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In this paper we consider the computational problem of finding a smallest
finite-state description, in some specified system of description, compatible
with a given finite positive and negative sample of a regular set. A procedure
which solves this problem may be used to perform identification in the limit
of the regular sets. Work on the general topic of identification in the limit, or
algorithmic inductive inference, may be found in Gold (1967), Feldman (1972),
Blum and Blum (1975).

Algorithms hitherto proposed to solve problems of this kind are exhaustive
search procedures, for example, Horning (1969), Biermann (1974), Wharton
(1977). Gold (1974) has shown that in general the problem is unlikely to admit
of a polynomial time algorithm, that is, '

TuEOREM 1 (Gold). The problem of determining, for a given finite sample S
and positive integer t, whether there exists a deterministic finite automaton of at
most t states compatible with S, is NP-complete.

On the other hand, if the sample is required to classify all strings not exceeding
a given length, we have the following result of Trakhtenbrot and Barzdin (1973):

THEOREM 2 (Trakhtenbrot and Barzdin). There is a polynomial time
algorithm which for any uniform-complete sample S finds a deterministic Sfinite
automaton of the minimum possible number of states compatible with S.

This suggests that constraints on the density of the sample might be used to
guarantee computational tractibility of the problem. However, in Section 3
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below we demonstrate that the problem remains NP-hard even under rather
strong constraints on the density of the sample. The cor}sjcruction given also
shows that various restrictions on the type of the realizing automaton are
similarly ineffective.

In Se'ction 4 we consider another possible system of representation of regular
sets, namely regular expressions. We prove a theorem analogous to TheorFm 1
for this system of representation and various restrictions of ‘11:. The techniques
required for dealing with smallest regular expressions are .dxfferent. from those
concerning minimum state finite automata, and are possibly of independent
interest.

In Levin (1972), Pfleeger (1973), Pudlak and Springsteel (1?77? may be‘ found
related results on the complexity of finding minimum realizations of incom-
pletely-specified Boolean functions, minimizing incompletel}'-speciﬁed deu.:r-
Iministic automata, and finding hypotheses in specified forms in agreement with
given observations, respectively.

2. DEFINITIONS

U = {0, 1} is the alphabet throughout. If m and n are nonnegative integers
with m < n we use U," to denote strings of length at least m and at most n
over U. The null string is denoted /.

If » and o are strings, then | u | denotes the length of u, u - v and uv denote
the concatenation of % and o, rev(x) denotes the reverse of u, and u(7) denotes the

ith letter of u. . v

If 4 and B are sets of strings then 4 - B denotes the set of all strings uv §uch
that we A and v e B. A" is defined inductively: 4° = {A} and 4t = A* - A
for all nonnegative integers . A* denotes the union of all A" as n ranges over
all nonnegative integers; A+ is A* minus the null string.

If S is any finite set, | S| denotes the cardinality of S. log x means the base
two logarithm of x. [x] denotes the least integer not less than x.

A sample S is a finite subset of U+ X U such that whenever {(u, a) and @, b>
are members of S and # = v then a = b. The domain of S, denoted domain(S),
is the set of all strings u# such that for some ac U, {u,ay€S. (We. a_ssume
that a sample is presented as input via a string which lists every pair in the
sample, so that the length of the input is proportional to the sum of the lengths
of the strings in the domain of the sample.) '

A partially-specified machine M is a quadruple <(Q, p, 8, &) such that Q is
a finite set, the set of states of M, p € O is the initial state of M, 8 maps a sul.)set
of O x Uinto Q, and A maps 2 subset of O x Uinto U. We implicitly co‘nsxder
§ and A as extended in the usual way to maps from a subset of Q x U* into Q
and a subset of Q x Ut into U, respectively. We define

7‘(‘1’ aay  y) = g, @) ‘Mg, a1a5) Ng, aas - a),
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whenever the right hand side is defined. Thus A maps a subset of 0 x U+
into U*. We abbreviate §(p, u), A(p, u), A(p, u) by 8(u), A(w), A(x).

A fully-specified machine (or simply, a machine) is a partially-specified machine
£0, p, 8, A> such that 8 and A are defined on all of Q x U.

A partially-specified machine (Q, p, 8, A> will be said to agree with (or be
compatible with) a sample S iff for every {u, a) € S, A(«) is defined, and A(u) = a.

Regular expressions and the sets they denote are defined inductively as follows:
0 and 1 are regular expressions, denoting the sets {0} and {I}; if £ and F are
regular expressions denoting the sets S and T then (£ -F), (E v F), and (E)*
are regular expressions denoting the sets S- T, SU T, and S*.

The set denoted by the regular expressions E will be denoted by L(E). Two
regular expressions E and F are equivalent iff L(E) = L(F).

We will freely omit unnecessary parentheses and the concatenation symbol
when informally designating regular expressions.

A regular expression E agrees with (or is compatible with) a sample S iff for
each (u,a>e S,uel(E)iffa = 1.

We use the definitions of deterministic and nondeterministic polynomial time
computability and reducibility, of the classes P and NP, and of NP-com-
pleteness as found in Cook (1971) and Karp (1972). A set S is NP-hard iff
every set in NP is polynomial time reducible to S.

3. Ox THE EFrFeEcT OF SAMPLE DENSITY

We define the size of a partially-specified machine to be the cardinality of the
set of states of the machine.

We define a sample S to be uniform-complete iff the domain of S consists of all
strings not exceeding a given length and no others. In other words, there exists
an integer k such that domain(S) = U,*.

We need also a quantification of the notion of a “nearly” uniform-complete
sample. Thus, given a real-valued function g(x) we say that a sample S is
g(x)-incomplete iff the domain of S is U;* — A for some positive integer k£ and
some set 4 of cardinality less than g(2"+1). For example, a sample whose domain
consists of all strings of length not exceeding 2k -+ 1 which do not have 1* as
a prefix is x/2-incomplete for any positive integer k.

We have the following easy corollary of Theorem 2:

COROLLARY 1. For any positive number d there is a polynomial time algorithm
which correctly decides for any (d log x)-incomplete sample S and positive integer t
whether there is a machine of size at most t which agrees with S.

Proof. Suppose S is a (d log x)-incomplete sample. If % is the length of
the longest string in the domain of S and n = 2%+! then the domain of S is U,*
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minus at most d log n strings. For each of the at most n? possible ways of
specifying outputs for the missing strings, we may apply the algorithm. of
Theorem 2 and take the smallest of the results. [i

The remainder of this section is devoted to proving the following:

TuroreM 3. For any positive number e it is an NP-complete problem to
decide, for an arbitrary xe-incomplete sample S and positive integer t, whether there
is @ machine of size at most t which agrees with S.

The reason that Gold’s construction for the proof of Theorem 1 does not
suffice to prove Theorem 3 is that a propositional formula f of m. clauses and n
variables is transformed to a sample containing strings of length at least r =
max(m, n). For such a sample to be xc-incomplete, it must contain ¢27 strings
for some positive constant ¢, which would not be polynomial in the size of f as
required for the NP-reduction. Thus, the primary purpose of the new construc-
tion is to keep the sample strings to length O (log r). We give a construction
which achieves this, and then briefly indicate how the ¢ may be achieved.

Proof of Theorem 3. Let € be a fixed positive number.

To see that the indicated problem is in NP, we note that if S and # are given
and # exceeds the length of the string presenting S then there must necessarily
be a machine of size ¢ which agrees with S. Otherwise, we may nondeterministi-
cally guess a machine of size ¢ and check that it agrees with S.

The proof that the problem is NP-hard is a polynomial time reduction of
a known NP-complete problem to it. First we assume that & is a fixed positive
integer (the value will be specified later) and define a particular incompletely-
specified machine M to be used in the proof.

We set

L = 4k + 3,

A={ueU*:|u| <2k+1andif |u] > k then u(k + 1) =1},
h(u) = u - 15, where s =L — 2 [u|.

(Note that # is injective, with range disjoint from A.)

B = {h(u) : ue 4},

Q0=A4UB

Foreachwe Qand ae U,
() if w| <kork <|w <2k-+1then
dw,a) =w-a and Mw, a) = 1;
(i) if jw|=~Fkor{w]|=2k-+1then

¥w, 1) =w-1 and  AMw, 1) =1;
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| () if 2k 4+ 1 <|w| <L then A{w) = v - b for some be U, and we
et ,

(w, a) = h(v) and AMw, 0) = b and Aw, 1) = 1;
(iv) if[w]| =L then
8w, a) = w and Mw, a) = 0.
And, finally,
M =<0, 4,8 X.

Figure 1 gives another view of the definition of M, indicating the inductive

M

definition of the partially-specified machine T',,; (R,,,) from two copies of T
(Rn),‘ and the construction of M from 2* -+ 1 copies of each of T} and Rk?
If w is a state in the left half of M, then A(w) is its mirror image in the right half.

If we define the level of a state w of M to be | w |, we note that the only un-

specified values of 8 and A are the O-transitions and O-outputs from states at
levels & and 2k - 1. Define

g(r,s) =0 if r+—s>L

=1 if r+s<L
The following facts may be verified of M:

(a) | Q] = 2%+2 k1 _ 2.

(b) 8(w) = w for all we Q;

() Mw-1%) =g(lw], s) for all w e Q;

(d) /:\(h(w) <0%) = 1* - rev(w) forallw € 4, wheres = |wandt =L —s;
(e) A(w-0°) =1t - rev(h(w)) for all we B, where t = | w |and s =L — ¢.

Ttem (c) may l?e used to distinguish states at different levels of M, items (d) and
(e) to distinguish two states at the same level. We accordingly define a sample,

S = {{u, A(u)>: either u =w-1° for weQ and s <L -+1—|w! or
u=w-1°0forwed,s=L—2|w|andt < |w|}.

Lemma 1. If, M =<Q',p', 8, X) is any machine which agrees with this
sample S then §'(v) # &'(w) for all v and w in Q with v + w. Consequently

Q"1 =101

Proof. Fix v and w from Q with v = w. There are three possible cases:
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Fic. 1. Construction of M.

(i) lv| s w]|. Without loss of generality, assume that [¢| > |w]|.
Lets =L — 1 — | z|. Since M’ agrees with S,
N 19 = Ae 19 = gllv,5) =0,
Nw-18) =g(wls) =1,
so 8'(v) # &' (w).
(i) || ='w|and|o| <2k+ 1.Lett = v|ands =L — 2¢t. Then
XN - 15 -0t = 13+t - rev(v),
N(w - 15 0f) = 15+t - rev(w).
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(i) || =]w| and |2z > 2k 1. Let 9 = hY(v), wy = hY(w),
t=|v|,s =L —t. Then v, # w, and

‘(v 0%) = 1t - rev(zy),

A
Nz - 0%) = 1t rev(z,). ||

Now we give the reduction. Let SF = tf: f is a propositional formula in
conjunctive normal form with each clause containing either only positive or
only negative literals}. Let SSAT — {fe SF: f is satisfiable}. Then SSAT is
an NP-complete problem, see Gold(1974).

Let f € SF be given. Suppose f has m clauses and 7 variables. Fix k=
[log(m -~ n)]. Consider the machine M — {Q, 4, 8, X> defined above for this

value of & Choose two disjoint sets C' and ¥ contained in U* with [Cl=m
and | V'| = n, to represent the clauses and variables of f, respectively. Define
in(z, ¢) = 1 if zel’, ceC, and variable ¢ appears in clause c,
=0 otherwise,
sense(c) = 1 if ceC and clause ¢ contains only positive literals,
=0 otherwise.

T, = {(@120, in(z, w)>: ¢, we UR,
Ty = {<cO1%, g(s, k> ce Cys <L+ 1— k),
Ty = {<c01c0, 1>: ce C},

Ty = {<c00, sense(c)>: c e C}.

And finally,
S;=SUnNuT,uT,uT,,

where S is the sample defined above for the value of £ chosen.
Since the domains of the components of the union defining S; are pairwise
disjoint, Sy is a sample.

Lemma 2. There is a machine of size at most | O | agreeing with S, iff fe SSAT.

Proof. Suppose that M’ = <Q’, p’, &, A") is a machine of size at most | [0}
which agrees with S; . Define r(z) = X(20) for all € V. We shall show that -
is an assignment which satisfies /. Note that M’ agrees with S, so from Lemma 1
we conclude that Q" consists precisely of those elements 8'(w) such that we Q
and that these are all distinct. Let ¢ e C be any clause. Let v, be the unique
element of Q such that §'(v,) = 8'(c0). Since M’ agrees with T, , N(v,1°%) =
X'(c01%) = g(s, k) for all positive integers s not exceeding L + 1 — k. This
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shows that v, must be of length (and level) k. By agreement with T; we have
)\'(bCICO) = X(c01c0) = 1, so by agreement with Ty, in(v,,c) =1, s0 v,e V
and the variable v, appears in the clause ¢. Finally, since M’ agrees with T,
(v,) = XN(v,0) = X'(c00) == sense(c), so the value assigned by = to v, satisfies c.
Since ¢ was an arbitrary clause of f, 7 satisfies f.

Conversely, suppose f is satisfiable and let = be an assignment of 0 and 1 to
elements of 7 which satisfies f. For each ¢ € C let v, be such that in(v,, ¢) = 1
and sense(c) = 7(v,). We define a machine M’ = (Q’, 4, &, ") as follows:

Q" =0
Forall we Q" and ae U,

&' (w, a) = 8(w, a) if this is defined,
= v, if we Canda =0,
= w] otherwise,

N(w, a) = ANw, a) if this is defined,
= in(u, v) if w = ule, where v, v e U* and a = 0,
=7(w)if we Vand a =0,

= ] otherwise.

Then M’ is a fully-specified machine with | O | states. To see that it agrees
with Sy,

(1) M’ extends M and consequently agrees with .S;
(i) M’ agrees with T by explicit construction;

(iii) ifceCand1 <s<L-+1—kthen

XN'(c0) = 1 by the default case for X',
X (c01%) = N(z 1%) = Nz 1%) = g(s, k),

so M’ agrees with T, ;
(iv) forallceC,

N(c01¢0) = N(z,1c0) = in(z, , ¢) = 1,

so M’ agrees with T} ;
(v) forallceC,

N'(c00) == X'(v,0) = 7(v,) = sense(c),

s0 M’ agrees with T',. |

ON THE COMPLEXITY OF MINIMUM INFERENCE 345

To complete the proof of Theorem 3 we must show how to achieve x*-
incompleteness of the sample. (Note that the strings of S, are of length
O(log(m —+ n)).) We therefore pad S, as follows.

Let » = [(4k — 5)/¢] and add a “preamble” of r states to the machine M
to obtain the machine M" = ((Q’, p/, 8, X') as indicated in Fig. 2. Each of the
additional r states may be distinguished from the original states of M by its
output under either input 0 or 1, and from the other states of the preamble by
its outputs under the input string 171, We define s = 4k - 4, f = r - s,

1y = {{u, X'(w)) : u +# 170 for all strings v, and u € U, 1},
I/2 = {<17‘u’ b> : <u’ b> € Sf})
S;=V,uVl,.

Note that the domain of Sj is U, less at most 2¢ strings, and since 25 < (2t)¢
the sample S; is x“-incomplete. It is then straightforward but tedious to verify
that Lemmas 1 and 2 may be strengthened to give

"preamble’” of r states

/—R O‘l/
10 1.0 1.0
OO0 .
?' ¢
start

Fic. 2. 'The machine M’.

LemmMa 3. There is a machine of size at most | Q' which agrees with S} iff

fe SSAT.

It is clear that the indicated reduction may be carried out in polynomial time
in the length of £, which concludes the proof of Theorem 3. ||

We note that the machine M’ constructed in the second half of the proof of
Lemma 2 is “finite-language” (i.e., accepts a finite set of strings), so we have

CororLary 2. If C is any class of machines which contains all the finite-
language machines then it is an NP-hard problem to decide for a sample S and
positive integer t whether there is a machine from class C which is compatible with S
and of size at most t.
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4. INFERRING REGULAR EXPRESSIONS

The notion of size we shall use for regular expressions has been ch0§en
primarily to simplify the proofs in this section. The size of a regular expression
will be the number of occurrences of the symbols 0 and 1 in it. (The results that
follow can be shown to hold for other definitions of size.) Define R = {(S,
S is a sample, and there is a regular expression of size at most ¢ which agrees

with S}.

TueoReM 4. R is an NP-complete problem.

Proof. 'To see that R is in NP, we note first that for any expression of. size m
there is an equivalent expression of length (as a string) at most 10m, using the
fact that (E*)* is equivalent to E*. If ¢ exceeds the sum of the lengths of t‘he
strings in the domain of S then there will necessarily be an expression O.f size
at most ¢ which agrees with S (namely, the disjunction of all the strings in .the
positive part of S). Otherwise, we nondeterministically guess a regular expression
of length at most 10t and check that it agrees with S. (T?at the agreement may
be checked in polynomial time is proved, for example, in Aho, Hopcroft, and
Ullman (1974).) . ' .

The proof that R is NP-hard is a polynomial time reductu.m to it of Fhe
following problem: SAT = {f: f is a propositional formula in conjunctive
normal form which is satisfiable}. SAT is NP-complete, see Karp (1972). Let f
be a propositional formula in conjunctive normal form with clauses numbered 1
to m and variables numbered 1 to n. Define

cont(,7) =0 if variable j does not appear in clause 7,
=1 if variable j appears positively in clause 7,
= —1 if variable j appears negatively in clause ,
g = (1100)7,

F; = 1100 if cont(z, j) = 0,
=110 if cont(s, j) =1,
= 100 if cont(s, j) = —1,
Sy = (g, 1},
S, = {(wxxy, 0>: ¢ = wxy and x contains both 0 and 1},
Sy = {{(1100)" 10(1100)%, 0y: ¥ + s = n — 1},
Sy = {(FuFip - Fin, 002 1 < i <y,
S, =8uUS,uUS;us;.

Levma 4. fe SAT iff (S;,3n>eR.
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Proof. Suppose f € SAT. Let 7 be an assignment of 0 and 1 to the variables
of f which satisfies f. For eachj = 1, 2,..., n let

E; = ()00 if =(j) =1,
= 11(0)*  if =(j) =0.

Let E = E\E, --- E, . Then E is a regular expression of size 3n. To see that E
agrees with .S, note first that L(E) is contained in L((1 *0*)) and if wyw, -+~ w, €
L(E), where each w; e L(1(1)* 0(0)*), then each =, €L(E;). Then

(1) gelL(E), so E agrees with S, ;

(i) if g = wxy and x contains both 0 and 1 then wxxy is not in L((1*0*)»)
and so is not in L(E), so E agrees with S, ;

() if r s =mn—1 and (1100)" 10(1100)* e L(E) then 10 eL(E;) for
some j, which is a contradiction, so E agrees with S5

(iv) if E does not agree with S, then for some i between 1 and m,
FyFy - Fy € L(E). Hence F; e L(E;) for j = 1, 2,..., n. Let k be any variable
appearing in clause 7. If k appears positively in 7 then F,; = 110 so E;, must be
11(0)* and 7(k) = 0. If k appears negatively in clause 7 then similarly 7(k) = 1.
In either case, we find that = does not satisfy clause 7, contradicting our choice
of . Hence E must agree with S, .

Conversely suppose that there exists a regular expression of size at most 3
which agrees with .S, . We shall show that a minimum such expression must have
essentially the form of E and derive from it an assignment which satisfies I
Let E be a regular expression of minimum possible size compatible with .S, .
By hypothesis the size of E is at most 3. We use the associativity of concatena-
tion to rewrite E as an equivalent expression of the same size: F — F.\F, ---F,,
where each F; is not itself a concatenation. Since geL(E) we may choose
915 92 > 4 such that ¢ = ¢,¢, - g3 and each g, € L(F,). For each 7, F; cannot
be of the form (G v H). For suppose to the contrary that F; = (G v H). Since
q; € L(F;) we have ¢; € L(G) or g; € L(H). If ¢, € L(G) then by replacing F; by G
in F we get an expression of strictly smaller size which is still compatible with
Sy, contradicting our choice of E. Similarly for the case of q;€L(H).

Thus the only possibilities for F; are 0 or 1 or (G)* for some regular expres-
sion G. In this last case, g9, *** (¢;)? - ¢ is also in L(E), so by agreement
with S, , ¢, cannot contain both 0 and 1. Hence we may again reassociate the
concatenations in E to obtain an expression G,H,G,H, - G,H, , where for
eachj =1, 2,..., n we have 11 € L(G;) and 00 € L(H,).

Now the size of G; is at most two for all j, for otherwise we could replace G;
by 11 and obtain an expression of strictly smaller size compatible with S;.
Similarly, the size of H; is at most two. It may be verified that the only expressions
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of size one which generate the string 11 are of the form ()*, where I € L(J), and
so must also generate the string 1, and similarly for expressions of size.: one which
generate 00. Thus for each j we cannot have both G; and H; of size one, for
otherwise 10 € L(G;H,), contradicting agreement with S, . To attain size at most
(and exactly) 3n for E we must have for each j either the size of G; is one or
the size of H; is one, but not both. Hence we define

(j) =1 if the size of G; is one,

=0 otherwise.

To see that = satisfies f we suppose to the contrary that it falsifies clause 1.
Then for each variable j,
(i) if j does not appear in clause i then F;; == 1100 € L(G;H,);
(i) if j appears positively in clause i then 7(j) = 0 and .

F; = 110 e L(G;H)); «
(iii) if j appears negatively in clause i then 7(j) = 1 and
F;; = 100 e L(G;H)).
Thus FyF;, - Fin € L(E), contradicting agreement with S, . Hence = must

satisfy f and fe SAT. |

The indicated construction of S; from f may be carried out. in polynomial
time in the length of f, so we conclude that the problem R is NP-hard. i

We note that the expression constructed in the first half of the proof of
Lemma 4 is of a special form in that it contains no occurrences of the symbol v.

Thus we have

CoroLLARY 3. If C is any set of regular expressions containing all those
expressions in which v does not appear, then the problem of deciding fOl.‘ a samplf S
and positive integer t whether there exists an expression from C which is compatible
with S and of size at most t 1s NP-hard.

A separate construction is given to prove the analog of Corollary 3 for *-free
regular expressions in Angluin (1976).

5. ReEmARKS AND CONCLUSIONS

In particular cases it might be more economical to represent a unifc?rm-
complete sample S as the list of strings u such that (u, 1> € S. The algorlt.hm
of Trakhtenbrot and Barzdin of Theorem 2 can be adapted to run in time
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polynomial in the length of this form of presentation of the input, which may be
of some practical interest. The question of whether Theorem 4 holds when
regular expressions are allowed to contain the negation operator is open. In
general, the identity of the regular set inferred for a given sample depends on
the system of representation and definition of size chosen. Angluin (1976) gives
an example of this phenomenon for deterministic versus nondeterministic
automata.

It is hoped that these largely negative results will be of use in guiding the
search for appropriate formulations of problems in concrete inductive inference,
and in the evaluation of proposed algorithmic solutions.
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