More Accurate Semiparametric Regression in Pharmacogenomics*

Yaohua Rong, Sihai Dave Zhao, Ji Zhu, Wei Yuan, Weihu Cheng, and Yi Li†

A key step in pharmacogenomic studies is the development of accurate prediction models for drug response based on individuals’ genomic information. Recent interest has centered on semiparametric models based on kernel machine regression, which can flexibly model the complex relationships between gene expression and drug response. However, performance suffers if irrelevant covariates are unknowingly included when training the model. We propose a new semiparametric regression procedure, based on a novel penalized garrotized kernel machine (PGKM), which can better adapt to the presence of irrelevant covariates while still allowing for a complex nonlinear model and gene-gene interactions. We study the performance of our approach in simulations and in a pharmacogenomic study of the renal carcinoma drug temsirolimus. Our method predicts plasma concentration of temsirolimus as well as standard kernel machine regression when no irrelevant covariates are included in training, but has much higher prediction accuracy when the truly important covariates are not known in advance. Supplementary materials, including R code used in this manuscript, are available online.

Keywords and phrases: Kernel machine, Semiparametric regression, Model selection.

1. INTRODUCTION

Pharmacogenomics studies the role of genomics in drug response by correlating gene expression with drug absorption, distribution, metabolism and elimination. An important problem is to develop accurate drug response prediction models using individuals’ genomic, clinical and demographic information, as well as statistical learning methods for investigating the biological mechanisms underlying the outcome. The investigation that motivated our present work was a study of the anticancer agent temsirolimus (CCI-779), which targets renal cell carcinoma. Our goal is to predict, using an individual’s gene expression levels, the expected concentration of temsirolimus in the patient’s blood plasma. Plasma concentrations reflect the amount of the drug absorbed by the body, so accurate predictions can allow us to identify the patients for whom temsirolimus would be most efficacious.

Standard methods for predictive modeling usually posit a model for the outcome that is linear in the predictors. However, because the relationship between genes and drug plasma concentration may be very complex, e.g., due to gene-gene interactions, linear models may not suffice. Xue et al. [16] proposed a penalized regression method allowing for some nonlinearity, but required that the nonlinearity take the form of a generalized additive models, which is still restrictive. Allen [1] proposed the fully nonparametric KNIFE method to achieve feature selection using linearized weighted kernel. He et al. [9] extended the KNIFE procedure to a semiparametric setting. Alternatively, Liu et al. [11] proposed a least-squares kernel machine (LSKM) method based on semiparametric support-vector machine regression, which can allow for flexible modeling of the role of gene expression values, in addition to controlling for clinical and demographic covariates. However, these methods become inaccurate if the models contain many irrelevant predictors, so methods are needed to select predictors while still allowing for complicated nonlinear effects in semiparametric model.

There are few solutions that can maintain the flexibility of the LSKM while ameliorating the impact of the irrelevant predictors. Popular variable selection methods like the LASSO [14] and SCAD [6] cannot be applied here because they are designed for parametric, and usually linear, models. One possible approach was recently proposed by Maity and Lin [12], which can test whether a single predictor in a LSKM is associated with the outcome in the presence of the other predictors, while allowing for a nonlinear model. Predictors that are not significantly related can be removed from the model, reducing the dimension. Though sensible, this approach is akin to backwards selection and is not an efficient way of model-building.

*Rong’s work was partially supported by National Natural Science Foundation of China (No. 11701021), National Statistical Science Research Project (No. 2017LZ35), Fundamental Research Foundation of Beijing University of Technology and Beijing Outstanding Talent Foundation (No. 2014000020124G047); Zhao’s work was partially supported by NSF grant DMS-1613005; Li’s work was partially supported by NIH grant U01CA209414.

†Corresponding author
We propose a new kernel machine regression approach using a “garrotized” kernel, which generalizes the idea of Maity and Lin [12]. Our method allows for gene-gene interactions and other complex relationships between the gene expression values and the plasma concentration of temsirolimus.

2. METHODS

2.1 Least-squares kernel machine (LSKM) regression

For subjects $i = 1, \ldots, n$, let Y_i be the plasma concentration of temsirolimus, $X_i = (X_{i1}, \ldots, X_{iP})^T$ be a set of clinical and demographic covariates such as age, and $Z_i = (Z_{i1}, \ldots, Z_{iQ})^T$ be expression levels associated with Q genes. These genes may constitute a gene set, e.g., a genetic pathway/network. We assume the following partial linear semiparametric model to relate the response Y to the covariates:

$$Y = X\beta + h(Z) + \epsilon,$$

where $Y = (Y_1, \ldots, Y_n)^T$ is the $n \times 1$ vector of response variables, $X = (X_1, \ldots, X_n)^T$ is the $n \times P$ non-genomic covariate matrix, $Z = (Z_1, \ldots, Z_n)^T$ is the $n \times Q$ gene expression matrix, and $\epsilon = (\epsilon_1, \ldots, \epsilon_n)^T$ is an $n \times 1$ random error vector with independent components where $\epsilon_i \sim N(0, \sigma^2)$. The regression parameter vector β quantifies the effect of the non-genomic covariates on the outcome, and $h(\cdot)$ is an unknown and possibly complicated function that describes the relationship between genes and the plasma drug concentration. This flexibility is desirable because the true relationship between genes and the outcome is likely very complex.

It is common to assume $h(\cdot)$ lies in a reproducing kernel Hilbert space \mathcal{H}_K generated by some positive definite kernel function $K(\cdot, \cdot)$. According to the Mercer’s theorem [4], under some regularity conditions the kernel function $K(\cdot, \cdot)$ implicitly specifies a unique function space \mathcal{H}_K, which is spanned by a particular set of orthogonal basis functions $\phi_j(Z)$, $j = 1, \ldots, J$ with J possibly being infinity. The mathematical properties of \mathcal{H}_K imply that any function $h(\cdot) \in \mathcal{H}_K$ can be represented using a set of basis function as $h(z) = \sum_{j=1}^{J} \phi_j(z)\eta_j$ for some coefficients η_j, which is called the primal or basis representation of the function; or as $h(z) = \sum_{m=1}^{M} K(z_m^*, z; \rho)\alpha_m$, a linear combination of the given kernel function $K(\cdot, \cdot)$ evaluated at points $(z_1^*, \ldots, z_M^*) \in \mathbb{R}^Q$, for some integer M and some constants α_m, which is called the dual representation.

The space \mathcal{H}_K can be implicitly defined by choosing a kernel function. A commonly used one is the Gaussian kernel: $K(z_1, z_2) = \exp(-\sum_{q=1}^{Q}(z_{1q} - z_{2q})^2/\rho)$, where ρ is a tuning parameter. The Gaussian kernel generates the function space spanned by the radial basis functions [3], which contains many nonlinear functions and allows for gene-gene interactions. There are also other choices of kernel functions including the dth polynomial, neural network, sigmoid and smoothing spline kernels [13]. The choice of the kernel function thus determines the particular functional space in which the unknown function $h(\cdot)$ is assumed to lie.

Model (1) is the least-squares kernel machine (LSKM) regression model of Liu et al. [11]. It parametrically specifies the effects of the X_i and nonparametrically specifies the effects of Z_i using a unified kernel machine framework [13]. It is simple to fit and closely related to classical linear mixed models [11].

2.2 Garrotized kernel machines

LSKMs become less accurate when Z_i contain more irrelevant genes. This is true of any nonparametric method as the dimension increases, and in the case of LSKM is illustrated in our simulations in Table 1. Here we propose a new “garrotized” kernel that can automatically eliminate irrelevant genes from the model. Given a base kernel $K(\cdot, \cdot)$, our garrotized version $K^{(q)}$ is defined by

$$K^{(q)}(Z_i, Z_j; \delta) = K(Z_i^*, Z_j^*),$$

$$Z_u^* = (\delta_1^{1/2}Z_u1, \ldots, \delta_Q^{1/2}Z_uQ)^T, u = i, j, \delta_q \geq 0, q = 1, \ldots, Q.$$

For example, the garrotized version of the Gaussian kernel is $K^{(q)}(Z_i, Z_j; \delta) = \exp\{-\sum_{q=1}^{Q}\delta_q(Z_{iq} - Z_{jq})^2\}$. Our family of garrotized kernels includes the kernel of Maity and Lin [12] as a special case.

The δ are unknown and will be estimated from the data. Each δ_q modulates the effect of gene Z_q on drug response. For example, $\delta_q = 0$ implies that Z_q is not predictive of the response. Thus our garrotized kernel formulation provides a flexible way to select variables in a semi-parametric setting, and compared to the LSKM may be better adapt to the presence of irrelevant genes in Z. The function $h(\cdot)$ can still be very complicated, for example allowing for gene-gene interactions, depending on the chosen base kernel $K(\cdot, \cdot)$. The δ_q are similar to the regression coefficients in a linear model, except that our model does not need to be linear in Z_q.

To estimate the parameters of model (1) with our garrotized kernel (2), we first standardize the non-genomic covariates and each of the gene expression levels to have zero mean and unit variance and then solve the following minimization problem:

$$\arg \min_{\alpha, \beta, \delta} \frac{1}{2n} \sum_{i=1}^{n} (Y_i - X_i^T\beta - h(Z_i))^2 +$$

$$\lambda_1 \sum_{p=1}^{P} |\beta_p| + \lambda_2 \sum_{q=1}^{Q} \delta_q + \frac{1}{2} \lambda_3 ||h||^2_{\mathcal{H}_K},$$

where λ_1 and λ_2 are nonnegative regularization parameters, λ_3 is a tuning parameter which controls the trade-off between goodness of fit and complexity of the model, and...
\(\|h\|_{\mathcal{H}_K}\) denotes the functional norm in the space \(\mathcal{H}_K\) generated by the garrotized kernel. The penalty functions involving \(\beta\) and \(\delta\) are inspired by the LASSO penalty function, and are appropriate under the assumption that only a small number of the \(P\) non-genomic covariates and the \(Q\) genes are actually associated with the response. The penalty function involving \(h(\cdot)\) is standard in the estimation of kernel machine regression models \([11, 13]\).

The representer theorem of Kimeldorf and Wahba \([10]\) allows us to convert (3) into a more manageable optimization problem. The theorem states that the solution can be written as

\[
h(Z) = \sum_{j=1}^{n} \alpha_j K^{(\alpha)}(Z, Z_j; \delta),
\]

where \(\alpha = (\alpha_1, \ldots, \alpha_n)^T\) is an unknown vector and the \(K^{(\alpha)}(\cdot, \cdot)\) is our garrotized kernel. Minimization of (3) is thus equivalent to minimizing

\[
f(\alpha, \beta, \delta) = \frac{1}{2n} \|Y - X \beta - K(\delta)\alpha\|_2^2 +
\lambda_1 \sum_{p=1}^{P} |\beta_p| + \lambda_2 \sum_{q=1}^{Q} \delta_q + \frac{1}{2} \lambda_3 \alpha^T K(\delta) \alpha,
\]

where \(K(\delta)\) is an \(n \times n\) matrix, called the Gram matrix, with \(ij\)-th element given by \(K_{ij}(\delta) = K(Z_i, Z_j; \delta)\). We refer to the solution of (4) as our penalized garrotized kernel machine (PGKM) estimate.

Our proposed procedure is closely related to the flexible variable selection methods of Allen \([1]\) and He et al. \([9]\). However, the former considers a fully nonparametric model, rather than our partial linear model (1). The latter does consider a semiparametric model, but does not allow for variable selection in the parametric component. In contrast, our PGKM approach is able to identify important covariates regardless of whether they are parametrically or non-parametrically modeled. Furthermore, both KNIFE and the method of He et al. \([9]\) are based on linear approximations to the kernel. Our method instead directly uses the original nonlinear garrotized kernel, and simulations in Section 3 indicate that this strategy can dramatically reduce prediction error.

2.3 Algorithm

We propose solving (4) for the unknown parameters \(\alpha, \beta, \delta\) by using a “one-group-at-a-time” cyclic coordinate descent algorithm, which is computed along a regularization path.

1. Set initial estimates \(\alpha^{ini}, \beta^{ini}, \delta^{ini}\). For example, take the ordinary least square estimates for \(\beta\) and let \(\alpha^{ini} = 0.1, \delta^{ini} = 0.1\).
2. Update \(\alpha, \beta, \delta\) cyclically. Specifically,

- Fix \(\alpha, \beta\) at values \(\hat{\alpha}, \hat{\beta}\) and write (4) as

\[
f(\hat{\alpha}, \beta, \hat{\delta}) = \frac{1}{2n} \|Y - X \beta - K(\hat{\delta})\hat{\alpha}\|_2^2 +
\lambda_1 \sum_{p=1}^{P} |\beta_p| + \lambda_2 \sum_{q=1}^{Q} \hat{\delta}_q + \frac{1}{2} \lambda_3 \hat{\alpha}^T K(\hat{\delta}) \hat{\alpha}.
\]

The \(\beta\) can be estimated using standard procedures for computing LASSO regression estimates \([8, 7]\), giving an update \(\hat{\beta}\).

- Holding the values of \(\beta, \delta\) fixed at \(\tilde{\beta}, \tilde{\delta}\), our optimization problem (4) can be written as

\[
f(\alpha, \tilde{\beta}, \tilde{\delta}) = \frac{1}{2n} \|Y - X \tilde{\beta} - K(\tilde{\delta})\alpha\|_2^2 +
\lambda_1 \sum_{p=1}^{P} |\tilde{\beta}_p| + \lambda_2 \sum_{q=1}^{Q} \tilde{\delta}_q + \frac{1}{2} \lambda_3 \alpha^T K(\tilde{\delta}) \alpha,
\]

which is a quadratic form in \(\alpha\). Differentiating the right side of the above equation with respect to \(\alpha\) and letting it equal 0, we find that the update for \(\alpha\) is the solution to

\[
\left[\frac{1}{n} K^T(\tilde{\delta}) K(\tilde{\delta}) + \lambda_3 K(\tilde{\delta})\right] \alpha = \frac{1}{n} K^T(\tilde{\delta})(Y - X \tilde{\beta}),
\]

which is straightforward to obtain. If the left-hand side of the previous equation is a singular matrix, a diagonal matrix with small entries can be added to stabilize the estimate.

- Given the estimates of \(\alpha, \beta, \delta\), updating \(\delta\) is equivalent to solve a nonlinear optimization problem under the constraints \(\delta_t \geq 0, q = 1, \ldots, Q\). The \(\delta_q\) can be updated one at a time. For \(\delta_t, \, t = 1, \ldots, Q\), given the estimates of \(\alpha, \beta, \delta, (4)\) can be expressed as

\[
f(\tilde{\alpha}, \tilde{\beta}, \delta) = \frac{1}{2n} \|Y - X \tilde{\beta} - K(\delta)\tilde{\alpha}\|_2^2 +
\lambda_1 \sum_{p=1}^{P} |\tilde{\beta}_p| + \lambda_2 \sum_{q=1}^{Q} \delta_q + \lambda_3 \delta_t + \frac{1}{2} \lambda_3 \tilde{\alpha}^T K(\delta) \tilde{\alpha},
\]

where the \(\delta_q\) for \(q \neq t\) are held fixed at values \(\tilde{\delta}_q(\lambda)\). The update for \(\delta_t\) can be derived using standard univariate nonlinear constrained optimization software.

(3) Repeat Step (2) until the change in the objective function after any coefficient update is less than a threshold, say 1E-5, or the number of iteration reaches a pre-specified number.

Cross-validation is often used for tuning parameter selection but can be computationally inconvenient. Instead, we divide a given dataset into a training set and a validation...
set. We use the training set to fit models using various pre-

specified values for $\lambda = (\lambda_1, \lambda_2, \lambda_3)$. The solutions are
computed for a decreasing sequence of values for λ. This scheme
not only gives us a path of solutions, but also exploits warm
starts and leads to a more stable and faster algorithm. We
next calculate the prediction error of each fitted model using
the validation set. We used the mean squared prediction
error (MSPE), defined as

$$\text{MSPE} = \frac{1}{n} \sum_{i=1}^{n} (Y_i - X_i \hat{\beta} - \hat{h}(Z_i))^2.$$ \hspace{1cm} (5)

Finally, we choose the estimated model that gives the lowest
MSPE on the validation set. In practice we first perform a
coarse search through a large range of
reasonable values before conducting a finer localized search.

3. SIMULATION

3.1 Comparison with LSKM

We first compare our proposed PGKM method to that of
the LSKM method of Liu et al. [11]. We generate continuous
responses Y_i from

$$Y_i = X_i \beta + h(Z_i) + \epsilon_i, \quad i = 1, \ldots, n.$$ \hspace{1cm} (6)

We independently generate the P covariates X_{ip} from
$U(-1,1)$ and the Q covariates Z_{iq} from $U(0,1)$. The ran-

dom errors ϵ_i follow $N(0, \sigma^2)$, with σ equal to either 0.1,
0.5, or 1. We allow the nonparametric function $h(\cdot)$ to have
a complex form with nonlinear functions of the Z’s and in-

teractions among the Z’s in order to mimic the complex re-

We consider four configurations by varying the sample
size n, the number of predictors and the number of irrelevant
predictors included when training the model.

Setting 1: $n = 60$, $P = 1$, $Q = 5$, $\beta = 1$, $h(Z) = \cos(Z_1) - 1.5Z_4^2 + \exp(-Z_3)Z_4 - 0.8\sin(Z_5)\cos(Z_3) + 2Z_1Z_5$. Model (6)
is fit without any additional irrelevant predictors.

Setting 2: $n = 100$, $P = 2$, $Q = 15$, $\beta = (1,0)^T$, $h(\cdot)$ is the same as in setting 1. Model (6) is fit with 1 addition-

Setting 3: $n = 200$, $P = 1$, $\beta = 1$, $Q = 10$, $h(Z) = \cos(Z_1) - 1.5Z_2^2 + \exp(-Z_3)Z_4 - 0.8\sin(Z_5)\cos(Z_3) + 2Z_1Z_5 + 0.9Z_6\sin(Z_7) - 0.8\cos(Z_6)Z_7 + 2Z_8\sin(Z_9)\sin(Z_{10}) - 1.5Z_8^2 + Z_8Z_9 - 0.1\exp(Z_{10})\cos(Z_{10})$. Model (6) is fit without any additional irrelevant predictors.

Setting 4: $n = 200$, $P = 2$, $\beta = (1,0)^T$, $Q = 30$, $h(\cdot)$ is the same as setting 3. Model (6) is fit with 1 additional irrelevant
X predictor and 20 additional irrelevant Z predictors.

For each simulation setting we generate training, valida-
tion, and testing datasets of n observations each according
to model (6). We then use the training and validation sets
to fit the model using either LSKM with the Gaussian ker-

Table 1. Prediction errors of PGKM and LSKM. The last two
columns provide the average MSPEs over 500 replications,
with standard deviations in parentheses.

<table>
<thead>
<tr>
<th>Setting</th>
<th>PGKM</th>
<th>LSKM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting 1</td>
<td>$\sigma = 0.1$</td>
<td>0.0345 (0.0160)</td>
</tr>
<tr>
<td></td>
<td>$\sigma = 0.5$</td>
<td>0.0778 (0.0280)</td>
</tr>
<tr>
<td></td>
<td>$\sigma = 1.0$</td>
<td>0.1617 (0.0903)</td>
</tr>
<tr>
<td>Setting 2</td>
<td>$\sigma = 0.1$</td>
<td>0.0430 (0.0133)</td>
</tr>
<tr>
<td></td>
<td>$\sigma = 0.5$</td>
<td>0.0693 (0.0196)</td>
</tr>
<tr>
<td></td>
<td>$\sigma = 1.0$</td>
<td>0.1746 (0.0525)</td>
</tr>
<tr>
<td>Setting 3</td>
<td>$\sigma = 0.1$</td>
<td>0.0689 (0.0165)</td>
</tr>
<tr>
<td></td>
<td>$\sigma = 0.5$</td>
<td>0.1015 (0.0189)</td>
</tr>
<tr>
<td></td>
<td>$\sigma = 1.0$</td>
<td>0.1608 (0.0319)</td>
</tr>
<tr>
<td>Setting 4</td>
<td>$\sigma = 0.1$</td>
<td>0.0748 (0.0146)</td>
</tr>
<tr>
<td></td>
<td>$\sigma = 0.5$</td>
<td>0.1204 (0.0251)</td>
</tr>
<tr>
<td></td>
<td>$\sigma = 1.0$</td>
<td>0.2403 (0.0448)</td>
</tr>
</tbody>
</table>

In contrast, in settings 2 and 4, our proposed PGKM al-
tomically performs better than LSKM when used without any irrelevant
variables. The proposed PGKM method in fact incurs a slightly
smaller average MSPEs than LSKM for different underlying
nonparametric functions and levels of variation. This may
be because our modified garrote kernel is more flexible than
the base Gaussian kernel as a result of allowing all δ_q to be
unequal.

In our simulation study, we find that the proposed PGKM
method always yields much smaller average MSPEs than LSKM. That
is mainly because the proposed PGKM method can recognize
the irrelevant variables by estimating the corresponding
δ_q and β_q to be small. This dramatically improves predic-
tion accuracy. Again, the MSPEs calculated by PGKM are
less variable than those calculated using LSKM. Further-
more, the PGKM prediction errors with irrelevant variables
are very close to the LSKM results using only the relevant
variables. Thus the proposed PGKM method can perform
nearly as well as if we knew the true set of relevant variables.

One byproduct of our proposed PGKM method is that
while estimating the parameters of model (6), it can simulta-
neously select variables while still allowing for a complicated
nonlinear regression model. When the garrote parameters δ_q
Correspondingly, we can conclude that the corresponding variable \(Z_q \) is not related to the response. In practice, we use \(10^{-5} \) as the threshold to decide whether \(\delta_q \) is estimated as zero. A similar thresholding principle is used in the low under-selection rates given in Table, PGKM with fairly high probability. This is reflected in the low under-selection rates given in Table. PGKM can achieve reasonable variable selection without requiring a linear model, and to our knowledge there are few other methods that can accomplish this.

3.2 Comparison with He’s method

We next compare the performance of our PGKM method to that of the method of He et al. [9]. We generate data as in Section 3.1 and consider the following simulation settings. As before, we preform 500 replications of each setting.

Setting 1: \(n = 100, \ P = 1, \ Q = 15, \ \beta = 1, \ h(\cdot) \) as in setting 1 of Section 3.1. Model (6) is fit with 10 additional irrelevant \(Z \) predictors.

Setting 2: \(n = 100, \ P = 2, \ Q = 15, \ \beta = (1,0)^T, \ h(\cdot) \) as in setting 1 of Section 3.1. Model (6) is fit with 1 additional irrelevant \(X \) predictor and 10 additional irrelevant \(Z \) predictors.

Table 3 reports the results. The method He et al. [9] assumes that the \(X \) covariates contain no irrelevant variables, but setting 1 shows that even when this holds, the average MSPEs of the PGKM method are much smaller and less variable compared to those achieved by He’s method. This may be because He et al. [9] use linear approximations to the complex nonlinear kernel, whereas PGKM does not use approximations. Furthermore, when \(X \) contains some irrelevant covariates, setting 2 shows that our PGKM again yields much smaller average MSPEs than He’s method.

Table 3 also provides the average running times of PGKM and He’s methods. PGKM is tuned over \((\lambda_1, \lambda_2, \lambda_3)\) on a grid of triplets while He’s method is tuned over \(\lambda_1 \) on a grid of scalars. PGKM is considerably faster.

The variable selection results of PGKM and He’s method in setting 2 are reported in Table 4. He’s method always underselects much more frequently than PGKM, which may be one reason for its poorer predictive performance in Table 3. Furthermore, unlike He’s method, GKM is capable of variable selection among the \(X \) covariates, which it does quite successfully.

3.3 Comparison with KNIFE

In this section, we compare the proposed PGKM method with the KNIFE of Allen [1]. Because PGKM is designed for semiparametric models while the KNIFE is designed for fully nonparametric models, for a fair comparison we conduct the following simulation, using data generated from setting 2 in Section 3.1.

Table 2. Variable selection results for the PGKM methods, with different numbers of irrelevant \(Z \). The percentage of 500 simulations in which the true model was exactly selected is denoted by \(C \) (correct selection), the percentage in which the correct model was nested in the selected model is denoted by \(O \) (over-selection), and the percentage in which the true model was not a subset of the selected model is denoted by \(U \) (under-selection).

<table>
<thead>
<tr>
<th>(\sigma)</th>
<th>(P)</th>
<th>(Q)</th>
<th>(X)</th>
<th>(Z)</th>
<th>(C)</th>
<th>(O)</th>
<th>(U)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting 2</td>
<td>0.1</td>
<td>2</td>
<td>15</td>
<td>0.9474</td>
<td>0.526</td>
<td>0.0000</td>
<td>0.1316</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>2</td>
<td>15</td>
<td>0.6842</td>
<td>0.1842</td>
<td>0.1316</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>2</td>
<td>15</td>
<td>0.2889</td>
<td>0.3111</td>
<td>0.4000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Setting 4</td>
<td>0.1</td>
<td>2</td>
<td>30</td>
<td>0.9268</td>
<td>0.0000</td>
<td>0.0732</td>
<td>0.0366</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>2</td>
<td>30</td>
<td>0.6047</td>
<td>0.1047</td>
<td>0.2906</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>2</td>
<td>30</td>
<td>0.3608</td>
<td>0.3608</td>
<td>0.2784</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Table 3. Prediction errors and running times of PGKM and He’s method. The second and fourth columns provide the average MSPEs over 500 replications, with standard deviations in parentheses. The third and fifth columns provide the average running times in seconds.

<table>
<thead>
<tr>
<th>Setting</th>
<th>PGKM</th>
<th>He’s Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting 1</td>
<td>(\sigma = 0.1)</td>
<td>0.0308 (0.0099)</td>
</tr>
<tr>
<td></td>
<td>(\sigma = 0.5)</td>
<td>0.0849 (0.0333)</td>
</tr>
<tr>
<td></td>
<td>(\sigma = 1.0)</td>
<td>0.1732 (0.0585)</td>
</tr>
<tr>
<td>Setting 2</td>
<td>(\sigma = 0.1)</td>
<td>0.0430 (0.0133)</td>
</tr>
<tr>
<td></td>
<td>(\sigma = 0.5)</td>
<td>0.0693 (0.0196)</td>
</tr>
<tr>
<td></td>
<td>(\sigma = 1.0)</td>
<td>0.1746 (0.0525)</td>
</tr>
</tbody>
</table>
Table 4. Variable selection results for PGKM and He’s method in setting 2. C, O, U are defined the same as those in table 2.

<table>
<thead>
<tr>
<th></th>
<th>PGKM</th>
<th>He’s Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>P</td>
<td>Q</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>0.1</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>0.5</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>1.0</td>
<td>2</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 5. Prediction errors of PGKM, KNIFE, and Linear-KNIFE using data from setting 2 of Section 3.1. The last three columns provide the average MSPEs over 500 replications, with standard deviations in parentheses.

<table>
<thead>
<tr>
<th>Methods</th>
<th>MSPE (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGKM</td>
<td>0.4120 (0.2077)</td>
</tr>
<tr>
<td>LSKM</td>
<td>0.5842 (0.3537)</td>
</tr>
<tr>
<td>LASSO</td>
<td>2.0343 (1.1360)</td>
</tr>
</tbody>
</table>

1. Fit a semiparametric model using the PGKM method.
2. Fit a nonparametric model using the KNIFE method directly.
3. Use the KNIFE method fitted to the residuals of the linear regression of Y on X. We refer to this two-step method as “Linear-KNIFE”.

Table 5 shows that our proposed PGKM method always yields much smaller average prediction errors than KNIFE. This is because the proposed PGKM method correctly specifies a partially linear model, while the fully nonparametric model of KNIFE is much more difficult to estimate. In order to eliminate the influence of model misspecification, we compare the prediction accuracy of PGKM to that of Linear-KNIFE. The average MSPE of PGKM is still much smaller than that of Linear-KNIFE. This may be due to the fact that PGKM directly uses the garrotized Gaussian kernel whereas both KNIFE procedures use linear approximations.

The variable selection results for PGKM, KNIFE and Linear-KNIFE methods are reported in Table 6. The percentage of under-selection of irrelevant X and Z covariates based on KNIFE is much larger than that based on our PGKM, which may be due to model misspecification. The selection properties of PGKM are very similar to those based on Linear-KNIFE.

4. ANALYSIS OF THE PHARMACOKINETICS OF TEMSIROLIMUS

We apply the proposed PGKM method to clinical pharmacokinetics data on temsirolimus (CCL-779) from renal cell carcinoma subjects collected by Boni et al. [2]. The data are publicly online. Temsirolimus is an intravenous anticancer agent and has demonstrated inhibitory effects on tumor growth. Renal cell carcinoma subjects received weekly treatments of temsirolimus until they demonstrated evidence of disease progression. We have expression data on 12,626 genes from 39 subjects measured at baseline, as well as plasma drug concentration across time and each subject was measured 1 to 4 times. A total of 58 observations were made. The concentration measurements were summarized using the area under the curve (AUC), a standard pharmacokinetic measure of the body’s exposure to a drug. Our goal is to construct a predictive model for the expected CCI-779 cumulative AUC in terms of an individual’s gene expression measurements. An accurate model can allow us to identify patients for whom a given dosage level of temsirolimus would be most effective.

To improve the accuracy of our predictions we first perform dimension reduction using the nonparametric independence screening method proposed by Fan and Song [5], which leaves 14 genes remaining. We then apply our proposed PGKM method. For comparison we also apply the LSKM method and the LASSO for linear regression [14] using the same 14 genes.

In order to compare the prediction errors of these three methods, we randomly selected 40 observations for estimation, 9 observations for searching for the best estimated model of each method and the remaining 9 observations for prediction. We calculated the average MSPE of each method over 1000 replications. Table 7 reports the averaged MSPEs and shows that our PGKM is by far the most predictively accurate. Its superior performance compared to LASSO suggests that the standard linear model is not sufficient to explain the highly nonlinear and complex relationship between the genes and the drug plasma concentration. Its superior performance compared to LSKM demonstrates the benefits of our new garrotized kernel.
5. CONCLUSION

We have proposed a flexible variable selection procedure for semiparametric regression based on a new class of garrotized kernels. It can capture complicated relationships between predictors and outcome and possesses more predictive power than the existing methods in the presence of irrelevant predictors. A key advantage of the proposed PGKM method is that it can achieve variable selection while allowing for a complex nonlinear model. Simulations and our analysis of the plasma concentration of the anticancer drug temsirolimus demonstrate the advantages of our method compared to competing approaches.

In this article we considered only continuous outcomes using a Gaussian base kernel. However, our garrotized kernel machine framework can be extended to estimation and variable selection for a much larger class of models and a much wider range of base kernels. We are pursuing extensions into generalized semiparametric models, for example logistic regression and exponential class models, and other kernels, such as the identity-by-state kernel popular in genome-wide association studies [15]. We are also planning to extend the results to accommodate correlated data. The results will be reported elsewhere.

Finally, we have so far only studied situations where the number of covariates is smaller than the sample size. In principle, our framework can also be used in the high-dimensional setting where there are more covariates than observations. In practice this requires overcoming significant computational hurdles, and we are currently investigating more efficient algorithms for fitting our PGKM estimate.

REFERENCES

Sihai Dave Zhao
Department of Statistics
University of Illinois at Urbana-Champaign
Champaign, U.S.A.
E-mail address: dave.zhao@gmail.com

Ji Zhu
Department of Statistics
University of Michigan, Ann Arbor, U.S.A.
E-mail address: jizhu@umich.edu

Wei Yuan
School of Statistics
Renmin University of China, Beijing, China
E-mail address: wyuan@ruc.edu.cn

Weihu Cheng
College of Applied Sciences
Beijing University of Technology
#100 Pingleyuan, Beijing, China
E-mail address: chengweihu@bjut.edu.cn

YiLi
Department of Biostatistics
University of Michigan, Ann Arbor, U.S.A.
E-mail address: yili@med.umich.edu
url: http://www-personal.umich.edu/ yili/resindex.html