix-complete. If we can find a solution M’ to the hole
filling problem Pygri(D, T, E(D, T)) then FA(M') is a finite automaton with
states reachable by T which agrees with D.

The converse is easy to prove. So the question Qrpaes(D, T') “Is there an FA4
with states reachable by T which agrees with D ?’’ is equivalent to “Is there a

DATA_MATRIX M(D,T,E)

DarA experiments E
inputs U = {I} 1 1
outputs Y= {0,1}
data D= {”: :?

Fic. 2. Data matrix with rows which are not obviously different but can’t be identical.
Therefore, there is no finite automaton with 1 state which agrees with D. s; cannot be
identified with sy because the 2 holes in M(D, T, E) are tied. No matter how they are
filled, s, will become obviously different from s .

312 E MARK GOLD

solution to Pyopn(D, T, E(D, T))?’ This result will be used to prove that
minimum automaton identification is NP-complete. Namely, Cook’s prototype
NP-complete problem will be reduced to the hole filling problem.

Augmentation of Test States

Still assuming that the test states T' are prefix-complete, if there is no solution
to the hole filling problem Pyqei(D, T, E(D, T)) then there is no finite auto-
maton with states reachable by 7" which agrees with D. So it is necessary to
augment 7.

For example, in the data matrix M(D, T, E(D, T)) suppose that x € X(T)
was obviously different from all ¢ € T before we tried filling holes. Then we
would probably add x to 7. If no x was obviously different from all t€ T in
the data matrix but every way of filling the holes (with tied holes being filled the
same) gives M’ in which some x is not identical to any of the ¢ € T, then it is
difficult to decide how to augment T; see Sect. 7.

In any case, if we start with a prefix-complete T, say T' = {¢}, and always
augment T with elements of X(T'), then T will remain prefix-complete.

5. THEOREM 1. DAtAa MATRIX AGREEMENT

Jean-Paul Brassard constructed the example of Fig. 3 to show me that it is
possible that a state characterization matrix M has no holes, and every x-row
is identical to some t-row so that FA(M) can be constructed, but FA(M) doesn’t
agree with D(M). In this example FA(M) is uniquely defined. It has 1 state 5,
and its only output is 1. Jean-Paul Brassard suggested that in this example
FA(M) does not agree with D(M) because there are gaps in E, namely, 1€ E
and 111 € E, but 11 ¢ E. This observation led to the following theorem.

TueoreM 1. Let <T, E, M) be a state characterization matrix without holes
such that every x-row is identical to some t-row, T is prefix-complete, and E is
suffix-complete. Then FA(M) agrees with the data D(M) in M. Furthermore,
if # € T then starting FA(M) in state s, and applying @ puts FA(M) in state [@].

COROLLARY. Let data D and test states T be given such that T is prefix-

state characterization matrix M
E data D(M) in M
] i P—=1
It—1

T g o 111—0
1H11—=—0
X1 1|t o

Fic. 3. Example of M such that FA(M) does not agree with D(M).

COMPLEXITY OF AUTOMATON IDENTIFICATION FROM GIVEN DATA 313

complete. Choose any suffix-complete set E of experiments such that M(D, T, E)
contains all the data in D. Then the question Qpyass(D, T') “Is there a finite auto-
maton with states reachable by T which agrees with D ?*’ is equivalent to the question
Ouotrit(D, T, E) “Can the holes of M(D, T, E) be filled in such a way that every
x-row will be identical with some t-row?”’ Given D, T a suitable E can be found
in polynomial time.

Proof. 'The proof of the corollary is straightforward and will be omitted.

The second conclusion of the theorem, that Z e T implies state [#] of FA(M)
is reachable by #, follows immediately from the definition of fi; in FA(M), given
that T is assumed to be prefix-complete. Namely, induction can be used on the
prefixes of @.

Let e TV X(T), we E. It is to be proved that if FA(M) is started in s,
and #@ is applied, then its final output will be y = the (#, @)-entry of M.
This is equivalent to saying that if FA(M) is started in s; and @ is applied, then
the final output will by .

Case 1. ueT. Then s; = [#] by the second conclusion of the theorem.
Induction will be used on the length of @. If @ = u € U then the output produced
by applying u to [#] of FA(M) is fou([#], u). This is the (@, u)-entry of M by
the definition of f,,; . So, assume that the first conclusion is proved for some @
and all # € T. It only remains to prove it for 4w and all # € T, assuming u%@ € E.
(The hypothesis that E is suffix-complete implies that if u@ e E then @we E,
so this is a valid statement of the inductive step.) u, @ are now fixed. For all
@ e T it is to be shown that if FA(M) is started in s;, and @ is applied, then the
final output is the (%, uw)-entry of M which is the same as the (&, @)-entry
since these 2 positions are tied. If #u € T this follows from the inductive hypo-
thesis. If au e X(T) let [0] = 53, = fu([#], u). By definition of fir, 7€ T and
the #-row of M is identical to the #u-row. So it remains to prove that starting
FA(M) in sz, = [7] and applying @ gives the (@, @)-entry = the (7, @)-entry
of M as final output. Since ¥ € T this follows from the inductive hypothesis.

Case 2. ue X(T). It is to be shown that if FA(M) is started in s; and @
is applied the final output will be the (#, @)-entry of M. Let & = @&'u where
#’ € T. By the second conclusion, s;, = [@#']. So, by the definition of fir, s; =
fu([#@'], v) = [9] where o€ T and the #- and @-rows of M are identical. By the
second conclusion s; = [U] = s; . So it is to be shown that if FA(M) is started
in s; and @ is applied then the final output will be the (@, @)-entry = the
(5, @w)-entry of M. Since ¥ € T this has been proved in Case 1.

6. THEOREM 2. TRANSITION ASSIGNMENT 1S NP-COMPLETE

Two input strings #, ¢ will be called obviously different w.r.t. D if there is an
experiment ey such that eg(s;) = D(@@) and e;(s;) == D(T@) are specified by D

314 E MARK GOLD

and eg(s;) # ex(s;). Given D, @, ¥ it can be determined in polynomial time
whether or not # and 7 are obviously different w.r.t. D.

Tueorem 2. Let D, T range over pairs such that Card(U) = Card(Y) = 2,
T = {¢, 1,..., 1™} for any n, and the test states are obviously different from each
other w.r.t. D. Even with D, T restricted to these pairs, Qrrass(D, T) “Is there q
finite automaton with states reachable by T which agrees with D ?” is NP-complete.

Minimum Automaton Identification Question Qmin(D, n). Given: data D,
positive integer z. Question: Is there a finite automaton with 7 states which
agrees with D?

COROLLARY. QOnin(D, n) is NP-complete for Card(U) = Card(Y) = 2.

The proof of the corollary is omitted. Dana Angluin has found a reduction
of the type used below to prove Theorem 2, but more complicated, which proves
Theorem 2 to be valid even if D is restricted to prefix-complete data sets.
Therefore, Opin(D, n) is NP-complete for prefix-complete D.

Satisfiability Question Which Will Be Reduced to Qryags
The satisfiability question is known to be NP-complete for conjunctive
normal form expressions, which are of the form
FF=C&-&C,,

where the clauses C; are of the form

Ci=ciy V"V,
where the ¢;; are literals 2, or —z; where the 2, are Boolean variables. This
question will be reduced to Qrpaes(D, T') with (D, T) satisfying the constraints
of Theorem 2. The first step is to reduce the question “Is F” satisfiable ?”’ to the
question “Is F satisfiable 2’ where F is a conjunctive normal form expression
which satisfies the constraint that in each clause either none of the literals are
complemented or all are. This reduction can be performed by replacing each
clause,

Ci =2, V" V&,V =%, V"V %,
by 2 clauses

!’
Coimq = 7'V Rp, ¥V "V Ry,

’
Coi = =&/ V =R, V"V =%y,

"

COMPLEXITY OF AUTOMATON IDENTIFICATION FROM GIVEN DATA 315

where 2',..., z,," are n new Boolean variables. It is easy to show that if specific
values of z;,..., 2,",... satisfy F then the same values of z, ,... satisfy F’; and if
specific values of 2, ,... satisfy F” then it’s easy to choose values of 2,’,... in order
to satisfy F.

Furthermore, it will be assumed that F has the same number # of variables
and clauses. This can be accomplished by adding any number >>1 of new
clauses

”

C{ =2g{Vv vz,

where the 2] are any number >1 of new variables.
For any such F define the 2 characteristic functions

.. {“hole” if z,eC,or —2;€C;
Te(g) = 30 otherwise,
74i) = %1 if C; contains uncomplemented variables
770 if C; contains complemented variables.
Proof of Theorem 2

For any F of the above form, with # variables and clauses, let D;. consist of
the data in the state characterization matrix M which is defined in Fig. 4.

Mg = M(Dg, T, , E,) contains the data in Dy, T, is prefix-complete,
and E, is suffix-complete. So, by the corollary to the Data Matrix Agreement
Theorem it only remains to show that Qggen(Dr, T, E,) “Can the holes
of Mp be filled such that each x-row is the same as some t-row ?’ is equivalent
to “Is F satisfiable ?”’

En
I e g 0

[t] f
IR TR Dt T i I

\,“" |'io’:o’:o i n

S :

J 0 ____-___T'[—F?I)- ¢
X(T,) '? FSN) E{F;Z) Clowe ?2

Jn-lo ! ‘fF(n) (;n

Fi1c. 4. State characterization matrix My such that the hole filling question is
equivalent to “Is F satisfiable ?”” Double arrow denotes tied positions.

316 E MARK GOLD

To see this, note that none of the holes of My are tied. The first x-row can
certainly be made identical to the first z-row. In order to make the Cy row
identical to the z,-row it is necessary to assign 74(¢) to the rightmost position
of the z;-row. 75(i) is defined to be the value that a variable must be assigned
in F in order to satisfy the C;-clause. However, not every z; can be assigned
74(7) to satisfy C; in F. This is simulated in M by the Ix(i, n — j + 1) entry
in the j-th position of the C;-row. If this entry is 0 then the C;-row cannot
be made identical to the z;-row which has a 1 in this position. By definition of
I, the C;-row has a hole in this position, and can be made i(.ientical to the
z;-row, iff in F the clause C; can be satisfied by setting z; = T(1).

7. THEOREM 3. MiINIMAL SET oF Test StaTEs May Nor BeE MINIMUM

Feasible set of test states. A set T of test states will be called feasible for data D
if there is a finite automaton with states reachable by 7' which agrees with D.

State Selection Problem. Given: data D and an oracle for Qtrass . Find:
a set T of test states of minimum cardinality which is feasible for D.

One approach to the problem of constructing a minimum state automaton
in agreement with D is to use a heuristic algorithm for Prpaes such as state
characterization with some “timidity’’ as discussed at the end of Sect. 2. We are
still left with the state selection problem. I don’t know if the state selection
problem is NP-complete, but the theorem of this section shows that the obvious
approach does not work: .

Construct any feasible finite automaton FA for D, e.g., giap(D) defined in
the next section, which can be constructed in polynomial time but has lots of
states. Find a prefix-complete set T of input strings such that the stz}tes O.f FA
are reachable by 7. Now try removing the test states of‘ T one at a time, in an
appropriate order so that T remains prefix-complete, using the oracl.e to deter-
mine if T remains feasible for D. This will yield a minimal T feasible for D.
But the following theorem says that a minimal feasible T is not necessarily of
minimum cardinality.

TueoreM 3. It is possible that set T of test states is feasible for dc‘zta D, no
proper subset of T is feasible for D, but there exists a T of lower cardinality than T
which is feasible for D.

Proof. Consider the (prefix-complete) data

0110 — 0111

D=1 0.

COMPLEXITY OF AUTOMATON IDENTIFICATION FROM GIVEN DATA 317

The following 2 sets of test states are feasible for D:

= {?5’ 0}
T, ={¢ 1, 11}.

It is shown below that they are minimal feasible. So 7, is obviously not minimum.

Consider experiment ¢, performed on states s, , §; , Sg1; (of any finite automaton
which agrees with D). D includes the following data:

eo(ss) = 0; eo(s1) = 0; eo(Sou) = 1.
So at least 2 test states are needed for a feasible T, namely ¢, @ where s, = So1t -
This data implies s; 5= 5oy so T' = {¢, 1} is not feasible.

Figure 6 shows that T, T, are feasible. To show that T, is minimal it is
necessary to show that no pair of the 3 states of T}, can be equivalent in a feasible
finite automaton for D with states reachable by T, . If s, = s5,; or s, = $11 then
{$, 1} would be a feasible set of test states for D. If 5, = s, , then input 1 would
take 54 t0 54, SO §3; = 5, -

In order to see the difficulties involved in the state selection problem, let’s
follow this example a little further. Suppose we start with the hypothesis
T ={¢} and construct the data matrix M(D, T, E) with suffix-complete E
shown in Fig. 5, which contains all the data in D. Neither of the x-rows is
obviously different from the z-row. So, if we were able to determine that the hole
filling problem has no solution, how would we know that we should add 0 to T,
rather than 1, in order to achieve a minimum feasible 7 for D?

E
o 1010 1 Il
1 T T 1
T{¢ i?iy L
M: P A 1A
X -
ol Lttt

Frc. 5. Data matrix M which contains all the data in D in the proof of Theorem 3.

(P oo L
e ERRY,
0/0
(it = 0 YO
= Ao
0/0

F16. 6. Proof that D (in the proof of Theorem 3) can be realized by a finite automaton
whose states are reachable by T, or T, .

FA2 H

318 E MARK GOLD

8. THEOREM 4. AUTOMATON IDENTIFICATION-IN-THE-LIMIT WITH
PorLynomIAL TIME AND DaTa

TuaeoreM 4. There is an automaton identification rule g(D) with the following
properties: (1) feasible (g(D) always agrees with D), (2) identification-in-the-limit,
(3) g(D) can be computed in polynomial time as a function of the size of D, and
(4) for any black box b with p inputs and n state realization there is a data set D,
of size 2n3(p + 1) such that g(D) is the minimum state realization of b for all DD D,
(4 implies 2.)

Proof. An automaton identification rule g(D) will be demonstrated which
has these 4 properties. First, an example Zrim(D) of timid state characterization
will be defined which lacks only the first property, feasibility. That is, gym(D)
will quickly and correctly identify b given D which contains the appropriate
information. For other D the time to compute gym(D) is reasonable, but gim(D)
may not even agree with D, much less realize b.

2(D) will be obtained by changing Ziim(D) 0 grani(D) if g1im(D) doesn’t agree
with D. gipi(D) is easy to compute and agrees with D, but is unlikely to re-
alize b.

Timid State Characterization

The following data D, has a minimum state realization (finite automaton
which agrees with D,) which is easy to determine and is the minimum state
realization for b: Let T, = {¢, @y ,..., #,} be a minimum prefix-complete set
of test states which reach all the states b; of b. There are at most np transition
states Ty, = itu € X(Ty). Dy, will be constructed so that every pair %;, @, of
test states are obviously different w.r.t. Dy, and each transition state 7, is
obviously different from every test state i, except the correct one #; . Let
experiment e distinguish b5, and b; , ie.,

e5,(bz,) 7 e, (ba,)-

Then, in order to distinguish the test states #;, #; it is sufficient for D, to
contain at most n(n — 1) datums

Uy, —> b(ﬂjﬁjk)g hRk=1.,n
W5, — (@) j < k.

In order to distinguish each transition state Ty, from the test states #, with
k = j, which are distinguishable from it, it suffices for D, to include at most

2n(n — 1) p datums

T3y 1, —> 0030 T5)) u€ U
L k=1,.,n
ﬁjiwjik —> b(ﬁjlﬁhk) k #]Z .

COMPLEXITY OF AUTOMATON IDENTIFICATION FROM GIVEN DATA 319

Now D, contains information which makes it easy to construct fir . Finally,
in order to specify fou¢, at most np datums are required:

i — b(iu) ;= Ly 7

e U.

The following timid state characterization rule for automaton identification
will correctly identify b if presented D D D, : Given any D, in order to construct
Ztim(D) initialize T = {¢}. If some x € X(T) is obviously different fromall z € T,
then add x to 7. Continue until T}, is obtained such that for each x € X(T'p)
there is a t € T such that ¢ is not obviously different from x. g;,(D) is now
defined by

S=7Tp,
tuif tue Tp
forte Tp,ue U: fu(t, u) = jotherwise any t' € T'p such that ¢ is not

obviously different from #u w.r.t. D,

D(tu) if specified by D
forte Tp, ue U: foult u) = %argbit)rary }())therwise’.

Actually, in the construction of D, it is necessary to use some care in choosing
T, . Otherwise it is possible that D D D, but the set T of obviously different
test states found by timid state characterization is not T, . T, will certainly
be feasible for b, but D, may not contain the appropriate information to uniquely
determine the correct fir .

Let us constrain the construction of T, as follows. First specify the rule
gtim(D) precisely. In particular, in the construction of T'p it is necessary to
state in what order the transition states X(7') will be checked to see if they
should be added to T. Now choose T}, by this same rule: Start with T == {¢}.
Check each x € X(T') in the same order as used in the definition of gi;n, to see
if b, is different from all &, with ¢ € T If so, add x to T. The resulting T}, can
be used as above to define D, , and gy, will have the stated properties.

Feasible Automaton Identification by Table Construction
For any data D let b2, be the black box

D(z) if specified by D

ban(#r) = i
tab1(#) Yo otherwise,

where y,€ Y is any output element. Define gi,p1(D) to be the minimum state
realization of 83, .

643/37/3-6

320 E MARK GOLD

Feasible Modification of Timid State Characterization

(D) = gtim(D) if giim(D) agrees with D
85 = Stab1(D) otherwise.

RECEIVED: January 30, 1976; rReviseD: October 8, 1976

REFERENCES

AHO, A. V., HopcroFT, J. E., aND ULLMax, J. D. (1974), “The Design and Analysis of
Computer Algorithms,” Addison-Wesley, Reading, Mass.

ArBiB, M. A., aND Manes, E. G. (1974), Machines in a category, SIAM Review 16,
163-192.

AgBIB, M. A., AND ZEIGER, H. P. (1969), On the relevance of abstract algebra to control
theory, Automatica 5, 539-606.

Bierman, A. W., aND FeLDMAN, J. A. (1972), On the synthesis of finite-state machines
from samples of their behavior, IEEE Trans. Computers C-21, 592-597.

Gorp, E M. (1967), Language identification in the limit, Inform. Contr. 10, 447-474.

GoLp, E M. (1972), System identification via state characterization, Automatica 8, 621-636.

Karp, R. M. (1975), On the computational complexity of combinatorial problems,
Networks 5, 45-68.

NERODE, A. (1958), Linear automaton transformations, Proc. Amer. Math. Soc. 9, 541~544.

Zeicer, H. P. (1967), Ho’s algorithm, commutative diagrams and the uniqueness of
minimal linear systems, Inform. Control 11, 71-79.

INFORMATION AND CONTROL 37, 321-333 (1978)

Tape Bounds for Some Subclasses of
Deterministic Context-Free Languages

Y. IcARASHI

Centre for Computer Studies, University of Leeds, Leeds, LS2 9 JT, England

The tape complexity of context-free languages is investigated. It is shown that
all the members of two distinct subclasses of deterministic context-free languages
are recognizable in O(log n) tape complexity on off-line deterministic Turing
machines.

1. INTRODUCTION

There are several interesting observations to be made concerning the tape
complexity of context-free languages. An early result given by Lewis et al. (1965)
is that every context-free language can be recognized by an off-line deterministic
Turing machine of O((log 7)?) tape complexity. This is still the best result
known. Sudborough (1975) shows that if all linear context-free languages can
be recognized by off-line deterministic Turing machines of O(log n) tape
complexity, then the nondeterministic and deterministic context-sensitive
languages are identical. He also discusses a deterministic context-free language
(abbreviated DCFL) which is log n tape complete for the family of DCFL’s
(Sudborough, 1976a). Some closure properties on the class of O(log n) tape
complexity languages (Ritchie and Springsteel, 1972) and on the class of O(log 7)
tape complexity functions (Lind, 1974) are known. It is also known that the class
of O(log n) tape complexity context-free languages is closed under the star
operation if and only if the deterministic and nondeterministic O(log) tape
complexity classes are identical (Flajolet and Steyaert, 1974; Monien, 1975).
These results focus attention on the class of O(log 7) tape complexity languages.
In particular, it is natural to ask whether large subclasses of the deterministic
context-free languages are recognizable by off-line deterministic Turing machines
of O(log n) tape complexity. The class of languages recognizable by deterministic
one-counter automata (Valiant, 1973; Valiant and Paterson, 1975) is a trivial
example of such a subclass. Ritchie and Springstael (1972) show that Dyck
languages, standard languages, structured context-free languages, and bounded
context-free languages are recognizable by deterministic two-way marking
automata. Hence they are all in the class of deterministic O(log 7) tape complexity
languages (Ritchie and Springstael, 1972; Hartmanis, 1972). It is also known that
any parenthesis language (Lynch, 1975; Mehlhorn, 1975), any two-sided Dyck

321

0019-9958/78/0373-0321$02.00/0
Copyright © 1978 by Academic Press, Inc.

