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1 Introduction

Discrete games of firm entry or product choice are often used to understand the effect of
merger, divestiture, or industrial policy on market structure. In this paper, we consider the
estimation of such models when there are many firms or when each firm makes a large set
of discrete decisions. For example, a firm may need to choose a set of products to sell in a
market from many potential products. In this case, the firm’s choice can be represented as a
long vector of binary decisions regarding each potential product’s entry into the market. The
estimation of such a model can quickly become challenging as the computational burden of
solving the game increases exponentially with the number of firms and firm decisions. In this
paper, we propose a computationally tractable estimation method and apply the method to
study the effects of merger on firm entry, product variety, pricing, and welfare in the context
of the craft beer market in California.

Our method is based on the bounds for conditional choice probabilities. Consider a
binary action a ∈ {0, 1}. Assuming no equilibrium action is dominated, we can show that
the equilibrium probability of a = 1 is larger than the probability that a = 1 is a dominant
strategy and smaller than the probability that a = 1 is not a dominated strategy. These
bounds hold when there is no pure-strategy equilibrium, when there are multiple equilibria,
under any equilibrium selection rule, and when the selection rule varies across markets.
More importantly, these bounds are easy to compute even with a large number of firms or
firm decisions because the bounds can often be reduced to cumulative distribution functions
evaluated at certain cutoffs. Using Monte Carlo experiments, we compare our method to
existing methods for estimating discrete games. We show that as the number of firms
increases, our method remains computationally feasible, while the computation time needed
using existing methods increases exponentially.

We apply our method to study a merger’s effects on firm entry and product variety. In
antitrust litigation, merging parties often argue that the arrival of new entrants mitigates
the increased market power resulting from a merger. One assumption behind this argument
is that incumbent firms do not change their product offerings. In our paper, we study the
effects of merger by addressing the following questions: Does a merger cause incumbents to
add or drop products? Do new firms enter the market after a merger? What is the overall
impact of product adjustments and firm entry on welfare? Do any changes in product variety
offset or exacerbate the negative price effects on consumer welfare? How does a fixed cost
merger efficiency influence the effect of merger on product variety?

The US craft beer industry provides an ideal empirical context to study the effects of
merger on the market entry and product variety of multi-product firms. Firstly, craft brew-
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eries have recently become popular acquisition targets, and these transactions have drawn
the attention of antitrust regulators (Codog, 2018). Secondly, consumer preferences for beer
may vary widely, making product variety an important determinant of consumer welfare
in this market. Lastly, there are rich demographic variations across geographical markets,
which help to identify consumer tastes and firm costs. In our study, we focus on the state of
California, which has the highest number of craft breweries and craft beer production among
all US states, according to the Brewers Association, a trade group of the craft beer industry.

To address our research questions, we set up a model to describe consumer demand and
firm decisions in the retail beer market in California. The demand side is a flexible random
coefficient discrete choice model that allows for both observed and unobserved heterogeneity
in consumer taste. The supply side is a static two-stage game. In the first stage, each firm
is endowed with a set of potential products and chooses the set of products they will sell in
a market. If a firm chooses not to enter the market, it chooses the empty set. In the second
stage, firms observe demand and marginal cost shocks and simultaneously choose prices.

We use a newly compiled dataset to estimate our model. Our main data sources are the
Nielsen Retail Scanner Data and Nielsen Consumer Panel from 2010 to 2016. We supplement
these data with information on whether a beer is considered a craft beer based on the
designation from the Brewers Association. We further augment our data by hand-collected
information on owner identities and brewery locations.

Our demand estimates reveal substantial unobserved heterogeneity in consumer tastes
and little substitution between craft and non-craft products. We obtain these estimates
by combining standard macro moments with a new set of micro moments based on the
panel structure of the consumer survey data. For example, to identify the dispersion in
the unobservable heterogeneity in consumer tastes for craft products, we use the following
intuition: if the standard deviation is large, then a household’s taste for craft products is
highly correlated over time. As a result, the expected total purchase of craft beers of a
household in a year conditional on the household ever purchasing a craft beer in that year is
large. We back out the marginal costs of beers based on the first-order conditions following
the standard approach.

We apply our method based on bounds for conditional choice probabilities to estimate
the fixed cost of product entry. This method is well suited to our empirical setting, which
features many firms and many potential products. Our empirical setting also features rich
market- and product/market-level variations resulting in variations in our bounds. Applying
our method, we find higher fixed costs of entry for products by independent craft breweries.
We also find that both the mean fixed cost of entry and the variance of the fixed cost shock
increase with market size.
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Using the estimated model, we conduct a counterfactual simulation where the largest
macro brewery acquires three large craft breweries. This hypothetical merger case allows
us to examine what would happen if the current acquisition trend (i.e., a so-called macro
beer firm acquires small craft breweries) continues to the point where the craft beer market
becomes as concentrated as the overall beer market. In our simulations, we consider the role
of a fixed cost efficiency gain from the merger. Specifically, the merger allows craft breweries
to use the acquirer’s marketing networks and enjoy lowered fixed costs. Without the fixed
cost efficiency, the merged firm drops more products than what other firms add; with the
efficiency, the merged firm adds products, leading to an overall increase in product variety.
In both scenarios, new firm and product entry are not enough to offset the negative effect
of the merger on both consumer surplus and total surplus. The merger efficiency mitigates
but does not reverse the overall welfare loss.

In our empirical implementation, we define a firm’s set of potential products in a year as
all products owned by the firm available in any market in the year. In other words, we focus
on a firm’s decision to sell an existing product in a market, a decision less costly than new
brewery or brand creation. Our results show that even in such a setting that is favorable for
firm or product entry, the merger decreases consumer welfare.

Contributions and Literature Review This paper makes two contributions to the liter-
ature. First, we develop a method for estimating discrete choice games with many firms and
many decisions. Our method differs from existing methods for estimating discrete games,
such as Aradillas-Lopez and Tamer (2008) and Ciliberto and Tamer (2009), in the construc-
tion of bounds.1 These papers use bounds defined by the probability that a market-level
outcome is a unique equilibrium. For example, the probability that an outcome is an equi-
librium is larger than the probability that this outcome is a unique equilibrium. Computing
such bounds, therefore, requires enumerating all possible outcomes (e.g., all possible entry
outcomes regarding each potential entrant’s entry decision) and checking whether each one
of them is consistent with the behavioral assumption of the model (e.g., Nash equilibrium).
Since the number of possible outcomes increases exponentially with the number of firms,
the computational burden may become prohibitively high in settings with many firms. By
contrast, our bounds are one-dimensional cumulative distribution functions evaluated at cer-
tain cutoffs. Computing these cutoffs does not require solving the full game. Therefore, our

1Our bounds and the bounds in these papers are not sharp. See Beresteanu, Molchanov and Moli-
nari (2011), Galichon and Henry (2011), and Chesher and Rosen (2017) for characterizations of the sharp
identification region. Other papers that also estimate an incomplete model and exploit the assumption of
undominated strategies include, for example, Haile and Tamer (2003) and Barkley, Groeger and Miller (2021)
in the auction literature.
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method is scalable to settings with many firms and firm decisions. In a contemporaneous
paper, Wang (2020) proposes a hybrid approach that replaces one side of the Ciliberto and
Tamer (2009) bounds with probability bounds based on the concept of dominant strategies.
Such an approach is less computationally intensive than Ciliberto and Tamer (2009), but
still requires constructing bounds for all equilibrium outcomes and cannot scale.

Another strand of the literature on estimating discrete games exploits moment inequali-
ties derived from a necessary equilibrium condition that no firm has an incentive to unilat-
erally deviate from the observed equilibrium. These papers typically rely on a mean-zero
assumption of non-structural errors (Ho, 2009; Pakes, Porter, Ho and Ishii, 2015; Wollmann,
2018) or support restrictions (Eizenberg, 2014), and do not estimate the distribution of the
structural errors associated with the discrete actions. Our approach estimates the structural
error distribution and takes it into account in our counterfactual simulations.

Overall, our approach to estimating discrete games is scalable to large games and has
significant advantages when solving for equilibria is costly and when it is important to
consider shocks that are known to firms but unobservable to researchers.2

Second, we contribute to the literature on merger, entry response, and product variety.
A number of papers study entry defense theoretically or through simulations (e.g., Werden
and Froeb, 1998; Cabral, 2003; Spector, 2003; Gandhi, Froeb, Tschantz and Werden, 2008;
Anderson, Erkal and Piccinin, 2020; Caradonna, Miller and Sheu, 2021). Ciliberto, Murry
and Tamer, 2021 empirically analyze merger and entry in the airline industry. We contribute
to this strand of the literature by expanding the examination to multi-product firms with
endogenous product choice. In our model, because incumbents can reduce product offerings,
it is possible for a merger to decrease product variety while inducing new entry.

Another strand within this literature studies how a merger affects product variety and
welfare when there is no firm entry (e.g., Fan, 2013; Wollmann, 2018; Fan and Yang, 2020;
Garrido, 2020; Li, Mazur, Park, Roberts, Sweeting and Zhang, 2022).3 We contribute to

2There are three other alternative estimation approaches. First, one can obtain a unique equilibrium with
additional assumptions and estimate the model via maximum likelihood (Reiss and Spiller, 1989; Garrido,
2020) or a simulated method of moments (Berry, 1992; Li, Mazur, Park, Roberts, Sweeting and Zhang,
2022). Second, Illanes (2017) estimates a dynamic discrete choice problem using a semi-parametric latent
variable integration method (Schennach, 2014). This approach also avoids solving a game or an optimization
problem, but depends on the availability of certain instruments and, in their absence, can result in relatively
wide (and sometimes unbounded) confidence sets of parameters. Third, in their merger simulations, Fan and
Yang (2020) make direct assumptions about the distribution of an unobserved fixed cost shock conditional
on the observed equilibrium. In comparison, the approach in this paper estimates the distribution.

3Several papers (e.g., Berry and Waldfogel, 2001; Sweeting, 2010; Jeziorski, 2015) have studied the effects
of merger on firm entry and product variety in the radio industry but do not quantify the impact of mergers
on consumer welfare because radio stations do not set prices for their listeners. Mazzeo (2002), Seim (2006)
and Draganska, Mazzeo and Seim (2009) also study entry with endogenous product choice but within the
context of an incomplete information framework.
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this strand of the literature by jointly studying firm entry responses and incumbent product
adjustments after a merger to quantify the net changes in product variety.

We also contribute to understanding how merger efficiency shapes the effects of merg-
ers. While Fan (2013) considers cost synergies in operation costs in the newspaper industry
and Elliott, Houngbonon, Ivaldi and Scott (2021) study how economies of scale affect prod-
uct quality and firm investment in the telecommunications industry, this paper examines a
merger efficiency in reducing fixed costs and highlights the countervailing effects of such a
merger efficiency: on the one hand, the merger efficiency can lead to an increase in product
variety by the merging firms; on the other hand, it reduces new firm entry and new product
entry because product choices tend to be strategic substitutes. In the end, merger efficiency
only mitigates but does not reverse the merger’s negative welfare effects.

The rest of the paper is organized as follows. Section 2 explains our estimation method
and presents our Monte Carlo simulation results. Section 3 describes the craft beer market in
California and our data. Section 4 presents the empirical model. Section 5 explains the esti-
mation procedure and presents the estimation results. Section 6 discusses the counterfactual
designs and results. Finally, Section 7 concludes.

2 Discrete Games and Our Estimation Strategy

The estimation of discrete games presents several challenges. First, since there might be
multiple equilibria, the maximum likelihood approach may not apply without explicit equi-
librium selection rules.4 Second, a selection issue may complicate a moment inequality
approach because the distributions of unobservables conditional on observed actions differ
across these actions. We have discussed the existing methods dealing with these issues in
the literature review part of the Introduction. In this section, we present our method by
starting with a simple model to illustrate how we define our bounds. We then explain our
estimation strategy for more general models. We present a set of Monte Carlo experiments
to compare our approach to existing methods. We then provide a discussion on when our
method is particularly useful. We conclude the section with an extension.

2.1 An Illustrative Model and Our Bounds

To illustrate our bounds, we start with a 2×2 model with two firms where each firm makes
a single binary decision. We later extend the model to a setting with more firms where

4One exception is that Tamer (2003) considers a maximum likelihood estimator in the presence of multiple
equilibria for bivariate games without specifying an equilibrium selection rule.
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each firm makes a vector of binary decisions. In this bivariate model, firms 1 and 2 decide
whether to enter market m. Let Ynm = 1 indicate entry by firm n in market m. If firm n

enters, its profit is πnm (Y−nm) − Cnm − ζnm, where πnm (Y−nm) is a variable profit function
that depends on the rival action Y−nm, Cnm is the fixed cost of entry, and ζnm is a fixed cost
shock observable to firms, which follows a distribution, Fζ . Firm n enters market m if and
only if its post-entry profit is positive, i.e.,

Ynm = 1 [πnm (Y−nm) − Cnm − ζnm ≥ 0] . (1)

Our firm behavior assumption is as follows:

Assumption 1. Ynm is not a dominated strategy for n= 1 or 2.

In other words, we assume that any observed Ynm is not dominated. This level-1 ratio-
nality assumption implies the following bounds for Pr (Ynm = 1):

Pr (Ynm = 1 is a dominant strategy) (2)

≤ Pr (Ynm = 1)

≤ Pr (Ynm = 1 is not a dominated strategy) .

Given that Ynm = 1 is a dominant strategy if and only if ζnm < min {πnm (0) , πnm (1)}−Cnm,
and that Ynm = 1 is not a dominated strategy if and only if ζnm < max {πnm (0) , πnm (1)} −
Cnm, it follows from (2) that

Fζ (min {πnm (0) , πnm (1)} − Cnm) ≤ Pr (Ynm = 1) ≤ Fζ (max {πnm (0) , πnm (1)} − Cnm) .

Under the assumption that rival entry reduces a firm’s profit, the inequality can be further
reduced to

Fζ (πnm (1) − Cnm) ≤ Pr (Ynm = 1) ≤ Fζ (πnm (0) − Cnm) .

Our estimation strategy builds on these inequalities. Before we discuss the general model
and estimation, we first highlight the advantages of our bounds and compare our bounds
with those in the literature.

Advantages of Our Bounds

There are two advantages of using our bounds to estimate discrete games. First, our bounds
do not rely on any equilibrium selection assumptions. Specifically, they hold when there
are multiple equilibria, when the equilibrium selection mechanisms differ across markets, or
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when there is no pure strategy equilibrium for some values of fixed cost shocks. Moreover,
because our bounds are constructed based on dominant and non-dominated strategies, they
are valid under flexible information assumptions (Grieco (2014)). Second, since our bounds
are one-dimensional CDFs, they are easy to compute. Therefore, the key advantage of using
our bounds to estimate discrete games is that it is computationally feasible even in settings
with many firms and when each firm makes multiple binary decisions simultaneously (such
as product portfolio decisions).

Our bounds are also intuitive. In a single-agent binary choice model, the inequalities
collapse into an equality used in the standard GMM estimator (McFadden, 1989). Thus, our
approach can be considered an extension of the GMM estimation of binary choice models to
a game setting.

Comparison to Bounds in the Literature

Ciliberto and Tamer (2009) Ciliberto and Tamer (2009) (henceforth, CT) assume the
outcomes observed in the data are pure-strategy Nash equilibria and construct bounds for
the probability of observing an outcome (Y1m, Y2m), denoted by Pr (Y1m, Y2m), as follows:

Pr ((Y1m, Y2m) is a unique pure-strategy Nash equilibrium) (3)

≤ Pr (Y1m, Y2m)

≤ Pr ((Y1m, Y2m) is a pure-strategy Nash equilibrium) .

The CT bounds are sharper than ours. The intuition is that Y1m = 1 being a dominant
strategy is a sufficient but not necessary condition for the event that either (Y1m = 1, Y2m = 1)
or (Y1m = 1, Y2m = 0) is a unique Nash equilibrium. Therefore, we have

Pr (Y1m = 1 is a dominant strategy)

≤ Pr ((Y1m = 1, Y2m = 1) is a unique pure-strategy Nash equilibrium)

+ Pr ((Y1m = 1, Y2m = 0) is a unique pure-strategy Nash equilibrium)

In other words, the CT bounds imply a larger lower bound for Pr(Y1m = 1) than our lower
bound. Similarly, the CT bounds also imply a smaller upper bound than ours.

However, using the CT bounds for estimation in practice can be computationally chal-
lenging. First, one needs to obtain the bounds for all possible entry outcomes. With N

firms making binary entry decisions, there are 2N possible outcomes. Second, to simulate
the lower bound for each outcome (i.e., the probability that this outcome is a unique equi-
librium), one has to draw fixed-cost shocks (ζ1m, ζ2m) and, for each draw, find all equilibria
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by going over all possible outcomes and verifying whether each of them is an equilibrium.
This procedure can be computationally costly, especially when there are many firms, as the
number of possible outcomes grows exponentially with the number of firms.

Aradillas-Lopez and Tamer (2008) Similarly to CT, Aradillas-Lopez and Tamer (2008)
(henceforth, AT) also construct bounds for Pr(Y1m, Y2m) but consider weaker assumptions
than Nash. Here we focus on the AT bounds based on the level-1 rationality assumption.
Unlike the comparison between the CT bounds and our bounds, the AT bounds are not
necessarily sharper than ours (and vice versa). For example, Y1m = 1 being a dominant
strategy does not necessarily imply that either (Y1m = 1, Y2m = 1) or (Y1m = 1, Y2m = 0)
is a unique model implication according to level-1 rationality. There are scenarios where,
although the model implication for (Y1m, Y2m) is not unique, firm 1 always chooses the
dominant strategy Y1m = 1. Our bounds exploit the uniqueness of a firm’s action while the
AT bounds do not.5

Computationally, one still has to construct bounds for all possible entry outcomes, making
it challenging to estimate a discrete game in settings with many firms.

2.2 General Models and Estimation Using Our Bounds

We now describe a general model and explain how to estimate the model using our bounds.

2.2.1 General Model

We consider M markets and N firms, where each firm n makes a vector of binary decisions,
Y nm, in each market m. For example, firms decide whether to enter a market and, if so,
which subset of products from a potential set of products to sell. In this setting, Y nm =
(Yjm, j ∈ Jn), where Jn is the set of potential products for firm n, and Yjm ∈ {0, 1} indicates
whether firm n sells product j in market m. Each product j is firm-specific.

We use Y m = (Y nm, n = 1, ..., N) to denote all firm decisions in the market, and
πn (Y m, Xnm) to denote the variable profit function of firm n, which depends on Y m as
well as a set of observable covariates, Xnm. For example, Xnm may include the characteris-
tics of all products in the market, features of firm n, and the demand conditions in market
m. We further assume that there is a cost associated with choosing Yjm = 1. This cost is
c (Wjm, θ) + ζjm, where Wjm is a vector of exogenous covariates. The unobserved cost shock,
ζjm, is assumed to be i.i.d. and follows the distribution Fζ(·, σζ).

5See Supplemental Appendix SA for a detailed comparison between our bounds and the AT bounds as
well as for a graphic illustration of the comparison between our bounds and the CT bounds.

9



The parameters to be estimated include the coefficients θ and the distribution parameters
σζ in the fixed cost. Researchers observe (Yjm,Wjm, Xnm), but not the fixed cost shock
ζjm. The variable profit function πn (Y m, Xnm) is either known or has been estimated.
For example, one could follow the standard literature in Industrial Organization to estimate
demand and marginal costs and then obtain the estimated variable profit at a Nash-Bertrand
equilibrium for any given Y m.

We define the change in a firm’s variable profit when Yjm turns from 0 to 1:

∆j (Y −jm, Xnm) = πn (Yjm = 1,Y −jm, Xnm) − πn (Yjm = 0,Y −jm, Xnm) , (4)

where Y −jm = (Yj′m, j
′ ∈ ∪n′Jn′ , j′ ̸= j). Given the discrete nature of Y −jm, the following

minimum and maximum changes in variable profits exist: ∆j (Xnm) = minY −jm
∆j(Y −jm,Xnm)

and ∆j (Xnm) = maxY −jm
∆j (Y −jm, Xnm). Since πn (Y m, Xnm) is either known or esti-

mated, so are ∆j (Xnm) and ∆j (Xnm).
Following the discussion in the previous section, we can see that the bounds of the

conditional probability Yjm = 1 given Xnm and Wjm are:

Fζ

(
∆j (Xnm) − c (Wjm, θ) , σζ

)
(5)

≤ Pr (Yjm = 1 |Xnm,Wjm )

≤ Fζ

(
∆j (Xnm) − c (Wjm, θ) , σζ

)
.

We define the following moment functions:

L (Yjm, Xnm,Wjm, θ, σζ) = Fζ

(
∆j (Xnm) − c (Wjm, θ) , σζ

)
− 1 (Yjm = 1) , (6)

H (Yjm, Xnm,Wjm, θ, σζ) = 1 (Yjm = 1) − Fζ

(
∆j (Xnm) − c (Wjm, θ) , σζ

)
.

The inequalities in (5) imply the following conditional moment inequalities:

E (L (Yjm, Xnm,Wjm, θ, σζ) |Xnm,Wjm ) ≤ 0, (7)

E (H (Yjm, Xnm,Wjm, θ, σζ) |Xnm,Wjm ) ≤ 0.

2.2.2 Identification

The identification of (θ, σζ) based on the inequalities in (5) is similar to the idea of special
regressors in entry games (Ciliberto and Tamer, 2009; Lewbel, 2019). To identify our pa-
rameters, we exploit exogenous variations in Xnm and Wjm. For example, to identify the
coefficient in θ that corresponds to an indicator variable, we compare the entry probability
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conditional on this indicator being 1 versus 0, holding other covariates fixed. Similarly, to
identify the coefficient of a continuous variable, we examine how entry probability varies
across different ranges of the continuous variable. Exogenous variations in Xnm and Wjm

are also helpful for identifying the distribution parameters σζ . For example, consider a dis-
tribution of ζjm that is fully specified by its variance. If the variance is large, the upper
and lower bounds will show little co-variance with the covariates. In the special case where
ζjm follows a symmetric distribution, both bounds in (5) approach 0.5 as the variance in-
creases. On the other hand, when the variance is close to 0, both bounds are close to 0 if
∆j (Xnm) − c (Wjm, θ) < 0 or close to 1 if ∆j (Xnm) − c (Wjm, θ) > 0. Therefore, if the vari-
ance is small, the model predicts large jumps in entry probabilities even with small changes
in the covariates. Both the lack of sensitivity of entry probability to covariates (in the case
of a large variance of ζjm) and the high sensitivity (in the case of a small variance) can be
tested by data.

2.2.3 Estimation

Moment Inequalities Following the literature on conditional moment inequalities, we
transform the conditional moment inequalities in (7) into unconditional ones:

E

 1
#J

∑
j∈J

L (Yjm, Xnm,Wjm, θ, σζ) · g(k) (Xnm,Wjm)
 ≤ 0, (8)

E

 1
#J

∑
j∈J

H (Yjm, Xnm,Wjm, θ, σζ) · g(k) (Xnm,Wjm)
 ≤ 0.

Inside the expectation in (8), we average over potential products because even when the
fixed cost shock ζjm is independent across j, the entry decisions Yjm across j within the
same market m may be correlated due to strategic interdependence among firms. However,
the entry decisions Y m are independent across markets.6 The functions g(k) (Xnm,Wjm) , k =
1, ..., K are non-negative and capture information contained in the conditioning variables.
We define these functions below.

Approximate ∆j (Xnm) and ∆j (Xnm) To compute the moment functions, we need to
compute ∆j (Xnm) = minY −jm

∆j(Y −jm, Xnm) and ∆j (Xnm) = maxY −jm
∆j (Y −jm, Xnm),

where ∆j (Y −jm, Xnm) is the change in firm n’s expected variable profit when product j joins
the market, as defined in equation (4). Directly solving for the minimum and maximum of

6Averaging over potential products is not strictly necessary. One could account for the correlation among
observations indexed by jm and adjust the estimate of the covariance matrix of the moments accordingly.
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the expected profit across all possible values of Y −jm may be computationally prohibitive
because there are 2(length of Y −jm) possible values of Y −jm and for each value of Y −jm, one
needs to solve a pricing game for multiple simulated draws of demand and marginal cost
shocks in order to compute ∆j (Y −jm, Xnm). Economic intuition suggests that, because
products are substitutes, we can approximate the minimum and maximum by, respectively,
the following:

∆j (Xnm) ≈ ∆j ((1, ..., 1) , Xnm) and ∆j (Xnm) ≈ ∆j ((0, ..., 0) , Xnm) .

These approximate extrema are exact for entry games such as those in Berry (1992), Seim
(2006), Ciliberto and Tamer (2009), Sweeting (2013), and Berry, Eizenberg and Waldfogel
(2016). For more general demand and pricing models such as ours in the empirical part of
the paper, we find that the approximate extrema coincide with the true values in all of our
computational experiments.7

Non-negative Functions We define our non-negative functions g(k) (Xnm,Wjm) in (8)
as functions of ∆j (Xnm), ∆j (Xnm), and Wjm. In practice, we have found ∆j (Xnm) and
∆j (Xnm) to be informative summary statistics of the long vector of covariates capturing
market structure and the characteristics of each potential product. The vector Wjm includes
covariates in the fixed cost function. The extrema ∆j (Xnm) and ∆j (Xnm) are continuous
variables while Wjm can include both continuous and discrete variables.

We first consider a scenario where Wjm consists of an indicator variable. We specify a
series of cutoffs {bl : l = 1, ..., L}. For each cutoff bl, we define the following functions:

1

(
∆j (Xnm) > bl

)
·Wjm, (9)

1

(
∆j (Xnm) < bl

)
·Wjm,

1

(
bl < ∆j (Xnm) < ∆j (Xnm) < bl′

)
·Wjm,

where l′ = l+1, ..., L. We define another set of functions by replacing Wjm in (9) by 1−Wjm.
Our non-negative functions g(k) (Xnm,Wjm) include all these functions.

When Wjm contains more than one indicator variables, we repeat the above process for
each indicator variable and include these additional functions in g(k) (Xnm,Wjm) . When Wjm

7We randomly sample 100 markets and H potential products from our sample. For each selected potential
product and each selected market, we hold fixed the entry outcomes of the products not in the H selected
products, and go over all possible outcomes for the other H − 1 products to find the actual extrema. For all
sampled markets and H products when H takes the value of 6, 8, or 10, we find that the approximations
coincide with the actual extrema.
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contains a discrete variable that takes value from a finite set, we replace Wjm in (9) by an
indicator of whether the value of this variable equals to each of the values in the finite set.
When Wjm contains a continuous variable, we define a set of cutoffs for this continuous
variable and replace Wjm in (9) by an indicator of whether the value of the variable falls into
a bin defined by the cutoffs.

Inference We construct the confidence set for (θ, σζ) by inverting the test in Andrews and
Soares (2010). In Appendix A, we provide details on the construction of our confidence set
and a step-by-step guide on the calculation of the confidence set.

The inference procedure takes as input the variable profit function πn (Y m, Xnm) and thus
the extrema of the change in variable profits ∆j (Xnm) and ∆j (Xnm). In empirical studies,
the variable profit function may be computed based on estimates of demand and marginal
costs. In Appendix A, we also explain how to adjust the confidence set when πn (Y m, Xnm)
depends on these separately estimated parameters.

2.3 Monte Carlo Experiments

We use Monte Carlo experiments to compare both the performance and the computational
burden of our method with those in the literature.

2.3.1 Monte Carlo Experiment Setup

In our Monte Carlo experiments, we consider an entry game similar to that in Ciliberto and
Tamer (2009). Specifically, there are N potential entrants and each firm n makes a binary
decision Ynm ∈ {0, 1}, where Ynm = 1 represents entering market m. If firm n enters, its
variable profit is:

πn(Y −nm, Xnm) = Om

(
xnm − ϕ log(1 +

∑
n′ ̸=n

zn′mYn′m)
)
,

where Y −nm = (Yn′m, n
′ ̸= n) denotes rival firms’ entry decisions, Om represents a market-

level profit shifter, xnm is a firm-level profit shifter, and znm captures the competitive effect
of firm n on other firms. The logarithm functional form follows Berry (1992), where the
competitive effects are homogeneous across firms (i.e., zn′m = 1) and a firm’s profit depends
on log(1 +∑

n′ ̸=n Yn′m). The parameter ϕ governs the magnitude of the competitive effects.
We collect all covariates in Xnm = (Om, xnm, {zn′m}n′ ̸=n).

The fixed cost of entry is C+σζnm, where the unobservable cost shock ζnm is assumed to
be a standard normal random variable and i.i.d. across both firms and markets. The mean
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fixed cost parameter C and the standard deviation σ are the parameters to be estimated.
We set the true values to be C = σ = 1.

For each Monte Carlo experiment, we simulate 300 data sets and each data set consists
of 4000 markets. To simulate a data set, we draw Xnm for each firm and each market.
Specifically, we draw Om uniformly between 1 and 2, xnm uniformly between 0 and 1, and
znm uniformly between 0 and 0.5. We draw ζnm from the standard normal distribution.
We compute the Nash equilibrium entry outcome for each market. In the case of multiple
equilibria, an equilibrium is selected at random with equal probability.

Since the profit function πn decreases in the entry decision of a firm’s rivals, we have

min
Y −nm

πn(Y −nm, Xnm) = πn((1, ..., 1), Xnm) = Om

(
xnm − ϕ log(1 +

∑
n′ ̸=n

zn′m)
)
,

max
Y −nm

πn(Y −nm, Xnm) = πn((0, ..., 0), Xnm) = Omxnm.

Based on (5), we use the following bounds in our estimation

Φ
(

1
σ

(
Om

(
xnm−ϕ log(1+

∑
n′ ̸=n

zn′m)
)
−C

))
≤ Pr(Ynm = 1|Xnm) ≤ Φ

( 1
σ

(Omxnm−C)
)
, (10)

where Φ(·) is the standard normal distribution function.

2.3.2 Monte Carlo Experiment Results

We first present the coverage probability of our 95% confidence set containing parameter
values of C and σ in the neighborhood of the true parameter value (i.e., (C, σ) = (1, 1)).
Specifically, for visibility, we plot the coverage probabilities for C and σ separately. For
instance, for the coverage probability of C = 0.8 (i.e. C − Ctrue = −0.2), we report the
fraction of the 500 data sets where the 95% confidence set corresponding to this data set
contains (0.8, σ) for some value of σ. We do so for candidate values of C from −1 to 3 and
σ from exp(−1) to exp(3).

Figure 1 compares the coverage probabilities, for C in panel (A) and σ in panel (B),
using our bounds versus the CT and AT bounds. Each row in these two panels correspond
to a different number of potential entrants N = 2, ..., 4, and each column corresponds to a
different value for the competitive-effect parameter ϕ = 0.4, 0.5, 0.6, and 0.7. From the lower
and upper bounds in (10), we can see that the gap between the bounds depends on both the
number of firms N and the competitive parameter ϕ. Therefore, as we vary N and ϕ, we
tighten or widen our bounds. Specifically, as N or ϕ increases, our bounds become wider.

We have three findings from these comparisons in Figure 1. First, using all three bounds

14



Figure 1: Coverage Probabilities: FY vs. CT vs. AT Bounds
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Table 1: Computation Time: FY vs. CT vs. AT Bounds

N (#Potential Entrants) FY (s) CT (s) AT (s)
2 0.017 0.341 0.017
3 0.014 0.739 0.084
4 0.022 1.930 0.452
5 0.023 5.580 1.682
6 0.021 21.743 13.891
7 0.016 151.646 132.086
8 0.126 1459.528 1421.882

Note: the table reports the computation time required to evaluate the test statistic used for constructing
the confidence set once. The three columns correspond to our bounds (FY), the Ciliberto and Tamer (2009)
(CT) bounds, and the Aradillas-Lopez and Tamer (2008) (AT) bounds.

(i.e., our bounds – labeled FY, the CT bounds, and the AT bounds), the coverage probability
decreases for parameter values further away from the true value. Second, FY’s coverage
probability is higher than CT’s, but lower than AT’s. This finding is consistent with our
discussion on the comparison of our bounds to the CT and AT bounds in Section 2.1, i.e.,
while the CT bounds are sharper than ours, there is no clear ranking between our bounds and
the AT bounds. Third, FY’s and AT’s coverage probabilities increase as N or ϕ increases.
This result is expected because the gap between bounds in both estimators increases in N

and ϕ. However, even for the largest N and ϕ, FY’s coverage probability decreases quickly
for parameters away from the true values.

Turning to the computational burden of the three methods, we report the time needed to
evaluate the test statistic used for constructing the confidence set. Specifically, we compare
the time needed to compute the test statistic once using our bounds versus the CT and AT
bounds in Table 1.8

Table 1 shows that our method’s computational advantage grows exponentially with
the number of potential entrants in a game. Across the three columns of the table, the
computation time of FY bounds is consistently smaller than that of either CT or AT bounds.
Across the rows, the computation time of FY bounds is relatively stable as the number of
potential entrants (N) increases. In contrast, the computation time using the CT and AT
bounds increases from less than 1 second to more than 23 minutes. The FY bounds are
scalable because they only require evaluating one-dimensional CDFs. In contrast, CT and
AT bounds require enumerating all possible market outcomes, the number of which grows
exponentially as the number of potential entrants increases.

8The results are computed on a cluster using Intel Xeon Gold 6154 processors (2x 3.0 GHz). We use 500
simulation draws of (ζ1m, ζ2m) to simulate the CT bounds.
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2.4 Discussion

In this section, we provide a further discussion on the computational advantage of our method
and the tightness of our bounds. With many firms, FY bounds’ computational advantage
is greater, but so is the gap between the bounds. We discuss the trade-off between the
computational savings and the identifying power of our bounds below.

First, it is worth noting that as the number of firms increases, while the computational
advantage increases exponentially, we expect the gap between our bounds to increase at a
lower, possibly diminishing, rate. For example, the profit difference between a duopolist
and a triopolist is typically smaller than that between a monopolist and a duopolist.9 As a
result, having a large number of firms does not necessarily mean our bounds are too wide to
be useful.

Moreover, the tightness of the bounds also depends on the nature of competition between
firms and is ultimately an empirical question. Generally, when products are more heteroge-
neous, firm profit is less sensitive to the entry of a competitor. As a result, our bounds are
tighter. Therefore, regardless of the number of firms and products, we expect the identifying
power of our bounds to be stronger in settings where there exist a sizable group of products
that are quite differentiated from the rest of the products.

2.5 Extension

So far, we have assumed that the unobserved cost shock is i.i.d. In this section, we extend
the model to allow for correlated shocks. We first explain how an additional set of bounds
can be constructed and used to identify the correlation using the illustrative model in Section
2.1. We then extend the general model in Section 2.2 and explain the estimation details.
Finally, we show the results of the Monte Carlo experiment for this extension.

2.5.1 Extension to the Illustrative Model and Additional Bounds

We first extend the illustrative model in Section 2.1 and allow unobserved cost shocks ζ1m

and ζ2m to be correlated. To estimate the correlation in unobserved cost shocks, we consider
the bounds for the probability of Pr (Y1m = 1, Y2m = 1). The level-1 rationality assumption

9See Bresnahan and Reiss (1991) for an early work establishing this result. Berry (1992) specifies and esti-
mates a profit function linear in the logarithm of the number of firms to capture the diminishing competition
effect as the number of firms increases.
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implies the following:

Pr (Ynm = 1 is a dominant strategy for both n = 1 and n = 2)

≤ Pr (Y1m = 1, Y2m = 1)

≤ Pr (Ynm = 1 is not a dominant strategy for either n = 1 or n = 2) .

To save notation, we define πnm = max (πnm (0) , πnm (1)) and πnm = min (πnm (0) , πnm (1)).
The bounds above can be expressed as

Pr (ζ1m < π1m − C1m, ζ2m < π2m − C2m) (11)

≤ Pr (Y1m = 1, Y2m = 1)

≤ Pr (ζ1m < π1m − C1m, ζ2m < π2m − C2m) ,

which can be further rewritten as

Pr (ζ1m < π1m − C1m |ζ2m < π2m − C2m ) · Pr (ζ2m < π2m − C2m)

≤ Pr (Y1m = 1, Y2m = 1)

≤ Pr (ζ1m < π1m − C1m |ζ2m < π2m − C2m ) · Pr (ζ2m < π2m − C2m) .

As the correlation between ζ1m and ζ2m increases, the conditional probability Pr(ζ1m <

π1m − C1m |ζ2m < π2m−C2m) increases, making the lower bound more likely to be violated.
Conversely, as the correlation decreases, Pr (ζ1m < π1m − C1m |ζ2m < π2m − C2m ) decreases,
making the upper bound more likely to be violated. Therefore, these bounds are informative
about the correlation.

2.5.2 Extension to the General Model and Estimation with the Additional
Bounds

We now extend the general model in 2.2 and allow the unobservable fixed cost shock ζjm

to be correlated. We continue to use σζ to denote the parameters governing their joint
distribution.

For each pair of potential products (j, j′), the analogy of the inequalities in (11) is:

Pr
(
ζjm < ∆j(Xnm) − c(Wjm, θ), ζj′m < ∆j′(Xnm) − c(Wj′m, θ);σζ

)
≤ Pr (Yjm = 1, Yj′m = 1 |Xnm,Wjm,Wj′m )

≤ Pr
(
ζjm < ∆j(Xnm) − c(Wjm, θ), ζj′m < ∆j′(Xnm) − c(Wj′m, θ);σζ

)
.
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The resulting new moment functions are

L (Yjm, Yj′m, Xnm,Wjm,Wj′m, θ, σζ)

= Pr
(
ζjm < ∆j(Xnm) − c(Wjm, θ), ζj′m < ∆j′(Xnm) − c(Wj′m, θ);σζ

)
− 1 (Yjm = 1, Yj′m = 1) ,

H (Yjm, Yj′m, Xnm,Wjm,Wj′m, θ, σζ)

= 1 (Yjm = 1, Yj′m = 1)

− Pr
(
ζjm < ∆j(Xnm) − c(Wjm, θ), ζj′m < ∆j′(Xnm) − c(Wj′m, θ);σζ

)
.

In estimation, we combine the moments based on a single product’s entry probability in
(8) with the following additional moments:

E

 1
1
2#J (#J − 1)

∑
{(j,j′):j,j′∈J ,j ̸=j′}

L (Yjm, Yj′m, Xnm,Wjm,Wj′m, θ, σζ) · g(k) (Xnm,Wjm)

 ≤ 0,

E

 1
1
2#J (#J − 1)

∑
{(j,j′):j,j′∈J ,j ̸=j′}

H (Yjm, Yj′m, Xnm,Wjm,Wj′m, θ, σζ) · g(k) (Xnm,Wjm)

 ≤ 0,

as well as the above moments where g(k) (Xnm,Wjm) is replaced by g(k) (Xnm,Wj′m).
One could also additionally consider analogous inequalities for triplets or quadruplets of

potential products.

2.5.3 Extension to the Monte Carlo Experiment

We extend the setup of the Monte Carlo in Section 2.3 by adding a market-level fixed cost
shock. Specifically, the fixed cost of entry is now C + σζnm + σmktζm, where ζm represents a
common market-level fixed cost shock. We set the true values to be σmkt = 1. Figure 2 shows
the coverage probability for parameter values in the neighborhood of the true parameter
values for C, σ, and σmkt. Again, FY’s coverage probability is slightly larger than CT’s but
smaller than AT’s.
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Figure 2: Coverage Probabilities: FY vs. CT vs. AT Bounds, Allowing for a Market-level Fixed
Cost Shock
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3 Empirical Background and Data

We apply our method to study how a merger can affect firm entry and product variety in
the retail craft beer market in California.10 This setting features many firms and many
products. For example, there are 26 breweries producing 95 craft products in the sample in
2016. As a result, while existing methods may be computationally prohibitive, our method
is well suited.

Our analysis is based on a new dataset that we compiled from various sources. The
primary datasets are the market-level data in the Nielsen Retail Scanner Data and the micro-
level panel data in the Nielsen Consumer Panel between 2010 and 2016. We define a product
to be a brand in the Nielsen data (e.g., Samuel Adams Boston Lager). We aggregate the
Nielsen scanner data from its original UPC/week level to a product/month-level dataset by
homogenizing the size of a product (a unit represents a 12-ounce-12-pack equivalent), adding
quantities across weeks within a month, and using the quantity-weighted average price across
weeks within a month as a given product’s price in a given month. We then supplement
the dataset with information on whether a beer is considered a craft beer based on the
designation by the Brewers Association. We also add hand-collected data on the identities
of the corporate owner and the brewery as well as the location of the production facility for
each product in our dataset. For example, Samuel Adams Boston Lager is produced at the
Samuel Adams Boston Brewery in Boston and owned by the Boston Beer Company. We

10There has been growing interest in the market structure of the craft beer industry. For example, Trem-
blay, Iwasaki and Tremblay (2005) document the entry of microbreweries in the US. Elzinga and McGlothlin
(2021) analyze a macro brewery’s acquisition of a craft brewery. Bronnenberg, Dubé and Joo (2022) study
the formation of preferences for craft beer and its implications for the future market structure of the indus-
try. California accounted for 18% of craft beer volume and 12% of craft breweries in the nation, the highest
among all US states according to the 2015 Brewers Association estimates.
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define a firm as a corporate owner (e.g., Boston Beer Company). A firm can own multiple
breweries and products. Finally, we merge the data with county demographics obtained from
the US Census.

In our analysis, we define a market as a retailer-county pair. The Nielsen consumer
panel data suggest that cross-retailer shopping is rare. For example, we find that over 80%
of households in our study purchase all of their beer from one retailer-county combination
in 2016. This finding is consistent with those of Illanes and Moshary (2020) and Huang,
Ellickson and Lovett (2022), who find little evidence of retailer competition in the spirits
category. In our estimation, we define market size as the average monthly alcohol sales in a
market (in the unit of a 12-ounce-12-pack equivalent) multiplied by 8, which is the average
number of household trips per month in the panel data.11

We consider a product to be available in a market in a calendar year if the product’s
monthly sales are more than 20 units for more than 6 months in the market in the year.
Moreover, for craft products, we keep those produced by the top 60 craft breweries according
to their national volumes in the 2015 Brewers Association production data. We thus focus on
breweries established in the 1990s or earlier. In the end, our sample covers 91% of California’s
craft beer quantity in the Nielsen Scanner Data across our sample periods.12

We define a firm’s set of potential products in a year as all products owned by the firm
that are available in any market in the year. We do not consider the creation of new breweries
or brands. We focus on a firm’s decision to sell an existing product in a market, a decision
that is less costly than de novo entry.13 Therefore, our setting can be considered favorable
for firm or product entry. As we see later, even in this favorable setting, a merger can reduce
consumer welfare.

Table 2 reports summary statistics based on 110 markets present in the data every year
from 2010 to 2016. These markets account for 82% of the total quantity from all markets
and years. The table shows that the annual craft beer sales in the sample are, on average,
about 5 million units, which accounts for roughly 10% of total beer sales for a given year.
The average price for craft beer is around 17 dollars per unit in 2016 dollars, which is higher
than the average beer price of 11 dollars per unit. Although craft beer sales account for only

11Our results are robust to alternative scaling factors.
12Although our retail data precludes a direct comparison of the retail beer market with the “on-premises”

market (such as taprooms, bars, and restaurants), the Brewers Association estimates that the retail channel
accounts for 65% of craft beer volume (Watson, 2016). Likely due to similar data limitations, existing
research on the beer industry has also focused on the retail segment (Ashenfelter, Hosken and Weinberg,
2015; Asker, 2016; Miller and Weinberg, 2017; Miller, Sheu and Weinberg, 2021; Döpper, MacKay, Miller
and Stiebale, 2022; Hidalgo, 2023).

13We have limited information on product characteristics. Moreover, many features of a beer are difficult
to quantify (e.g., aroma and mouthfeel). As a result, we include product fixed effects in our demand and
marginal cost specifications.
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Table 2: Annual Total Quantity, Prices, and Numbers of Firms and Products

Total Quantity Avg. Price # Firms # Products
(12-oz 12-pk equiv) (2016 $) Per Year Per Year

Craft 4,710,634 17 35 129
All 53,155,825 11 54 263
Note: for each year from 2010 to 2016, we first calculate a year’s total and craft beer quantities, quantity-
weighted average prices, number of firms and number of products, and then take the average across years.

Table 3: Shares of Total Quantity and Number of Products by Beer Types

Ale Lager Light
Quantity

Craft 69.10% 29.34% 0.71%
All 11.95% 46.07% 40.94%

Number of products
Craft 65.82% 27.44% 0.50%
All 43.11% 40.38% 7.60%

Note: the shares reflect the respective proportions of the total quantity from 2010 to 2016, or of the total
number of unique products in these years.

10% of the total market, the number of craft firms and products make up more than half of
the market.

Table 3 provides a breakdown of the sales and number of products by beer types. Among
craft products, ales constitute 66% of the product counts and 69% of sales. Lagers account
for 29% and 46% of the craft and overall beer market share, respectively. While light beers
account for 41% of the overall beer sales, their market share within craft products is only
0.71%, and this pattern has remained stable over time.

A key primitive in the product variety decisions is the fixed cost of product entry. Ac-
cording to our interviews with industry experts,14 the main cost of product entry is a flow
cost of the marketing support that a firm needs to provide to a retailer in a local market. By
contrast, the sunk cost of convincing a retailer to carry a brewery’s products or contracting
with a distributor seems negligible compared to the fixed cost of marketing support. In
our setting, it is illegal at both the federal and state level and extremely rare for grocers
or distributors to charge slotting fees. California has its own tied-house laws that expand
on federal statues prohibiting “tied-houses”, which refer to vertical relationships between
manufacturers and retailers that exclude small manufacturers such as craft breweries from
placing their products with retailers. In addition, California passed competition laws that
further prohibit payments for stocking products (Croxall, 2019).

14They are the Chief Economist, Bart Watson, and the General Counsel, Marc Sorini, at the Brewers
Association.
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4 Empirical Model

4.1 Demand

We use a random coefficient discrete choice model to describe consumer demand for beer.
A product’s characteristics include its flavor type (ale, lager, light, and others),15 whether
it is imported from outside North America, and whether it is designated as a craft prod-
uct. These characteristics can overlap. For example, Bud Light is a light, North Amer-
ican, non-craft beer, while Samuel Adams Lager is a lager, North American, craft beer.
These characteristics of product j are captured by a vector of indicator variables xj =(
xale, xlager

j , xlight
j , ximport

j , xcraft
j

)
. We allow both household income and unobservable hetero-

geneity to affect preferences. We specify the utility function of household i in market m from
product j in month t as

uijmt = (σ0νi + κ0yi) + (α + καyi) pjmt (12)

+ σaleνale
i xale

j + σlagerν lager
i xlager

j + σlightν light
i xlight

j

+ σimportν import
i ximport

j + (σcraftνcraft
i + κcraftyi)xcraft

j

+ djmβ + FEdemand
j + FEdemand

m + FEdemand
t

+ FEdemand, craft
m + FEdemand, craft

t + ξjmt + εijmt,

where yi is the natural logarithm of household i’s annual income and ν
(·)
i is the household-

specific unobserved taste shock, which follows a normal distribution and is independent across
households. Therefore, the σ(·) parameters capture the dispersion in unobserved household
tastes while the κ parameters measure the effect of household income on tastes. We do not
include mean coefficients for xj because they are absorbed in product fixed effects. The
covariates djm represent the interaction between the craft indicator and a set of indicator
functions for whether the distance from the brewery’s nearest production facility to the
market falls within a certain distance range. Distance potentially plays an important role in
demand as a local beer may lack name recognition outside its local market (see, for example,
Tamayo, 2009). Moreover, its importance may be different for craft vs. non-craft products.
We also include in our model product fixed effects (FEdemand

j ) as well as market and month
fixed effects to capture unobserved factors that may vary at these levels. We allow both the
market and month fixed effects to be different for craft and non-craft products and denote
these fixed effects by (FEdemand

m , FEdemand, craft
m ) and (FEdemand

t , FEdemand, craft
t ). The error

term ξjmt, therefore, captures the transient, month-to-month variations of demand shocks
15Some examples in the category of “others” include stout, porter, and near beers, which collectively

account for 1% of the craft quantities.
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specific to a product, market, and month combination. Finally, the last term in (12), εijmt, is
a household’s idiosyncratic taste, which is assumed to be i.i.d. and follows a type-1 extreme
value distribution.

Overall, our demand specification gives us the market share sjmt (pjmt, p−jmt) of product
j in month t and market m, where p−jmt is a vector of the prices of all other products
in market m and month t. Other determinants of demand (product characteristics, fixed
effects, and demand shocks of all products in the market) are absorbed by the subscript jmt
of the function sjmt (·, ·). Multiplying the market share by the corresponding market size
then gives us the demand for product j, Djmt (pjmt, p−jmt).

4.2 Supply

The supply side describes firms’ product and price decisions. In each market, firms simul-
taneously choose which beer products, if any, to sell.16 This product choice is made at the
beginning of each year τ and is fixed throughout the year. Then, in each month t, firms
simultaneously choose the retail prices for their products.

Specifically, we model the supply side as a two-stage static game. In the first stage, at the
beginning of year τ , firms observe fixed costs for all potential products and simultaneously
decide on a set of products to offer in market m. In the second stage, at the beginning of
month t, the demand and marginal cost shocks (ξjmt, ωjmt) are realized, and firms choose
the retail prices for their products in market m.

Firms observe fixed costs for all potential products when making their product decisions.
However, the demand and marginal cost shocks (ξjmt, ωjmt) are realized after firms have cho-
sen which products to sell. This timing assumption is the same as that in Eizenberg (2014),
Wollmann (2018), and Fan and Yang (2020), but different from two recent papers on entry
or product repositioning in the airline industry (Ciliberto, Murry and Tamer, 2021 and Li,
Mazur, Park, Roberts, Sweeting and Zhang, 2022), which assume that firms observe demand
and marginal cost shocks as well as fixed cost shocks when making entry decisions. In other
words, they account for selection based on all these shocks. By contrast, we allow for selec-
tion based only on unobserved fixed cost shocks and address selection based on unobserved
demand and marginal cost shocks by including a large number of fixed effects in our demand
and marginal cost functions. Specifically, we include product-, market-, and time-specific
fixed effects. The remaining unobservables are month-to-month product/market-level tran-
sient shocks. We find it reasonable to assume that firms do not observe them when making

16As mentioned, federal and state laws prohibit practices that hinder the entry of craft breweries into
the retailer market. These laws motivate our assumption that breweries make their own entry and product
variety decisions. This simplification keeps our model tractable.
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product choices. We also show later that the estimated shocks play a small role in explaining
demand and marginal costs.

Stage 2. Pricing In month t, firm n chooses prices pjmt for all j ∈ Jnmτ to maximize its
variable profit:

max
pjmt,j∈Jnmτ

∑
j∈Jnmτ

(pjmt −mcjmt)Djmt (pjmt, p−jmt) . (13)

The marginal cost mcjmt is decomposed into a product fixed effect FEmc
j , a market fixed

effect FEmc
m , a month fixed effect FEmc

t , the effect of facility-market distance djmγ to account
for any transportation cost, and a product-market-month specific shock ωjmt:

mcjmt = FEmc
j + FEmc

m + FEmc
t + FEmc, craft

m + FEmc, craft
t + djmγ + ωjmt. (14)

We again allow both the market fixed effects and the month fixed effects to be different for
craft and non-craft products.

This pricing model essentially assumes that the retail price of a product is the whole-
sale price plus a fixed markup for the distributor and the retailer. In fact, because we in-
clude product-, market-, and month-specific fixed effects in our specification of the brewery
marginal cost, this markup can vary at the product, market, and month levels. We only need
to assume that markups for distributors and retailers do not change in our counterfactual
simulations.17

Stage 1. Entry and Product Decisions At the beginning of year τ , firm n is endowed
with a set of potential products Jnτ and decides on the set of products Jnmτ to offer in
market m. The profit-maximization problem at this stage is:

max
Jnmτ ⊆Jnτ

πnm (Jnmτ ,J−nmτ ) − Cnm (Jnmτ ) , (15)

where πnm (Jnmτ ,J−nmτ ) is the expected variable profit and Cnm (Jnmτ ) is the fixed cost.
We now derive the former and specify the latter.

To derive firm n’s expected variable profit πnm (Jnmτ ,J−nmτ ), we plug the second-stage
equilibrium prices into its profit function, take the expectation over the transitory de-
mand and marginal cost shocks, and sum over all months in a year. Formally, we use
J−nmτ to denote the set of products that firm n’s competitors sell in market m. Let
pjmt (Jnmτ ,J−nmτ ) and Qjmt (Jnmτ ,J−nmτ ) denote the second-stage equilibrium price and

17Miller and Weinberg (2017) show that a double marginalization model where a brewery first sells to
retailers does not significantly change their merger simulation results.
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quantity, respectively, which depend on the observable covariates (xj, djm), fixed effects
(FEdemand

j , FEdemand
m , FEdemand

t , FEmc
j , FEmc

m , FEmc
t ) as well as the shocks (ξjmt, ωjmt) for

all products in market m. Let ξmt = (ξjmt, j ∈ Jnmτ ∪ J−nmτ ) be the collection of demand
shocks for all products in market m and define ωmt for the marginal cost shocks analo-
gously. Let Tτ represent all months of year τ . Then, firm n’s expected variable profit,
πnm (Jnmτ ,J−nmτ ) in (15) is:

πnm (Jnmτ ,J−nmτ )

=
∑
t∈Tτ

Eξmt,ωmt

 ∑
j∈Jnmτ

(pjmt (Jnmτ ,J−nmτ ) −mcjmt) ·Qjmt (Jnmτ ,J−nmτ )
 . (16)

The fixed cost function in (15) is specified as

Cnm (Jnmτ ) =
∑

j∈Jnmτ

(Wjmθ + σζζjmτ ) , (17)

where Wjm is a vector of covariates including, for example, whether product j is produced
by an independent craft brewery, whether its brewery is in CA, and the market size. We
assume the fixed cost shock ζjmτ is i.i.d. and follows a standard normal distribution in our
baseline specification.18

5 Estimation

5.1 Estimation of Demand Parameters and Marginal Costs

5.1.1 Estimation Procedure

We combine the aggregate product/market/month-level data on prices, product characteris-
tics, and market shares with the individual/month-level panel data on household purchases
to estimate demand parameters. Specifically, we rely on the market share data to identify
the mean taste coefficients (α, β) and fixed effects (FEdemand

j , FEdemand
m , FEdemand

t ). We ex-
ploit the panel data and the correlations between household income and beer purchases to
identify the standard deviations of the unobservable consumer heterogeneity (σ parameters)
as well as the effect of household income on consumer tastes (κ parameters). We estimate

18We consider two robustness analyses in Supplemental Appendix SC. In the first extension, we add a
market-specific shock λζmτ to (17) in a robustness analysis, where ζmτ is common to all products in a
market, and follow the estimation procedure in Section 2.5. In the second robustness analysis, we extend
our model and estimation method to allow for (dis)economies of scope in fixed costs. Our results are robust
to both extensions.
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Figure 3: Price of Barley
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these parameters using the Generalized Method of Moments approach, where we combine a
set of macro moments with two sets of micro moments.19

We construct macro moments based on instrumental variables consisting of the interac-
tions of global barley prices with beer types to address potential price endogeneity. Barley
is a common ingredient in almost all beers. Figure 3 plots the monthly price of barley in
dollars per metric ton and shows fairly large monthly variations.20

We construct a new set of micro moments based on the persistence of a household’s
purchasing decisions to identify the standard deviation parameters. For example, a large
value of σcraft indicates that a household’s preference for craft products is highly correlated
across months. That means if a household ever purchases a craft product in a year, it
is likely to purchase many craft products throughout the year. More generally, if we use
qf

iτ = ∑
t∈Tτ

qf
it to denote a household’s purchase of beer type f (f ∈ {ale, lager, . . .}) in year

τ , then matching the conditional mean E
(
qf

iτ | qf
iτ ≥ 1

)
helps to identify the parameter σf .

Similar moments are also useful for identifying the correlation between taste shocks. For
example, if a household that prefers type-f products tends to dislike type-f ′ products, then
conditional on a household ever purchasing a type-f product, the household should buy few
if any type-f ′ beers throughout the year.

Specifically, in constructing these micro moments, we match the model predictions of the
following moments to their empirical counterparts:21

19Grieco, Murry, Pinkse and Sagl (2021) suggest combining the macro data with the micro data into
one likelihood function for estimation. As pointed out in their paper, the efficiency gain from doing so
is modest when the size of the micro data is small compared to the market size, which is the case in our
paper. Moreover, we include a large set of fixed effects, which makes GMM estimation more computationally
tractable than MLE estimation.

20Data source: https://fred.stlouisfed.org/series/PBARLUSDM
21See Supplemental Appendix SB for computational details.

27



• A household’s expected annual purchase of a certain type of beer conditional on pur-
chasing at least one unit of this type of beer in the year, i.e., E

(
qf

iτ | qf
iτ ≥ 1

)
. Matching

these moments helps to identify σf .

• A household’s expected annual purchase of a certain type of beer conditional on pur-
chasing at least one unit of craft beer in the year, i.e., E

(
qf

iτ | qcraft
iτ ≥ 1

)
. Matching

these moments helps to identify the taste correlation between craft and type-f beer.

• A household’s expected annual purchase of beer conditional on purchasing at least
one unit of beer in the year, i.e., E (qiτ | qiτ ≥ 1), where qiτ is a household’s total beer
purchase amount over a year. Matching this moment helps to identify σ0.

We construct a second set of micro moments similar to those in Petrin (2002) to identify the
effect of household income on consumer tastes:

• The ratio of average expenditure over average purchase quantity in a year among house-
holds whose income falls into a bin I, i.e., E (expenditureiτ |yi ∈ I ) /E (qiτ |yi ∈ I ),
where the log-income bins I are log (0, $50K], log ($50K, $100K], or log ($100K,+∞).22

Matching these moments helps to identify the income effect on price sensitivity, κα.

• E(qcraft
iτ | qcraft

iτ ≥ 1, yi ∈ I), which helps to identify κcraft.

• E(qiτ | qiτ ≥ 1, yi ∈ I), which helps to identify κ0.

Our estimation of marginal costs is standard and follows Berry, Levinsohn and Pakes (1995).
We back out marginal costs based on the first-order conditions of the profit maximization
problem in (13).

5.1.2 Results on Demand and Markups

Table 4 reports the demand estimation results. The estimated σ parameters indicate signif-
icant heterogeneity in preferences for craft products, imported products, and flavor types.
For example, the estimated standard deviation of the unobservable heterogeneity in con-
sumer taste for craft products σ̂craft is 2.45. To understand the magnitude of this estimate,
we compare it to the price coefficient of a household with an income of $50,000, which is
−1.50 + 0.08 · log ($50, 000) = −0.63. Therefore, the estimated σ̂craft is equivalent to a price
change of 2.45/0.63, or 3.89 dollars.

22An alternative moment is the average price E

(
expenditureiτ

qiτ
| yi ∈ I

)
. However, computing this mo-

ment is more cumbersome. It requires drawing both vf
i and εij to simulate this moment but only vf

i to
simulate the moment in the text.

28



Table 4: Demand Estimates

Unobserved σ0 0.001 Income Effect κ0 -1.34
Heterogeneity (0.01) (0.02)

σale 2.03 κcraft 0.84
(<0.01) (0.02)

σlager 0.86 κα 0.08
(<0.01) (<0.01)

σlight 2.56
(<0.01) Price Coefficient α -1.50

σimport 1.82 (0.03)
(<0.01)

σcraft 2.45 Distance bin/Craft FE Yes
(<0.01) Product FE Yes

ρcraft-light -0.75 Market/Craft FE Yes
(<0.01) Time/Craft FE Yes

Note: Standard errors are in parentheses.

Table 5: Selected Micro Moments on Persistence in Purchasing Decisions

Data Model
(1) E

(∑12
t=1 qit |

∑12
t=1 qit ≥ 1

)
7.50 7.72

(2) E
(∑12

t=1 qale
it |

∑12
t=1 qale

it ≥ 1
)

3.10 4.10
(3) E

(∑12
t=1 qlager

it |
∑12

t=1 qlager
it ≥ 1

)
5.56 4.07

(4) E
(∑12

t=1 qlight
it |

∑12
t=1 qlight

it ≥ 1
)

8.03 8.02
(5) E

(∑12
t=1 qimport

it |
∑12

t=1 qimport
it ≥ 1

)
2.86 2.57

(6) E
(∑12

t=1 qcraft
it |

∑12
t=1 qcraft

it ≥ 1
)

3.93 4.12

The dispersion parameters σ(·) are estimated by matching the micro moments that cap-
ture the persistence in a household’s purchasing decisions. Table 5 shows the model fit for
these micro moments. For example, from Row (6), we see that the average per-household
annual craft purchase among households that purchase at least one unit of craft beers is 3.93
in the data and 4.12 according to our estimates. Compared with the unconditional average
per-household annual craft purchase of 0.37 units in the data, this micro moment implies
that craft beers are purchased by a set of dedicated craft consumers, leading to a significant
estimate of σcraft.

The estimation results also indicate a negative correlation between consumer taste for
craft and light beers (ρ̂craft-light = −0.75). This finding is consistent with the summary statistics
in Table 3, which show that light craft beers account for only 0.71% of the craft beer sales
while light beers in general account for 41% of all beer sales. We find that allowing for a
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correlation between ν light
i and νcraft

i is helpful for matching the conditional purchases of light
beers given at least one craft purchase. The moment E

(
qlight

iτ | qcraft
iτ ≥ 1

)
is 1.27 in both the

data and according to our estimated model, and it would be 1.94 according to an estimation
where such a correlation is not allowed in the model.

Moreover, we find heterogeneity in consumer tastes across income levels. Specifically,
high-income households are less likely to purchase beer (κ̂0 < 0), have a stronger preference
for craft products

(
κ̂craft > 0

)
, and are less price sensitive (κ̂α > 0).

Overall, the estimated demand parameters imply that the substitution within craft prod-
ucts is larger than the substitution between craft and non-craft products. Table 6 reports
the own and cross elasticities among the top-3 non-craft and top-3 craft products in 2016.23

These elasticities suggest little substitution between craft and non-craft products. Similarly,
Figure 4 presents the histogram of the diversion ratio for a craft product to non-craft prod-
ucts (Panel (A)) and that for a craft product to other craft products (Panel (B)). Panel (A)
shows that for most craft products, almost no sales would be captured by non-craft products
if the focal craft product’s price is increased. By contrast, the distribution of the diversion
ratio to other craft products in Panel (B) has a mode of around 20%.

Table 6: Elasticities of Top-3 Craft Products and Top-3 Main Products (%)

Craft Main

Craft
-10.05 0.13 0.02 0.01 0.01 0.03
0.21 -9.40 0.02 0.01 0.01 0.03
0.04 0.02 -9.07 0.01 0.01 0.08

Main
<0.01 <0.01 <0.01 -5.25 0.56 0.04
<0.01 <0.01 <0.01 0.57 -5.25 0.04
<0.01 <0.01 0.01 0.04 0.04 -8.87

We back out the marginal costs using the first-order conditions at the pricing stage of the
game and present the distribution of the quantity-weighted markup in Panel (C) of Figure
4. The median markup of craft beers is about $1.7 in 2016 dollars. Some industry sources
(e.g., Satran, 2014) put the brewer’s margin at 8% of the retail price, or $1.4 for an average
price of $17, in line with our estimates.

Finally, our observed explanatory variables account for the majority of the variations in
demand and marginal costs. The R2’s from regressing the mean utility and marginal cost on
observable covariates and fixed effects are both above 0.9, implying that after controlling for
the product-, market-, and time-specific fixed effects, the month-to-month transient shocks

23Per our data agreement, we refrain from discussing the identities of beers or breweries in the data. Hidalgo
(2023) estimates the elasticities of the top macro and craft beer brands to be -3.4 and -8.3, comparable to
the elasticities reported in this table.
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Figure 4: Histograms of Diversion Ratios and Markups
(A) Diversion Ratio:
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(B) Diversion Ratio:
Craft to Other Craft
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(C) Craft Markups:
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(ξjmt, ωjmt) play, at most, a small role.

5.2 Estimation of Fixed Cost Parameters

We estimate the fixed cost parameters year by year. In this section, we focus on craft products
and present our fixed cost estimation results using the 2016 data for consistency with our later
counterfactual analyses. In our estimation, one unit of observation is a potential product j
and market m combination. In this part of the estimation, we exclude small craft products24

and markets without craft products, resulting in a total of 95 potential products, 149 markets,
and 14,155 potential product/market combinations in 2016.

In this section, we first explain a reformulation of our empirical model consistent with
the notation in Section 2.2 to follow the estimation procedure described there. We also show
data patterns that help with identification. Since we estimate the fixed cost parameters for
each year separately, we suppress the year subscript τ in this section for exposition simplicity.

5.2.1 Reformulation of the Model

To be consistent with the model outlined in Section 2.2, we rewrite the profit function in
(15), i.e., πnm (Jnm,J−nm) −∑

j∈Jnm
(Wjmθ + σζζjm) as

πn (Y nm,Y −nm, Xnm) −
∑

j∈Jn

Yjm (Wjmθ + σζζjm) . (18)

24We exclude craft products that appear in fewer than 36 market-month combinations, which account for
0.22% of the craft quantity in 2016.
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Figure 5: Data Patterns Aiding Identification

(A) Histogram of ∆j (Xnm) /∆j (Xnm)
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(B) Variations in ∆j (Xnm) , ∆j (Xnm)
and Entry Probability
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Specifically, we now use a vector of indicators Y nm ∈ {0, 1}#Jn to denote a firm’s product
portfolio Jnm ⊆ Jn, where Jn represents the potential products that firm n is endowed
with. We use Yjm to denote the element of Y nm that corresponds to product j ∈ Jn,
where Yjm = 1 if j ∈ Jnm and 0 otherwise. Therefore, the expected variable profit
πnm (Jnm,J−nm) can be written as πn (Y nm,Y −nm, Xnm), where the vector Xnm includes
all demand and marginal cost covariates (including fixed effects). Similarly, the total fixed
cost∑j∈Jnm

(Wjmθ + σζζjm) can be written as the summation over all products with Yjm = 1,
i.e., ∑j∈Jn

Yjm (Wjmθ + σζζjm).

5.2.2 Data Patterns That Help with Identification

We have discussed identification in abstract for a general model in Section 2. Here, we
present data patterns in our empirical setting that help with identification.

First, for a large proportion of the observations, the minimum and maximum changes in
variable profit, i.e., ∆j (Xnm) and ∆j (Xnm), are relatively close, resulting in tight conditional
choice probability bounds for these products. Panel (A) of Figure 5 plots the histogram of
the ratio ∆j (Xnm) /∆j (Xnm) across all combinations of potential products and markets in
2016. The median of the ratio is around 0.7. In other words, for 50% of the observations,
the ratio is larger than 0.7, where a larger ratio reflects a smaller difference between the
minimum and maximum. The tight bounds reflect that the diversion ratios of many craft
products are low (Figure 4).

Second, there are considerable variations in ∆j (Xnm) and ∆j (Xnm), and these variations
are informative about variations in entry probabilities. To see the variations in ∆j (Xnm)
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Figure 6: Exogenous Variations Aiding Identification
(A) Market Size and # Craft Products
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and ∆j (Xnm), we note that their 10% and 90% percentiles are, respectively, ($27, $1,969)
and ($39, $2,821), which differ by two orders of magnitude. To see the association between
∆j (Xnm) and entry probabilities, we discretize ∆j (Xnm) into 10 groups based on the deciles.
For each group g, we compute the average entry probability for observations jm such that

∆j (Xnm) is in this group as
∑

j,m 1

(
∆j (Xnm) ∈ g

)
· Yjm∑

j,m 1

(
∆j (Xnm) ∈ g

) , where Yjm ∈ {0, 1} represents

the observed entry outcome. We repeat this exercise for ∆j (Xnm). Panel (B) of Figure 5
displays the average entry probabilities associated with ∆j (Xnm) (represented by the red
solid line) and those associated with ∆j (Xnm) (represented by the blue dotted line). From
the figure, we can see that the average entry probabilities increase in both ∆j (Xnm) and
∆j (Xnm).

What exogenous variations in Xnm generate the variations in ∆j (Xnm) and ∆j (Xnm)?
In addition to variations in product characteristics as well as the fixed effects in the demand
and marginal cost functions, variations in market size also play an important role, because
everything else being equal, the returns to entry increase in the size of a market. This can
be seen in Panel (A) of Figure 6, which depicts a strong positive correlation between the
logarithm of market sizes and the number of craft products in a market.

Another source of exogenous variation is the distance between a production facility and
a market. In Panel (B) of Figure 6, we plot the unconditional distribution of distances for
all in-state craft potential product/market combinations and the conditional distribution for
observed in-state craft product/market combinations (i.e., the product is in the market in
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the data).25 Panel (B) shows that the conditional distribution has more probability mass
at shorter distances than the unconditional one, suggesting a negative correlation between
distance and entry. We account for these variations in variable profits by including controls
for distances in both our demand and marginal cost functions.

5.2.3 Results on Fixed Costs

We follow the estimation procedure described in Section 2.2 to estimate the fixed cost pa-
rameters, which include the parameters of the mean fixed cost (θ) and the standard deviation
of the fixed cost shock (σζ).

Table 7 reports the 95% confidence set projected to each parameter. These estimates
account for the statistical errors in the estimation of variable profits. We find a higher fixed
cost for independent craft breweries and larger markets. The 95% confidence set projected
to the coefficient of the craft indicator is [$255, $583], indicating that craft breweries incur
higher fixed costs than non-craft breweries. This parameter is identified by the data pattern
that products of craft breweries acquired by macro breweries are more likely to enter a market
than those of independent craft breweries.26 To study whether fixed costs vary with market
size, we categorize markets into small, median, or large bins based on whether the market
size is below 105, between 105 and 5×105, or above 5×105 units, and allow fixed costs to
differ across bins.27 We find that fixed costs are higher in larger markets and the standard
deviation of the unobservable fixed cost shock also increases with market size.

6 Counterfactual Simulations

6.1 Counterfactual Designs

We consider a counterfactual merger where the largest firm in our sample, a so-called macro
brewer, acquires the three largest craft firms in 2016, excluding Boston Beer Company and
Sierra Nevada Brewing, which are unlikely merger targets given their size. In other words,
we study a scenario where the trend of acquisitions in the craft beer industry continues to

25Out-of-state craft products tend to be widely distributed and thus less affected by the distance between
their production facilities and markets. A number of such craft products in California are brewed on or near
the East Coast.

26To clarify, for a craft product acquired by a macro brewery but still maintaining its craft status according
to the Brewer Association’s craft designation, we set its craft indicator to 0 in the fixed cost specification.
This is because the product benefits from the distribution and marketing networks of the larger firms, which
may affect its fixed costs.

27The 25% and 75% quantiles of the market sizes are 0.7×105 and 4.2×105 units.
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Table 7: Estimates of Fixed Costs: Projected 95% Confidence Intervals, 2016

Craft (θ1) [255.32, 583.95]
In State× Craft (θ2) [-276.04, 37.57]
Market-size specific fixed cost (θ3)
Small market [426.52, 721.90]
Medium market [720.77, 1014.10]
Large market [2028.00, 2453.69]

Market-size specific std. dev. (σζ)
Small market [0.02, 105.80]
Medium market [1.18, 207.45]
Large market [767.59, 1044.93]

Note: Estimates in 2016 US dollars.

the point where the concentration of the craft market approaches the level in the overall
beer market.28

In our simulation, we allow firms to adjust their craft products and hold the non-craft
product choices fixed as observed in the data (but allow their prices to change). We do
so for two reasons. First, solving a product choice game is computationally challenging
because each firm can choose any subset from its set of potential products and there are
2# of potential products such subsets. We compute the post-merger product equilibrium using
the algorithm outlined in Fan and Yang (2020).29 We further ease the computational burden
by holding the non-craft product choices fixed. Second, this simplification is justified by the
estimated small substitution between craft and non-craft products.

A potential entrant is a firm observed in any market in our sample. Each firm is endowed
with a set of potential products comprised of the firm’s craft products observed in any market
in the 2016 data. In each market, a firm chooses a subset from its potential products, and
an empty subset denotes no entry. The potential product set for the merged firm consists of
the combined set of potential products. We assume that firms maximize profits at both the

28During our sample period, there are four observed acquisitions where a macro brewer acquired an
independent craft brewer in our sample (and other mergers involving smaller craft brewers not in our sample).
Of the four observed acquisitions, one brewer was not in our sample prior to the transaction. Among the
other three, we observe an increase in entry and product variety post-merger, consistent with the simulated
outcomes based on our estimated model, allowing for fixed-cost merger efficiency (see Section 6.2).

29Fan and Yang (2020) develop a heuristic algorithm to find a firm’s optimal product portfolio given the
portfolios of its competitors, and embed this optimization algorithm in a best-response iteration to solve for
the post-merger product choice equilibrium. The algorithm starts with an initial vector of product decisions
and evaluates whether it is profitable to add or drop a product. If a profitable deviation is found, the product
vector is updated to the most profitable deviation among all such one-product deviations, and the process
is repeated until no more profitable one-product deviations are possible. The algorithm is run with different
initial vectors to check for multiple equilibria. We find identical results for two starting points, one based on
the observed product decisions in the data and another where each firm chooses all potential products.
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product choice and pricing stages.
We conduct three counterfactual simulations. We quantify the overall effects as well

as the effects due to firm entry and those due to product changes. Specifically, in the
counterfactual simulation described above (CF1), we allow for three adjustment margins
— new entry, product adjustments, and price adjustments. In the second counterfactual
(CF2), we allow for only incumbent product adjustment and price adjustment by removing
the products added by new entrants in CF1 and recomputing the pricing equilibrium. In the
third counterfactual (CF3), we allow for only the price effect of the merger by restoring pre-
merger market products and recomputing the pricing equilibrium. The difference between
the outcomes in CF1 and CF3 gives us the overall product variety effect of the merger, which
can be further decomposed into the product variety effect due to new entry (CF1 - CF2) and
that due to incumbent product adjustments (CF2 - CF3). For all simulations, we sample 10
vectors of parameter values from the 95% confidence set of the fixed cost parameters.

We draw three sets of shocks: demand, marginal cost, and fixed cost shocks. We draw
demand and marginal cost shocks directly from their estimated distributions. For each sam-
pled fixed cost parameter vector, we draw fixed cost shocks from the estimated distribution
conditional on the observed pre-merger equilibrium to ensure that pre- and post-merger
outcomes are comparable. Details on how we draw our fixed cost shocks can be found in
Appendix B.

For each sampled parameter vector, we compute the simulated merger effects averaged
across the simulation draws of the demand, marginal cost, and fixed cost shocks. We report
the range of this average effect across the sampled parameter vectors as the 95% confidence
interval of the average effects.

6.2 Counterfactual Results

We present two sets of counterfactual simulation results, allowing for a merger efficiency
in one and ignoring it in the other. A merger efficiency can arise because craft breweries
could benefit from using the marketing networks of the acquirer and enjoy reduced fixed costs
(Elzinga and McGlothlin, 2021).30 According to our estimate of the parameter θ1 in the fixed
cost function, independent craft breweries face higher fixed costs. Recall that this parameter
is identified by the difference in product decisions between independent craft breweries and
craft products owned by the macro breweries, i.e., the latter products are more likely to enter

30Mergers involving craft breweries may not quickly realize efficiency gains in marginal costs as craft
breweries often remain operationally independent and their beers continue to be brewed in the same facilities
in the short run. This arrangement contrasts with mergers among macro breweries, where the merged firms
relocate production and economize on transportation costs from production facilities to markets (Ashenfelter,
Hosken and Weinberg, 2015).
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Figure 7: Merger Effects on Entry, Product Variety, and Prices

No Merger Efficiency With Merger Efficiency
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(B) Number of Firm Exits
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(C) Number of Products Added by Entrants

1 2 3 4 5 6 7 8 9 10

Group Sorted by Market Size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(#
 P

ro
du

ct
s 

by
 E

nt
ra

nt
s)

1 2 3 4 5 6 7 8 9 10

Group Sorted by Market Size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(#
 P

ro
du

ct
s 

by
 E

nt
ra

nt
s)

37



(D) Change in the Number of Products by Merging Firms
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(E) Change in the Number of Products by Non-merging Incumbent Firms
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(F) Change in the Number of Products
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(G) Change in Craft Prices
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a market. Therefore, to quantify the effects of a potential fixed cost reduction post-merger,
we consider a scenario where the fixed costs of the acquired craft products decrease by the
estimated θ1, which is the extra fixed cost faced by independent craft breweries.

We report the merger effects on entry, product variety, and prices across markets in
Figure 7 and the aggregate welfare effects in Table 8. For the purpose of presentation, in
Figure 7, instead of presenting the merger effects in each of the 149 markets separately, we
sort markets into 10 groups according to market size from group 1 (smallest) to group 10
(largest). There are 15 markets in groups 1 to 9 and 14 largest markets in group 10. Within
each group, we average counterfactual outcomes across markets weighted by their market
size.

The left panel of Figure 7 shows the merger’s effects on firm entry, product variety, and
prices without considering the potential merger efficiency. We see both firm entry and exit
post-merger (Panels (A) and (B)), with more entries than exits. New entrants bring in new
products (Panel (C)). The number of products added by new entrants is almost identical
to the number of new entrants, implying that new entrants, on average, enter with one
product. As for incumbents, merging incumbents drop products (Panel (D)) while non-
merging incumbents add products (Panel (E)). As a result, the change in the overall number
of products is ambiguous (Panel (F)). The increase in the quantity-weighted average craft
beer price (Panel (G)) is centered around 5 cents, but could be as large as nearly 15 cents,
which is about 10% of the average markup.

The left panel of Table 8 reports the welfare effects of the merger ignoring the merger
efficiency. It shows that total surplus decreases (Row (1)): while there is a gain in producer
surplus (Row (2)), consumers are worse off, with a decrease in consumer surplus of $233,250
to $1,075,040 (Row (3)). The effect of the product variety change on consumer surplus is
ambiguous (Row (4)). A decomposition of the consumer surplus change due to the prod-
uct changes indicates that while new entries recover the consumer welfare loss (Row (5)),
incumbents’ product adjustments reduce consumer welfare (Row (6)).

Overall, in the scenario without the merger efficiency gain, new entries occur and these
new entrants bring new products to markets after the merger. Non-merging incumbents also
add products. However, their positive effects are not enough to offset the negative welfare
effects from the merged firm dropping products and the increased prices.

We now turn to simulations allowing for the merger efficiency in reducing fixed costs.
The right panels of Figure 7 demonstrate that the merging firms now add products (Panel
(D)). At the same time, there are fewer new entrants (Panel (A)) and more exits in some
market groups (Panel (B)). The number of products added by new entrants is lower (Panel
(C)). Similarly, the change in the number of products by non-merging firms also becomes
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Table 8: Welfare Effects

No Merger Efficiency With Merger Efficiency
(1) total surplus ($1000) [-780.05, -200.23] [-401.66, -31.24]
(2) craft beer profits ($1000) [33.02, 294.99] [25.34, 285.68]
(3) consumer surplus ($1000) [-1,075.04, -233.25] [-670.21, -152.21]
(4) due to variety change [-91.00, 111.55] [6.08, 566.06]
(5) due to entry [1.21, 122.86] [1.14, 69.95]
(6) due to incumbent product adjustments [-111.05, -9.11] [4.94, 519.47]
Note: this table reports the aggregate welfare effects of the merger across markets. For each measure, we
report the range across the vectors of parameters sampled from their 95% confidence set. The left panel
shows the results without considering any merger efficiency, while the right panel reports the results that
incorporate reductions in fixed costs when a craft brewery is acquired by a macro brewery.

smaller or even negative in very small markets (Panel (E)). However, the total number of
products now increases (Panel (F)). At the same time, the upper bound of price changes
becomes larger, indicating that prices could increase more (Panel (G)).

With the efficiency, the consumer welfare loss is smaller but not reversed. The range
of the loss is now between $152,210 and $670,210, according to Row (3) in the right panel
of Table 8. Both new entry and product adjustment by incumbents help to mitigate the
negative welfare effect, as shown in Rows (5) and (6), leading to a positive consumer welfare
effect due to changes in product variety (Row (4)). Nonetheless, both the overall consumer
surplus change and the total surplus change are still negative.

We note two countervailing effects of the merger efficiency associated with fixed costs
on the number of products in a market. On the one hand, the efficiency can induce new
product entry by merging firms. On the other hand, the efficiency can depress new firm entry,
increase rival firm exit, and discourage product entry by non-merging incumbents, thereby
limiting the overall positive effect of efficiency gains on product variety and consumer welfare.
The latter countervailing effect exists because while prices are often strategic complements,
product offerings tend to be strategic substitutes.

In sum, the merger results in new firm entry in all markets as well as product entry
by non-merging incumbents in larger markets. The effect on product variety depends on
whether there is a merger efficiency in reducing fixed costs, and the merged firm may drop
or add products accordingly. However, in both scenarios, the merger leads to a decrease in
consumer surplus and total surplus.
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7 Conclusion

We propose a new method for estimating discrete games and apply it to study merger effects
on firm entry, product choice, and prices in the California retail craft beer market. The paper
makes two contributions. Methodologically, we present a new method to estimate discrete
games. This method is easy to compute and scalable to games with many firms or many
firm decisions. Empirically, we study the effects of a merger on both firm entry and product
variety. We simulate a merger that could significantly increase the concentration of the retail
craft beer market. We find that, although new firm entry always occurs after such a merger,
whether product variety decreases depends on a merger efficiency gain that reduces the fixed
cost. However, even in our entry-favorable setting, the impact of new entry is insufficient
to offset the overall negative effect of the merger on welfare. The merger efficiency can only
reduce, but not reverse, the consumer surplus loss.
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A Details on Inference and Step-by-Step Calculation
of the Confidence Set

Confidence Set

We construct our confidence set based on the inequalities in (8) by inverting the test in
Andrews and Soares (2010). With an abuse of notation, we now use θ to denote the fixed
cost parameters including both the coefficients of covariates (originally denoted by θ) and
the parameters in the distribution of the unobservable fixed cost shock (originally denoted
by σζ). We also denote the moment functions in (8) by Zm,k̃ (θ), k̃ = 1, . . . , 2K. For the first
K moment functions, Zm,k̃ (θ) is 1

#J
∑

j∈J L (Yjm, Xnm,Wjm, θ) · g(k̃) (Xnm,Wjm) in (8). For
k̃ = K + 1, . . . , 2K, Zm,k̃ (θ) is 1

#J
∑

j∈J H (Yjm, Xnm,Wjm, θ) · g(k̃−K) (Xnm,Wjm) in (8).
Let Zm(θ) = (Zm,1(θ), ..., Zm,2K(θ))′. Then, the sample moment functions are

Z̄M(θ) = 1
M

M∑
m=1

Zm(θ). (A.1)

Let
Σ̂M(θ) = 1

M

M∑
m=1

(
Zm(θ) − Z̄M(θ)

) (
Zm(θ) − Z̄M(θ)

)′
(A.2)

be the estimator of the covariance matrix of
√
MZ̄M(θ).

The test statistic is given by

TM(θ) = S(
√
MZ̄M(θ), Σ̂M(θ)), (A.3)

where S(Z,Σ) = ∑2K
k̃=1[Zk̃/σk̃]2+ is the modified method of moments test function, σ2

k̃
is the

k̃th diagonal element of Σ, and the function [·]+ takes the value of the argument if it is
positive and 0 otherwise.

The critical value for the null hypothesis H0 : θ = θ0, denoted by ĉM(θ0, 1 − α), is the
(1 − α) quantile of S(Ω̂1/2

M (θ0)R + [ηM(θ0)]−, Ω̂M(θ0)), where R ∼ N(02K , I2K), Ω̂M(θ) =
D̂

−1/2
M (θ)Σ̂M(θ)D̂−1/2

M (θ), D̂M(θ) = Diag(Σ̂M(θ)), ηM(θ) = (lnM)−1/2M1/2D̂
−1/2
M (θ)Z̄M(θ),

and [ηM(θ)]− = ([ηM,1(θ)]−, ..., [ηM,2K(θ)]−).
We invert this test to construct our confidence set, which is {θ0 : TM (θ0) ≤ ĉM (θ0, 1 − α)}.

Step-by-Step Calculation

We now describe the steps in constructing the confidence set.
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(1) We first compute ∆j (Xnm), ∆j (Xnm), and g(k) (Xnm,Wjm) for each j, n, m and k.

(2) For each candidate parameter value θ0, we compute the test statistic TM(θ0) as follows:

(i) compute Zm(θ0) by first plugging∆j (Xnm) into L (Yjm, Xnm,Wjm, θ0) and∆j (Xnm)
into H (Yjm, Xnm,Wjm, θ0) and then combining them with each g(k) (Xnm,Wjm)
to compute Zm,k̃(θ0),

(ii) compute the sample moments Z̄M(θ0) according to (A.1),

(iii) compute the sample variance estimator Σ̂M(θ0) according to (A.2),

(iv) compute the test statistic TM(θ0) according to (A.3).

(3) For each candidate parameter value θ0, we compute the critical value ĉM(θ0, 1 − α) as
follows:

(v) compute D̂M(θ0) = Diag(Σ̂M(θ0)), Ω̂M(θ0) = D̂
−1/2
M (θ0)Σ̂M(θ0)D̂−1/2

M (θ0), and
ηM(θ0) = (lnM)−1/2M1/2D̂

−1/2
M (θ)Z̄M(θ0),simulateNS draws of the 2K-dimensional

random vector R from the standard normal distribution: {Rr : r = 1, ..., NS},

(viii) find the (1 − α) quantile of {S(Ω̂1/2
M (θ0)Rr + [ηM(θ0)]−, Ω̂M(θ0)) : r = 1, ..., NS}.

(4) To construct the confidence set, we consider a large set of parameter values and include
a point θ0 in the confidence set if TM(θ0) ≤ ĉM(θ0, 1−α). In practice, we use a three-step
stochastic search process.

(4.1) We find θ⋆
0 that minimizes the test statistic TM(θ).

(4.2) We repeat the following forward perturbation process 50 times. In each forward
perturbation process,

• We add to θ⋆
0 a perturbation and check whether the test statistic at the new

point is below the corresponding critical value.31

• If it is, we save the new point as θ⋆
1 and perturb it. Otherwise, we consider

another perturbation to θ⋆
0.

• We continue to add perturbations in this fashion 50 times.

Each forward perturbation process yields a set of points satisfying TM(θ0) ≤
ĉM(θ0, 1 − α). We collect all such points across the 50 repetitions of the process.

31The size of the perturbation depends on the empirical application. We draw from a normal distribution
with mean 0 and a standard deviation of 1

5 independently for each parameter.
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(4.3) We select 100 points obtained in (4.2) and for each of them, we perform a forward
perturbation similar to the one in (4.2), but with larger perturbations.32

The 100 selected points consist of two groups. The first 50 points are sampled
randomly from the set obtained in (4.2). The second 50 points are sampled
randomly from the points at the boundary of the confidence set obtained in (4.2),
i.e., at least one dimension of these points is the maximum or minimum along
that dimension among all points in the set found in (4.2). We do this to ensure
that we consider points beyond the bounds of the set obtained in (4.2).

In some cases, ∆j and ∆j may depend on estimated parameters (which are estimated before
estimating θ). For example, in the empirical part of the paper, the change in variable profit is
computed based on the estimated demand and marginal cost parameters. When the moment
functions depend on the estimated parameters, the estimated covariance of the moments
Σ̂M(θ) needs to be adjusted to account for the estimation errors in these parameters. In this
appendix, β denotes the collection of demand and marginal cost parameters and β̂ denotes
their estimates. The following steps are adjusted:

• In Step (1), we compute ∆j(Xnm, β̂), ∆j(Xnm, β̂), and g(k)(Xnm,Wjm, β̂).

• In (i) and (ii), we plug in ∆j(Xnm, β̂), ∆j(Xnm, β̂), and g(k)(Xnm,Wjm, β̂) to com-
pute Zm(θ0, β̂) and then Z̄M(θ0, β̂). In (iii), we simulate the sample variance from the
asymptotic distribution of the demand and marginal cost parameters as follows:

– simulate ÑS draws of the demand and marginal cost parameter values denoted
by {βr : r = 1, ..., ÑS},

– compute ∆j(Xnm, βr), ∆j(Xnm, βr), g(k)(Xnm,Wjm, βr) for r = 1, ..., ÑS,

– compute Zm(θ0, βr) and then Z̄M(θ0, βr) for r = 1, ..., ÑS,

– compute the adjusted sample variance estimator as

Σ̂M(θ0) = 1
M × ÑS

M∑
m=1

ÑS∑
r=1

(
Zm(θ0, βr) − Z̄M(θ0, βr)

) (
Zm(θ0, βr) − Z̄M(θ0, βr)

)′
.

• In (iv), we compute the test statistic TM(θ0, β̂) = S(
√
MZ̄M(θ0, β̂), Σ̂M(θ0)).

• In computing the critical value in Step (3), we replace Z̄M(θ0) by Z̄M(θ0,β̂) and plug
in the adjusted sample variance to obtain the critical value ĉM(θ0, β̂, 1 − α).

32In practice, we draw from a standard normal distribution.

49



• In constructing the confidence set in Step (4), we follow the same procedure to find θ0

s.t. TM(θ0, β̂) ≤ ĉM(θ0, β̂, 1 − α).

B Details on Fixed Cost Simulation Draws in Coun-
terfactual Simulations

We draw fixed costs consistent with both the estimated distribution of fixed cost and the
observed pre-merger outcome as an equilibrium. As explained in Section 6, it is important
to maintain this consistency to properly compare the pre- and post-merger outcomes. To
obtain one such set of draws in a market m, we proceed with the following steps:

1. For each potential product j of firm n, we calculate the change in firm n’s expected
variable profit when product j enters the market as defined in equation (4),

∆j (Y −jm, Xnm) = πn (Yjm = 1,Y −jm, Xnm) − πn (Yjm = 0,Y −jm, Xnm) ,

where we plug in the observed Y −jm. If product j is observed in market m, we define
a range (−∞, ∆j (Y −jm, Xnm)). Otherwise, we define a range (∆j (Y −jm, Xnm) ,∞).

2. We simulate draws of the fixed costs for firm n from a truncated normal distribution
with the underlying normal distribution parameterized by mean Wjmθ̂ and variance
σ̂2

ζ . The support of the truncated distribution is defined by the ranges obtained in step
1. These draws satisfy the necessary conditions for the observed outcome to be an
equilibrium.

3. For each draw from step 2, we check whether firm n’s best response to Y −nm is indeed
Y nm, where Y nm and Y −nm, respectively, represent firm n’s and its opponents’ product
decisions in market m in the data. We find each firm’s best response by employing
the algorithm in Fan and Yang (2020) using two starting points, i.e., Y 0

nm = (0, ..., 0)
and Y 0

nm = (1, ..., 1). If the algorithm converges to Y nm from both starting points, we
keep the set of draws for firm n. If at least one of the starting points does not lead to
Y nm, we go back to step 2 and re-draw the fixed costs.

4. We repeat this process for every firm n.
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SA A Graphic Illustration of the Comparison of Our
Bounds to the CT and the AT Bounds

Figure SA.1: Model Implications Under Different Assumptions
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Comparison to CT

The left graph of Figure SA.1 lists all possible pure-strategy Nash equilibria in each region of
(ζ1m, ζ2m) in the 2×2 entry game. We use Pr (R) to represent the probability that (ζ1m, ζ2m)
is in region R. The CT bounds for (Y1m = 1, Y2m = 0) are:

∑
ℓ=1,2,4

Pr (Rℓ) ≤ Pr (Y1m = 1, Y2m = 0) ≤
∑

ℓ=1,2,4,5
Pr (Rℓ) . (SA.1)

The bounds for (Y1m = 1, Y2m = 1) degenerate into an equation:

Pr (Y1m = 1, Y2m = 1) = Pr (R3) . (SA.2)

Therefore, the CT bounds imply the following bounds for Pr (Y1m = 1):

4∑
ℓ=1

Pr (Rℓ) ≤ Pr (Y1m = 1) ≤
5∑

ℓ=1
Pr (Rℓ) . (SA.3)
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By contrast, our bounds are

3∑
ℓ=1

Pr (Rℓ) ≤ Pr (Y1m = 1) ≤
6∑

ℓ=1
Pr (Rℓ) . (SA.4)

These bounds are wider than those in (SA.3). Intuitively, the CT bounds rely on stronger
assumptions (Nash vs. level-1 rationality), exploit more model implications (probability of
an equilibrium vs. an action), and are therefore tighter.

Comparison to AT

The right panel of Figure SA.1 shows all outcomes consistent with the level-1 rationality
assumption. The AT bounds for (Y1m = 1, Y2m = 1) and (Y1m = 1, Y2m = 0) are, respectively:

Pr (R3) ≤ Pr (Y1m = 1, Y2m = 1) ≤
∑

ℓ=2,3,5,6
Pr (Rℓ) , (SA.5)

Pr (R1) ≤ Pr (Y1m = 1, Y2m = 0) ≤
∑

ℓ=1,2,4,5
Pr (Rℓ) .

In the region R2, although the model implication for (Y1m, Y2m) is not unique, firm
1 always chooses the dominant strategy Y1m = 1. The AT bounds do not exploit such
uniqueness of a firm’s action while our bounds do. Therefore, the AT bounds are not
necessarily sharper than ours.

Another way to see this point is as follows. In regionsR2, R4, R5, R6, andR8, Pr (Y1m = 1, Y2m = 1)
and Pr (Y1m = 1, Y2m = 0) depend on the equilibrium selection rules. The possible values for
Pr (Y1m = 1, Y2m = 1) and Pr (Y1m = 1, Y2m = 0) are

Pr (Y1m = 1, Y2m = 1) = Pr(R3) +
∑

l=2,5,6
αl Pr(Rl),

Pr (Y1m = 1, Y2m = 0) = Pr(R1) +
∑

l=2,4,5
βl Pr(Rl),

where αl∈ [0, 1] is the probability that (Y1m = 1, Y2m = 1) is the selected in region l and
βl ∈ [0, 1] is the probability that (Y1m = 1, Y2m = 0) is selected in region l. Since (Y1m =
1, Y2m = 1) and (Y1m = 1, Y2m = 0) are the only two possible outcomes in R2, we have
α2 + β2 = 1. Similarly, we have α5 + β5 ≤ 1.

The AT lower and upper bounds for Pr (Y1m = 1, Y2m = 1) in (SA.5) are essentially

min
{α2,α5,α6}∈[0,1]3

Pr(R3) +
∑

l=2,5,6
αl Pr(Rl) and max

{α2,α5,α6}∈[0,1]3
Pr(R3) +

∑
l=2,5,6

αl Pr(Rl),
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and those for Pr (Y1m = 1, Y2m = 0) are

min
{β2,β4,β5}∈[0,1]3

Pr(R1) +
∑

l=2,4,5
βl Pr(Rl) and max

{β2,β4,β5}∈[0,1]3
Pr(R1) +

∑
l=2,4,5

βl Pr(Rl).

In other words, the AT bounds only require αl and βl to be between 0 and 1, but ignore the
requirement that α2 + β2 = 1. Below we show that our bounds use this condition.

The possible value for Pr (Y1m = 1) is

Pr(R1) + Pr(R3) +
∑

l=2,5,6
αl Pr(Rl) +

∑
l=2,4,5

βl Pr(Rl).

Since α2 + β2 = 1, it can rewritten as

Pr(R1) + Pr(R2) + Pr(R3) +
∑

l=5,6
αl Pr(Rl) +

∑
l=4,5

βl Pr(Rl).

Therefore, the minimum possible value for Pr (Y1m = 1) is Pr(R1) + Pr(R2) + Pr(R3), which
is exactly our lower bound for Pr (Y1m = 1).

In sum, our bounds as well as the CT and AT bounds exploit only a subset of conditions
implied by a model. Different from the comparison between our bounds and the CT bounds,
the AT bounds and our bounds rely on the same model restrictions but use different and
non-nesting model implications.

SB Details on Micro Moments

In this section, we explain how we compute the model prediction for the micro moment
E
(
qf

iτ | qf
iτ ≥ 1

)
. The calculation for other micro-moments in Section 5.1 is similar.

Let sjmt (ν, y) denote the Logit choice probability of product j in month t when the vector
of unobserved tastes is ν and log-income is y. Let Gm (ν, y) denote the distribution of (ν, y),
which can vary across markets and is thus indexed by m. We assume that each consumer
has 8 opportunities to buy beer per month, which is the average number of household trips
per month in the Nielsen Consumer Panel data. Then, the probability that a household with
values (ν, y) buys type-f products in market m in year τ is

ψf
mτ (ν, y) = 1 −

∏
t∈Tτ

1 −
∑

j∈J f
mτ

sjmt (ν, y)


8

,

where Tτ denotes the months of the year and J f
mτ is the collection of all type-f products in
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market m in year τ . The conditional expectation of the annual purchase of type-f products
for households in market m and year τ is, therefore,

Emτ

(
qf

iτ | qf
iτ ≥ 1

)
=
∫

ν,y

∑
t∈Tτ

∑
j∈J f

mτ
8 · sjmt (ν, y) dGm (ν, y)∫

ν,y ψ
f
mτ (ν, y) dGm (ν, y)

,

where Emτ is the expectation specific to a market m and a year τ. To obtain the average
across market/year combinations, we weigh these conditional means in each market/year
combination by the expected number of households who purchase type-f products, which
is the product of the market size and the unconditional probability of purchasing type-f
products in a market/year, i.e.,

weightmτ = MktSizemτ ·
∫
ψf

mτ (ν, y) dGm (ν, y) .

Therefore, the expected purchase of type-f products conditional on having at least one
purchase is

E
(
qf

iτ | qf
iτ ≥ 1

)
=
∑

mτ Emτ

(
qf

iτ | qf
iτ ≥ 1

)
· weightmτ∑

mτ weightmτ

.

SC Robustness Analyses

In this section, we consider two extensions. First, we extend the fixed cost specification to
allow for a market-level unobserved cost shock ζm:

Wjmθ + σζζjm + λζm.

We assume ζm is i.i.d. across markets and has a standard normal distribution. We follow
the estimation procedure in Section 2.5 to estimate (θ, σζ , λ) and report the projected 95%
confidence interval in Table SC.1. For comparison, we also copy the baseline results in Table
SC.1. We find that the standard deviation of the market-level shock ζm is comparable to
the standard deviation of the product/market-level shock ζjm in medium-sized markets. We
also find that the merger simulation results are robust (Figure SC.1 and Table SC.2).

For the second robustness analysis, we extend our model to allow for (dis)economies of
scope in fixed costs and derive a new set of inequalities bounding the entry probability of a
firm in addition to that of a product in order to estimate the additional parameter.

Our baseline fixed cost specification is additively separable across products and thus does
not allow for (dis)economies of scope. We consider the following extension of the fixed cost
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Table SC.1: Fixed Cost Estimates: Projected 95% Confidence Interval, Allowing for a
Market-Level Shock

Baseline Model With a Market-Level Shock
Craft (θ1) [255.32, 583.95] [13.15, 447.83]
In State× Craft (θ2) [-276.04, 37.57] [-215.23, 239.22]
Market-size specific fixed cost (θ3)

Small market [426.52, 721.90] [470.68, 874.90]
Medium market [720.77, 1014.10] [435.05, 875.24]
Large market [2028.00, 2453.69] [2201.91, 2819.98]

Market-size specific std. dev. (σζ)
Small market [0.02, 105.80] [0.01, 128.23]
Medium market [1.18, 207.45] [0.07, 177.45]
Large market [767.59, 1044.93] [590.89, 1087.97]

Market-level unobserved cost std. dev. (λ) [0.00, 175.51]
Note: Estimates in 2016 US dollars.

Table SC.2: Welfare Effects, Allowing for a Market-Level Shock

No Merger Efficiency With Merger Efficiency
(1) total surplus ($1000) [-781.57, -190.74] [-583.33, -132.23]
(2) craft beer profits ($1000) [31.37, 295.32] [24.41, 287.68]
(3) consumer surplus ($1000) [-1076.89, -222.11] [-841.97, -158.60]
(4) due to variety change [-91.28, 162.04] [-10.65, 386.12]
(5) due to entry [0.16, 133.87] [0.13, 101.77]
(6) due to incumbent product adjustments [-108.36, 28.17] [-48.47, 325.46]
Note: this table reports the aggregate welfare effects of the merger across markets. For each measure, we
report the range across the vectors of parameters sampled from their 95% confidence set. The left panel
shows the results without considering any merger efficiency, while the right panel reports the results that
incorporate reductions in fixed costs when a craft brewery is acquired by a macro brewery.
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Figure SC.1: Merger Effects on Entry, Product Variety, and Prices, Allowing for a Market-
Level Shock

No Merger Efficiency With Merger Efficiency
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(B) Number of Firm Exits

1 2 3 4 5 6 7 8 9 10

Group Sorted by Market Size

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(#
 E

xi
ts

)

1 2 3 4 5 6 7 8 9 10

Group Sorted by Market Size

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(#
 E

xi
ts

)

(C) Number of Products Added by Entrants
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(D) Change in the Number of Products by Merging Firms
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(E) Change in the Number of Products by Non-merging Incumbent Firms
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(F) Change in the Number of Products

1 2 3 4 5 6 7 8 9 10

Group Sorted by Market Size

-1

0

1

2

3

4

5

6

(#
 P

ro
du

ct
s)

1 2 3 4 5 6 7 8 9 10

Group Sorted by Market Size

-1

0

1

2

3

4

5

6

(#
 P

ro
du

ct
s)

(G) Change in Craft Prices
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function:

θ01

∑
j∈Jn

Yjm > 0
+

∑
j∈Jn

Yjm (Wjmθ + σζζjm) ,

which is no longer additive in the fixed cost of each product. The fixed cost function exhibits
economies (or diseconomies) of scope if θ0 > 0 (or θ0 < 0).

To estimate θ0, we additionally consider bounds for the conditional probability that a
firm has at least one product in a market, denoted by Pr(∑j∈Jn

Yjm > 0 |Xnm,Wnm ), where
Wnm = (Wjm, j ∈ Jn) is the collection of the fixed cost covariates for firm n’s potential
products. We define ζnm = (ζjm, j ∈ Jn) analogously. Also, let Y nm = (Yjm, j ∈ Jn) be firm
n’s product decision in market m and Y −nm be the opponents’ decisions. Finally, we denote
firm n’s maximum profit from entering the market for given (Y −nm, Xnm,Wnm) by

Γnm(Y −nm, Xnm,Wnm, ζnm, θ, σζ)

= max
{Y nm s.t.

∑
j∈Jn

Yjm>0}
πn(Y nm,Y −nm, Xnm) −

∑
j∈Jn

Yjm (Wjmθ + σζζjm) − θ0.

We define the minimum

Γnm(Xnm,Wnm, ζnm, θ, σζ) = min
Y −nm

Γnm(Y −nm, Xnm,Wnm, ζnm, θ, σζ)

and the maximum

Γnm(Xnm,Wnm, ζnm, θ, σζ) = max
Y −nm

Γnm(Y −nm, Xnm,Wnm, ζnm, θ, σζ).

Under the assumption that the observed brewery entry decisions are not dominated, the
bounds for Pr(∑j∈Jn

Yjm > 0 |Xnm,Wnm ) are

Pr (Γnm (Xnm,Wnm, ζnm, θ, σζ) > 0)

≤ Pr(
∑

j∈Jn

Yjm > 0 |Xnm,Wnm )

≤ Pr
(
Γnm (Xnm,Wnm, ζnm, θ, σζ) > 0

)
.

Unfortunately, computing Γnm(Y −nm, Xnm,Wnm, ζnm, θ, σζ) can be costly because there
are many possible values for Y nm in {Y nm s.t. ∑j∈Jn

Yjm > 0}. Consequently, computing
its lower and upper bounds, Γnm (Xnm,Wnm, ζnm, θ, σζ) and Γnm (Xnm,Wnm, ζnm, θ, σζ), is
also costly. In what follows, we define a function Γ

nm
(·) that is always smaller than or equal

to Γnm(·) and a function Γnm(·) that is always larger than or equal to Γnm(·), and use these
functions to construct the bounds for Pr(∑j∈Jn

Yjm > 0 |Xnm,Wnm ).
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Consider an example where firm n has three potential products, j = 1, 2, 3. The firm
profit given the product entry decision (1, 1, 0) is πn((1, 1, 0),Y −nm, Xnm), which can be
written as the sum of two differences: πn((1, 1, 0),Y −nm, Xnm) − πn((1, 0, 0),Y −nm, Xnm)
and πn((1, 0, 0),Y −nm, Xnm) − πn((0, 0, 0),Y −nm, Xnm). Given the definition of ∆j(Xnm)
and ∆j (Xnm) in equation (4), we have

∆1 +∆2 ≤ πn((1, 1, 0),Y −nm, Xnm) ≤ ∆1 +∆2.

More generally,

∑
j∈Jn

Yjm∆j (Xnm) ≤ πn (Y nm,Y −nm, Xm) ≤
∑

j∈Jn

Yjm∆j (Xm) .

Define

Γ
nm

(Xnm,Wnm, ζnm, θ, σζ) = max
{Y nm s.t.

∑
j∈Jn

Yjm>0}

∑
j∈Jn

Yjm

(
∆j (Xnm) −Wjmθ − σζζjm

)
− θ0,

Γnm(Xnm,Wnm, ζnm, θ, σζ) = max
{Y nm s.t.

∑
j∈Jn

Yjm>0}

∑
j∈Jn

Yjm

(
∆j (Xnm) −Wjmθ − σζζjm

)
− θ0.

(SC.1)

We have Γ
nm

(Xnm,Wnm, ζnm, θ, σζ) ≤ Γnm (Xnm,Wnm, ζnm, θ, σζ) by the max-min in-
equality and Γnm (Xnm,Wnm, ζnm, θ, σζ) ≤ Γnm(Xnm,Wnm, ζnm, θ, σζ) by the definition of
Γnm(Xnm,Wnm, ζnm, θ, σζ).

The integer programming problem in (SC.1) can be solved quickly given the additive
structure. Specifically,

Γ
nm

(Xnm,Wnm, ζnm, θ, σζ)

= − θ0 +


∑

j∈Jn

[
∆j (Xnm) −Wjmθ − σζζjm

]
+

if ∃j s.t. ∆j (Xnm) −Wjmθ − σζζjm > 0,

maxj∈Jn

{
∆j (Xnm) −Wjmθ − σζζjm

}
otherwise.

In other words, we simply need to calculate the value of each ∆j (Xnm) − Wjmθ − σζζjm,
sum up all the positive terms, and subtract θ0. If ∆j (Xnm) − Wjmθ − σζζjm < 0 for all
j ∈ Jn, we calculate the bound as the maximum of ∆j (Xnm)−Wjmθ−σζζjm −θ0. Similarly,
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Γnm(Xnm,Wnm, ζnm, θ) is given by

Γnm(Xnm,Wnm, ζnm, θ)

= − θ0 +


∑

j∈Jn

[
∆j (Xnm) −Wjmθ − σζζjm

]
+

if ∃j s.t. ∆j (Xnm) −Wjmθ − σζζjm > 0,

maxj∈Jn

{
∆j (Xnm) −Wjmθ − σζζjm

}
otherwise.

In the end, we use the following lower and upper bounds for estimation:

Pr
(
Γ

nm
(Xnm,Wnm, ζnm, θ, σζ) > 0

)
≤ Pr(

∑
j∈Jn

Yjm > 0 |Xnm,Wnm )

≤ Pr
(
Γnm (Xnm,Wnm, ζnm, θ, σζ) > 0

)
.

We combine moments associated with firm entry and those associated with product entry
for estimation. For moments associated with product entry, we modify the bounds of the
conditional choice probability of an individual product’s outcome to take into account θ0:

Fζ

(
ζjm < (∆j (Xnm) −Wjmθ − [θ0]+)/σζ

)
≤ Pr (Yjm = 1 |Xnm,Wjm )

≤Fζ

(
ζjm < (∆j (Xnm) −Wjmθ − [θ0]−)/σζ

)
.

The same set of non-negative g functions as those in the baseline estimation are used to
construct the moments associated with individual products. For moments associated with
firm entry, we use

(
∆j(Xnm), ∆j(Xnm)

)
of the top three most profitable products of firm n

to define the non-negative g functions. If a firm has only one (or two) potential products, we
set the g functions corresponding with the second and third products (or the third product)
to be 0.

We report the 95% projected confidence interval in Table SC.3. For comparison, we
also copy the results from the baseline specification in the first column. We find evidence for
diseconomies of scope in the small and large markets. The diseconomies of scope in the small
markets may be explained by the limited shelf space of the retailers in these markets. In
large markets, on the other hand, retailers typically require brewery sales representatives to
ensure products are well stocked and expired products are removed quickly and the logistic
challenges could increase with the number of products, again leading to diseconomies of
scope.

We report the counterfactual simulation results in Figure SC.2 (merger effects on entry,
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Table SC.3: Fixed Cost Estimates: Projected 95% Confidence Interval, Allowing for
(Dis)Economies of Scope

Baseline Model (Dis)Economies of Scope
Craft (θ1) [255.32, 583.95] [213.49, 635.58]
In State× Craft (θ2) [-276.04, 37.57] [-384.14, 104.57]
Market-size specific fixed cost (θ3)

Small market [426.52, 721.90] [864.66, 1264.90]
Medium market [720.77, 1014.10] [697.71, 1174.91]
Large market [2028.00, 2453.69] [3251.24, 3722.16]

Market-size specific std. dev. (σζ)
Small market [0.02, 105.80] [0.08, 211.94]
Medium market [1.18, 207.45] [0.09, 251.42]
Large market [767.59, 1044.93] [20.85, 539.83]

Market-size specific firm entry cost (θ0)
Small market [-692.29, -233.74]
Medium market [-443.84, 21.76]
Large market [-2566.82, -1986.40]

Note: Estimates in 2016 US dollars.

product variety, and prices) and Table SC.4 (welfare effects). From the comparison of Figure
SC.2 to Figure 7 and Table SC.4 to Table 8, we can see that while the estimates are somewhat
different, the merger effects are very similar to the baseline results.

Table SC.4: Welfare Effects, Allowing for (Dis)Economies of Scope

No Merger Efficiency With Merger Efficiency
(1) total surplus ($1000) [-839.00, -240.21] [-478.45, -122.95]
(2) craft beer profits ($1000) [24.94, 323.19] [2.20, 307.26]
(3) consumer surplus ($1000) [-1159.80, -265.15] [-750.98, -165.63]
(4) due to variety change [-148.74, 48.36] [-7.34, 486.75]
(5) due to entry [1.71, 128.49] [1.10, 74.58]
(6) due to incumbent product adjustments [-183.70, -40.89] [-8.45, 420.80]
Note: this table reports the aggregate welfare effects of the merger across markets. For each measure, we
report the range across the vectors of parameters sampled from their 95% confidence set. The left panel
shows the results without considering any merger efficiency, while the right panel reports the results that
incorporate reductions in fixed costs when a craft brewery is acquired by a macro brewery.
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Figure SC.2: Merger Effects on Entry, Product Variety, and Prices, Allowing for
(Dis)Economies of Scope

No Merger Efficiency With Merger Efficiency
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(B) Number of Firm Exits
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(C) Number of Products Added by Entrants
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(D) Change in the Number of Products by Merging Firms
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(E) Change in the Number of Products by Non-merging Incumbent Firms
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(F) Change in the Number of Products
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(G) Change in Craft Prices
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