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We first introduce some common notation that will be used throughout the Appendix. Let

a1n and a2n be two sequences of real numbers indexed by positive integers and a2n is positive

for all n. For a real number a1, say a1n tends to a limit a1 in symbols: a1n → a1 as n→∞. We

say a1n = O(a2n) if there exist an M > 1 and a finite N > 0 such that M−1 < |a1n/a2n| < M

when n > N . We say a1n = o(a2n) if |a1n/a2n| → 0 as n → ∞. For a sequence of random

variables Zn, we say Zn = Op(a1n) if for any δ > 0, there exist a finite M > 0 and a

finite N > 0 such that Pr(|Zn/a1n| > M) < δ when n > N ; and Zn = op(a1n) if for any

δ > 0, Pr(|Zn/a1n| > δ)→ 0 as n→∞. The convergence of Zn in distribution to a random

variable Z is denoted by Zn →d Z, which implies that limFn(z) = F (z) as n→∞ for every

z at which F is continuous, where Fn and F are the cumulative distribution functions of

random variables Zn and Z, respectively. Let Enf(·) = n−1
∑n

i=1 f(·) be the empirical mean

of f , and Ef the theoretical mean of f . Let ⊗ denote the Kronecker product. Let f ′ and f ′′

denote the first and second derivatives of f function, respectively. Let N(µ, σ2) denote the

normal distribution with mean µ and variance σ2. Let I(A) be an event indicator function,

where I(A) = 1 if event A is true and I(A) = 0 otherwise. Let Id be a d × d identity

matrix. For a real valued function θ on D, ||θ||∞ = supw∈D |θ(w)| denotes its supreme norm

and ||θ||2 = {
∫
w∈D |θ(w)|2dw}1/2 denotes its L2 norm. For a vector θ = (θ1, . . . , θp)

T , let

||θ||2 =
{∑

j ||θj||22
}1/2

and ||θ||∞ = max16j6p ||θj||∞.

S1. Regularity conditions

We make the following technical conditions to ensure the theoretical properties as outlined

in Theorems 1, 2, and 3.

(C1) The covariates X take values in a bounded subset of Rp. That is, there exist finite real

numbers C1 and C2 such that Pr(C1 < Xj < C2, for all j = 1, . . . , p) = 1.

(C2) The eigenvalues λ1 6 . . . 6 λp of E(XXT | W ) are bounded away from zero and infinity

almost surely, that is, there are positive constants M1 and M2 such that Pr(M1 6 λ1 6 . . . 6
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λp 6 M2) = 1. Consequently, the eigenvalues of E(VnV
T
n ) are bounded away from zero and

infinity almost surely.

(C3) limλ→∞ E{ε2I(|ε| > λ)} = 0 and E{exp(tε)} 6 exp(σ2t2/2) for any t ∈ R.

(C4) l′′n(γ) is bounded and has a bounded inverse around γ̃; that is, E{U(γ̃;X,W )XT} is

invertible.

(C5) The distribution of W is absolutely continuous with a density bounded away from zero and

infinity on D.

(C6) For ν ∈ (0, 1/2) and m > 1/2, q = O(nν), p̃ = o(min{n/q, q2m}), ρ = o(p̃1/2q−m) =

o(min{n1/2−ν/2−mν , 1}) and ∇(η) = o(q−m) = o(n−mν).

(C7) The true varying coefficients β0j (j = 1, . . . , p) are bounded.

Conditions (C1),(C2) and (C4) are mild regularity conditions used in the existing litera-

ture (Fan and Zhang, 1999; Huang et al., 2002). Condition (C3) essentially assumes the error

distribution is sub-Gaussian, which has been assumed for varying-coefficient models (Wei

et al., 2011). Condition (C5) guarantees that observations are randomly scattered (Huang

et al., 2004). Condition (C6) is a technical assumption that controls convergence rate,

estimation bias, and model sparsity. Related conditions have been discussed by (Huang

et al., 2002, 2004). Condition (C7) is reasonable for a wide range of applications. Similar

assumptions have been made by (Huang and Shen, 2004) for other varying coefficient models.
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S2. TECHNICAL DERIVATIONS

S2.1 Properties of Hη(θ, α)

For any η > 0, α > 0, and a real function θ, we have∣∣∣∣ζ(θ,α) −Hη(θ, α)

∣∣∣∣
=

∣∣∣∣(θ − α)I(θ > α) + (θ + α)I(θ < −α)− 1

2

{
1 +

2

π
arctan

(
θ − α
η

)}
(θ − α)−

1

2

{
1− 2

π
arctan

(
θ + α

η

)}
(θ + α)

∣∣∣∣
=

∣∣∣∣(θ − α)

[
I(θ > α)− 1

2

{
1 +

2

π
arctan

(
θ − α
η

)}]
+

(θ + α)

[
I(θ < −α)− 1

2

{
1 +

2

π
arctan

(
θ + α

η

)}] ∣∣∣∣
6

∣∣∣∣(θ − α)

[
I(θ > α)− 1

2

{
1 + sign(θ − α) +

η

θ − α
+O(η3)

}] ∣∣∣∣+∣∣∣∣(θ + α)

[
I(θ < −α)− 1

2

{
1 + sign(θ + α) +

η

θ + α
+O(η3)

}] ∣∣∣∣
=η +O(η3).

Therefore, the bias due to approximation is bounded by η +O(η3).

When α and η are fixed, the first derivative of h function in terms of θ is

H ′η(θ, α) =
1

π
· (θ − α)/η

1 + (θ − α)2/η2
+

1

2

{
1 +

2

π
arctan

(
θ − α
η

)}
− 1

π
· (θ − α)/η

1 + (θ − α)2/η2

+
1

2

{
1− 2

π
arctan

(
θ + α

η

)}
,

and the second derivative is

H ′′η (θ, α) =
2

π
· (η − θ + α)/η2

1 + (θ − α)2/η2
− 2

π
· (η − θ − α)/η2

1 + (θ + α)2/η2
.

To facilitate the ensuing proofs, we also provide the approximation of H ′ here. For −α <

θ < α, by the Taylor expansion of H ′ around η = 0, we have

H ′η(θ, α) =
1

π

{
2(θ − α)2 − 8

(θ − α)5
− 2(θ + α)2 − 8

(θ + α)5

}
η3 + o(η3).
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S3. TECHNICAL PROOFS

Let Mn(θ) = −Enl
s(θ) and M0(θ) = −Els(θ) be the empirical and theoretical mean of ls(θ).

Let |v| denote the Euclidean norm of a real valued vector v. For a real valued function θ on

D, ||θ||∞ = supw∈D |θ(w)| denotes its supreme norm and ||θ||2 = {
∫
w∈D |θ(w)|2}1/2 denotes

its L2 norm. For a vector valued function θ = (θ1, . . . , θp)
T , let ||θ||2 =

{∑
j ||θj||22

}1/2
and

||θ||∞ = max16j6p ||θj||∞. Let N[](δ, S,Lp) be the δ-bracketing number for S under norm

Lp and E∗(g) denote the outer expectation of process g. For two sequences an and bn, we

say an ' bn if an/bn = O(1). The convergence of Zn in distribution to a random variable

Z is denoted by Zn →d Z, which implies that limFn(z) = F (z) as n → ∞ for every z at

which F is continuous, where Fn and F are the cumulative distribution functions of random

variables Zn and Z, respectively. The convergence of Zn in probability to a random variable

Z is denoted by Zn →p Z, which implies that lim Pr(|Zn − Z| > ε) = 0 as n → ∞ for all

ε > 0. A sequence of random vectors or matrices converge to a random vector or matrix if

and only if each component of random vectors or matrices converges in probability to each

component of the vector or matrix.

Lemma 1: For any function β(w) ∈ H and any α > 0, there exists at least one θ(w) ∈ F0

such that β(w) = ζ{θ,α}(w).

Proof of Lemma 1: When the zero region is empty, then θ(w) = α + β(w) if β(w) > 0

and θ(w) = β(w)− α if β(w) < 0. We show that Lemma 1 is valid when β(w) has only one

zero region (w0, w1), where w0, w1 ∈ (0, 1). The proof can be easily extended to more general

settings. Without loss of generality, we further assume β(w) < 0 on [0, w0) and β(w) > 0 on

(w1, 1]. The definition of β(w) implies that β(j) exists on [0, w0] and [w1, 1], and that there

exists a constant M > 0 such that |β(j)(wk)| < M for j = 1, . . . , d and k = 0, 1.

In the following, we construct a θ satisfying: (i) θ(w) = b(w) − α on [0, w0] and θ(w) =
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b(w) + α on [w1, 1]; (ii) for j = 1, . . . , d, θ(j)(w0) = β(j)(w0), and θ(j)(w1) = β(j)(w1); (iii)

|θ(w)| < α on (w0, w1); and (iv) |θ(d)(s) − θ(d)(w)| 6 C|s − w|t for s, w in [0, 1] and some

constant C, where 0 < t 6 1.

Let f(w) = e−1/wI(w > 0). It follows that f(w) ∈ [0, 1) and f (d)(0) = 0 for any d > 1.

Define f0(w, a0) = f(−w+a0)/{f(−w+a0)+f(−w0+w)} and f1(w, a1) = f(w−a1)/{f(w−

a1) + f(w1 − w)}, where a0 ∈ (w0, (w0 + w1)/2) and a1 ∈ ((w0 + w1)/2, w1). As f(w) is

infinitely differentiable over the real line, so is fk(w) for k = 0, 1. It is easy to verify that

fk(w, a1) satisfies that fk(wk, ak) = 1, fk(ak, ak) = 0, f
(j)
k (w, ak) = 0 when w = ak or wk,

and 0 6 fk(w, ak) 6 1 for k = 0, 1 and j > 1.

Let θ∗0(w) = −α+
∑d

j=1
β(j)(w0)

j!
(w−w0)

j and θ∗1(w) = α+
∑d

j=1
β(j)(w1)

j!
(w−w1)

j. We define

θ(w) =



b(w)− α, w ∈ [0, w0]

θ∗0(w) ∗ f0(w, a0), w ∈ (w0, a0]

0, w ∈ (a0, a1)

θ∗1(w) ∗ f1(w, a1), w ∈ [a1, w1)

b(w) + α, w ∈ [w1, 1]

,

and show that there exist a0 and a1 which ensure the above θ(w) satisfies conditions (i)-(iv).

It is obvious that θ(w) satisfies (i) and θ(w) is continuous. Since fk(wk, ak) = 1 and

f
(j)
k (wk, ak) = 0 for j > 1, we have that θ(j)(wk) = θ∗k

(j)(wk) = β(j)(wk) for j = 1, . . . , d,

where k = 0, 1. Therefore, condition (ii) is satisfied.

Since θ∗0(w) and f0(w, a0) are infinitely differentiable over (w0, a0), so is θ(w) over (w0, a0).

Similarly, θ(w) is also infinitely differentiable over (a1, w1). Because f
(j)
k (ak, ak) = 0 for j > 0

and k = 0, 1, we have that θ(j)(ak) = 0 for j > 0 and k = 0, 1. Therefore, θ(w) is infinitely

differentiable over (w0, w1), which implies θ(w) also satisfies condition (iv) over (w0, w1).

Apparently, condition (iv) is satisfied when w and s are in the same region (zero or non-
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zero region) by taking t = 1. We only verify that condition (iv) is valid when w ∈ [0, w0)

and s ∈ [w0, w1]. The other situations can be verified similarly.

To proceed, we notice

|θ(d)(w)− θ(d)(s)| = |θ(d)(w)− θ(d)(w0) + θ(d)(w0)− θ(d)(s)|

6 |θ(d)(w)− θ(d)(w0)|+ |θ(d)(w0)− θ(d)(s)|

6 C1|w − w0|+ C2|w0 − s|

6 max{C1, C2}|w − s|.

Hence, condition (iv) is valid for t = 1.

To prove condition (iii), we just need to find a0 and a1 such that θ
′
(w) > 0 over [w0, w1].

By the construction of θ(w), we have θ
′
(w) = 0 over [a0, a1]. When w ∈ (a1, w1), we let

r1 = w1 − a1 and show

|θ∗1
′
(w)| =

∣∣∣∣∣
d∑
j=1

b(j)(w1)

(j − 1)!
(w − w1)

j−1

∣∣∣∣∣
6

d∑
j=1

∣∣∣∣b(j)(w1)

(j − 1)!
(w − w1)

j−1
∣∣∣∣ 6M

d∑
j=1

rj−11 6
M

1− r1
,

θ∗1(w) > α−

∣∣∣∣∣
d∑
j=1

β(j)(w1)

j!
(w − w1)

j

∣∣∣∣∣
> α−

d∑
j=1

∣∣∣∣β(j)(w1)

j!
(w − w1)

j

∣∣∣∣ > α− Mr1
1− r1

,

and f
′

1(w, a1) =
e−1/(w−a1)−1/(w1−w) {1/(w − a1)2 + 1/(w1 − w)2}

{e−1/(w−a1) + e−1/(w1−w)}2

>
1/(w − a1)2 + 1/(w1 − w)2

22

>
1

2r21
.

Then

θ
′
(w) = θ∗1

′
(w)f1(w, a1) + θ∗1(w)f

′

1(w, a1)

> θ∗1(w)f
′

1(w, a1)− |θ∗1
′
(w)f1(w, a1)|

>

(
α− Mr1

1− r1

)
1

2r21
− M

1− r1
.
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Let

g(r) =

(
α− Mr

1− r

)
1

2r2
− M

1− r
,

then when 0 < r < 1,

g
′
(r) = − α

r3
− M

2r2(1− r)2
− M

(1− r)2
< 0.

Therefore, g(r) is strictly decreasing on (0, 1). As limr↓0 g(r) = ∞ and limr↑1 g(r) = −∞,

there exists a unique r∗ ∈ (0, 1) such that g(r∗) = 0. Therefore, g(r) > 0 over (0, r∗). Let

r1 = min{r∗, (w1 − w0)/2}, and we have θ
′
(w) > 0 over (w1 − r1, w1). Thus, we find an

a1 = w1 − r1 such that |θ(w)| 6 α over (a1, w1). Similarly, we can find an a0 such that

|θ(w)| 6 α over (w0, a0). Therefore, condition (iii) is satisfied.

Combining all the results, we have found a θ ∈ F0 such that ζ(θ,α)(w) = β(w), which

completes the proof. �

Lemma 2: For any smooth zero-crossing function β∗(w) ∈ F0, there exists β(w) ∈ H

such that β∗(w) = β(w) on any set of finite grid points {w1, w2, . . . , wF}.

Proof of Lemma 2: We assume β∗(w) has only one zero point w0. Extension to multiple

zero points case is straightforward. Then w0 must fall into (wi,Wi+1) for some i. Since β∗(w)

is smooth, there exists a, b ∈ R and wi < a < b < wi+1 such that β∗(w) is increasing or

decreasing in [a, b] and β∗(a) ∗ β∗(b) < 0. For simplicity, we consider the increasing case.

Then we have β∗(w) increasing on [a, b], and β∗(a) < 0 and β∗(b) > 0.

Let θ∗0(w) = β∗(a) +
∑d

j=1
β(j)(a)
j!

(w − a)j and θ∗1(w) = β∗(b) +
∑d

j=1
β(j)(b)
j!

(w − b)j. With



8 Biometrics, 000 0000

f0(w, x) and f1(w, x) defined in the proof of Lemma 1 and a0 < a1, we construct

β(w) =



β∗(w), w < a

θ∗0(w) ∗ f0(w, a0), w ∈ (a, a0]

0, w ∈ (a0, a1)

θ∗1(w) ∗ f1(w, a1), w ∈ [a1, b)

β∗(w), w > b

.

According to the proof of Lemma 1, the constructed β(w) belongs to H. By the construction

of β(w), we have β(w) = β∗(w) for any w < a and w > b. Therefore, β∗(wj) = β(wj) for

j = 1, ..., F . �

Lemma 3: Under Conditions (C1), (C5), and (C7), if βj ∈ Sq,αj for j = 1, . . . , p̃ with

q and αj the same as in the penalized likelihood, then ||β̃ − β0||∞ = O((p̃ρ)1/2); if βj /∈ Sq,αj

for j = 1, . . . , p̃, we have ||β̃ − β0||∞ = O((p̃ρ + p̃q−2m)1/2), where m is the smoothness

parameter as in Definition 1.

Proof of Lemma 3:

Let l0(β;X, Y,W ) =
[
Y −

∑p
j=1Xjbj(W )

]2
. By model assumption, we have EY |X,WY =∑p

j=1Xjb0j(W ), then the true parameter β0 = (β01, . . . , β0p)
T = arg minβ∈Hp El0(β;X, Y,W ).

By definition, we have l(θ;X, Y,W ) =
[
Y −

∑p
j=1Xjζ{θj ,αj}(W )

]2
+ρ
∑p

j=1 {θj(W )}2 and

θ̃ = (BT γ̃1, . . . ,B
T γ̃p)

T = arg minθ∈Fp El(θ;X, Y,W ). Since β0j = 0 for j > p̃, we can infer

that θ̃j = 0 for j > p̃, and thus β̃j = 0 for j > p̃.
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Then by calculation,

El0(β0;X, Y,W )− El(θ̃;X, Y,W )

=E

[
Y −

p∑
j=1

Xjb0j(W )

]2
− E

[
Y −

p∑
j=1

Xjβ̃j(W )

]2
− ρE

p∑
j=1

{
θ̃j(W )

}2

=E

[
p∑
j=1

Xj

{
β̃j(W )− b0j(W )

}][
2Y −

p∑
j=1

Xjb0j(W )−
p∑
j=1

Xjβ̃j(W )

]
− ρE

p∑
j=1

{
θ̃j(W )

}2

=− E

[
p∑
j=1

Xj

{
β̃j(W )− b0j(W )

}]2
− ρE

p∑
j=1

{
θ̃j(W )

}2

.

(S3.1)

According to Lemma 1, for j = 1, . . . , p̃, there exists θj ∈ F0 such that ζ{θj ,αj} = β0j. If

θj /∈ F, then we can find θ∗j ∈ F such that ||θj − θ∗j ||2 = O(q−m). When j > p̃, let θ∗j = 0,

then we have ζ{θ∗j ,αj} = 0 = β0j. Let β∗(w) = (β∗1 , . . . , β
∗
p)
T , where β∗j = ζ{θ∗j ,αj}(w). Then by

Condition (C1) and (C5), we have

El0(β
∗;X, Y,W )− El0(β0;X, Y,W ) = E

[
p∑
j=1

Xj

{
β∗j (W )− b0j(W )

}]2

=E

[∑
j,k

XjXk

{
β∗j (W )− b0j(W )

}
{β∗k(W )− bk(W )}

]

=E
[{
β∗1(W )− b01(W ), . . . , β∗p(W )− b0p(W )

}
E(XXT | W )

{
β∗1(W )− b01(W ), . . . , β∗p(W )− b0p(W )

}T]
6λpE

p∑
j=1

(β∗j (W )− b0j(W ))2 = λp

p̃∑
j=1

E||β∗j (W )− b0j(W )||22

=O(p̃q−2m).

(S3.2)

If for j = 1, . . . , p̃, θj ∈ F, let θ∗j = θj, then we have β∗ = β and El0(β
∗;X, Y,W ) −

El0(β0;X, Y,W ) = 0. Here, we assume all β0j (j = 1, . . . , p̃) have the same smoothness,

either βj ∈ Sq,αj for j = 1, . . . , p̃, or βj /∈ Sq,αj for j = 1, . . . , p̃.

By definition of θ̃, we have El(θ̃) 6 El(θ∗) = El0(β
∗) + ρE

∑p
j=1

{
θ∗j (W )

}2
. Therefore,

El(θ̃) − El0(β
∗) 6 ρE

∑p
j=1

{
θ∗j (W )

}2
. If θj /∈ F for all j 6 p̃, based on equation (S3.1),
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(S3.2) and Condition (C7), we have

E

[
p∑
j=1

Xj

{
β̃j(W )− b0j(W )

}]2
= El(θ̃)− El0(β0)− ρE

p∑
j=1

{
θ̃j(W )

}2

6 El(θ̃)− El0(β
∗) + El0(β

∗)− El0(β)− ρE

p∑
j=1

{
θ̃j(W )

}2

6 ρE

p∑
j=1

{
θ∗j (W )

}2 − ρE

p∑
j=1

{
θ̃j(W )

}2

+ El0(β
∗)− El0(β)

= O(p̃ρ+ p̃q−2m).

If θj ∈ F for all j, then E
[∑p

j=1Xj

{
β̃j(W )− b0j(W )

}]2
= O(p̃ρ).

By Conditions (C1) and (C5), we also have

E

[
p∑
j=1

Xj

{
β̃j(W )− b0j(W )

}]2
= E

[∑
j,k

XjXk

{
β̃j(W )− b0j(W )

}{
β̃k(W )− b0k(W )

}]

=E

[{
β̃1(W )− b01(W ), . . . , β̃p(W )− b0p(W )

}
E(XXT | W )

{
β̃1(W )− b01(W ), . . . , β̃p(W )− b0p(W )

}T]
>λ1E

p∑
j=1

(β̃j(W )− b0j(W ))2 = λ1

p∑
j=1

||β̃j(W )− b0j(W )||22.

Therefore, max16j6p ||β̃j−b0j||22 = O(E
[∑p

j=1Xj

{
β̃j(W )− b0j(W )

}]2
). In addition, ||β̃−

β0||∞ = max16j6p ||β̃j − b0j||∞ 6 max16j6p ||β̃j − b0j||2. Combining all above results, we

conclude: if βj /∈ Sq,αj for j = 1, . . . , p̃, we have ||β̃−β0||∞ = O((p̃ρ+ p̃q−2m)1/2); if βj ∈ Sq,αj

for j = 1, . . . , p̃, ||β̃ − β0||∞ = O((p̃ρ)1/2). �

We introduce two important lemmas in order to prove our main theorems. Lemma 4 is a

variation of the Lyapunov central limit theorem and will be used in the proof of Lemma 6,

and Lemma 5 is used in the proof of Theorem 1.

Lemma 4: Suppose εi are independent with mean 0 and variance 1, and εi satisfy Con-

dition (C3). If maxi a
2
i /(
∑

i a
2
i )→ 0, then∑

i aiεi√
(
∑

i a
2
i )
→d N(0, 1).
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Lemma 5 (Consistency): Under Conditions (C1), (C2), (C4), (C6) and (C7),

||θ̂ − θ̃||22 = op(p̃q
−1),

where θ̃ = Bγ̃.

Proof of Lemma 5:

Let θ∗ = (θ∗1, . . . , θ
∗
p)
T . We choose θ∗j ∈ F such that ||θ∗j ||22 = O(q−1) for j = 1, . . . , p. Let

Tn(a) = Mn(θ̃ + aθ∗). The derivative of Tn with respect to a is

T ′n(a) = −2En

[{
Y −

p∑
j=1

Xjhj(θ̃j + aθ∗j )
} p∑

j=1

Xjh
′
j(θ̃j + aθ∗j )θ

∗
j − ρ

p∑
j=1

(θ̃j + aθ∗j )θ
∗
j

]
. (S3.3)

When a is sufficiently small, Tn is convex. Thus, T ′n is non-decreasing. Therefore, we only

need to show that for any small a0 > 0, −T ′n(a0) < 0 and −T ′n(−a0) > 0. Then, ||θ̂ −

θ̃||2 6 a0||θ∗||2. Since γ̃ = arg min
γ

El(γ;X, Y,W ), then θ̃j = Bγ̃j ≡ 0 for l > p̃. By

Condition (C6), αj > ||θ∗j ||2 for l > p̃. Thus, hj(θ̃j + aθ∗j ) ≡ 0 for l > p̃. Then, we have∑p
j=1Xjhj(θ̃j + aθ∗j ) =

∑p̃
j=1Xjhj(θ̃j + aθ∗j ).

From (S3.3), we have

−1

2
T ′n(a0) =En

[{
Y −

p∑
j=1

Xjhj(θ̃j + a0θ
∗
j )

}
·

{
p∑
j=1

Xjh
′
j(θ̃j + a0θ

∗
j )θ
∗
j

}
− ρ

p∑
j=1

(θ̃j + a0θ
∗
j )θ
∗
j

]

=En

{
Y −

p∑
j=1

Xjβ̃j

}
·

{
p∑
j=1

Xjh
′
j(θ̃j + a0θ

∗
j )θ
∗
j

}
+

En

{
p∑
j=1

Xjβ̃j −
p∑
j=1

Xjhj(θ̃j)

}
·

{
p∑
j=1

Xjh
′
j(θ̃j + a0θ

∗
j )θ
∗
j

}
+

En

{
p∑
j=1

Xjhj(θ̃j)−
p∑
j=1

Xjhj(θ̃j + a0θ
∗
j )

}
·

{
p∑
j=1

Xjh
′
j(θ̃j + a0θ

∗
j )θ
∗
j

}
−

ρEn

p∑
j=1

(θ̃j + a0θ
∗
j )θ
∗
j

=A1 + A2 + A3 + A4,

where β̃j = ζ(θ̃j ,αj).

By the definition of hj, we have that |h′j(θ̃j+a0θ∗j )| 6 1 for j = 1, . . . , p̃ and |h′j(θ̃j+a0θ∗j )| ≡
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0 for j = p̃ + 1, . . . , p. Let hn =
∑p

j=1Xjh
′
j(θ̃j + a0θ

∗
j )θ
∗
j . Then E(h2n) = O(

∑p̃
j=1 ||θ∗j ||22) =

O(p̃q−1) by Condition (C2). Since Y −
∑p

j=1Xjβ̃j = ε, by Chebyshev’s inequality, we have

Pr(|A1| > 1/
√
n) 6

E(Enhnε)
2

1/n
6

E{(Enhn)2(Enε)
2}

1/n
=
O(Eh2n)Eε2/n

1/n
= O(p̃q−1)σ2.

Therefore, |A1| = op(n
−1/2) = op(p̃q

−1).

By the definition of γ̃, it satisfies the score equation

0 = Els
′
= −2E

{
(Y −XT h̃) · Ũ ⊗B(W )− ρθ̃ ⊗B(W )

}
, (S3.4)

where h̃, Ũ , θ̃ are h,U , θ with γ replaced by γ̃ respectively. SinceB(W ) 6= 0 for any W ∈ D,

equation (S3.4) becomes E
{

(Y −XT h̃) · Ũ − ρθ̃
}

= 0. We then have E
[
ŨXT{β̃−h(γ̃)}−

ρθ̃
]

= 0, because Y −XT β̃ = ε. Note that E(ŨXT ) is invertible according to Condition

(C4), then we have (β̃ − h̃) = ρ{E(ŨXT )}−1θ̃. By the Cauchy-Schwarz inequality and

Condition (C1), (C2) and (C6),

|A2|2 6

(
1

n

n∑
i=1

h2n

) 1

n

n∑
i=1

[
p∑
j=1

Xj

{
β̃j − hj(θ̃j)

}]2 = Op(q
−1)Op

(
E
{
XT (β̃ − h̃)

}2
)

= Op(q
−1)Op

(
E

[
ρXT

{
E(ŨXT )

}−1
θ̃

]2)
= Op(ρ

2p̃q−1).

Hence, A2 = op(p̃q
−1).

Moreover, we have A3 = O
(
− En

{∑p̃
j=1Xjθ

∗
j

}2)
= −a0Op(p̃q

−1) and A4 = −Op(ρp̃ +

ρa0pq
−1) = op(p̃q

−1) by Condition (C6).

Therefore, we have

−1

2
T ′n(a0) = op(p̃q

−1) + op(p̃q
−1)− a0Op(p̃q

−1) + op(p̃q
−1) = −a0Op(p̃q

−1) < 0,

if a0 > 0 and H ′n(a0) > 0, if a0 < 0. Thus, ||θ̂ − θ̃||22 = op(p̃q
−1). The proof is completed. �

Proof of Theorem 1:
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By the definitions of Mn and M0, we have

(Mn −M0)(θ)

=(En − E)

[
−
{
Y −

p∑
j=1

Xjhj(θj)
}2

− ρ
p∑
j=1

θ2j

]

=(En − E)

[
−
(
Y −

p∑
j=1

Xjβ̃j

)2
−
{ p∑

j=1

Xjβ̃j −
p∑
j=1

Xjhj(θj)
}2

−

2(Y −
p∑
j=1

Xjβ̃j)
{ p∑

j=1

Xjβ̃j −
p∑
j=1

Xjhj(θj)
}
− ρ

p∑
j=1

θ2j

]

=(En − E)

[
− ε2 −

{ p∑
j=1

Xjβ̃j −
p∑
j=1

Xjhj(θj)
}2

− 2
{ p∑

j=1

Xjβ̃j −
p∑
j=1

Xjhj(θj)
}
ε− ρ

p∑
j=1

θ2j

]
.

Therefore, we have

(Mn −M0)(θ)− (Mn −M0)(θ̃)

=2En

[{ p∑
j=1

Xjhj(θj)−
p∑
j=1

Xjhj(θ̃j)
}
ε

]
− (En − E)

{[ p∑
j=1

Xj

{
hj(θj)− hj(θ̃j)

}]2}
+

2(En − E)

[ p∑
j=1

Xj

{
hj(θj)− hj(θ̃j)

}][ p∑
j=1

Xj

{
β̃j − hj(θ̃j)

}]
−

ρ(En − E)

{
p∑
j=1

(θj − θ̃j)(θj + θ̃j)

}

=B1 +B2 +B3 +B4

For j = 1, . . . , p, let

Gj =
{
θj : ||θj − θ̃j||2 6 δ, 0 < δ < 1, θj ∈ F

}
,

Hj =
{
hj(θj) : ||θj − θ̃j||2 6 δ, 0 < δ < 1, θj ∈ F

}
,

Sj =
{
Xjhj(θj) : ||θj − θ̃j||2 6 δ, 0 < δ < 1, θj ∈ F

}
,

and

S =

{
p∑
j=1

Xjhj(θj) : ||θj − θ̃j||2 6 δ, 0 < δ < 1, θj ∈ F, j = 1, . . . p

}
, (S3.5)

where F =
{
θ = (θ1, . . . , θp)

T : θj ∈ F, j = 1, . . . , p
}

.
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Since |hj(θj) − hj(θ̃j)| 6 |θj − θ̃j|, we have N[]{δ1, Hj,L2(D)} ' N[]{δ1, Gj,L2(D)}. By

Condition (C1), we further have N[]{(C2 − C1)δ1, Sj,L2(D)} ' N[]{δ1, Gj,L2(D)}.

By Condition (C6), we have αj > δ for j = 1, . . . , p. Then by the definition of θ̃j, we have

S =

{
p̃∑
j=1

Xjhj(θj) : ||θj − θ̃j||2 6 δ, 0 < δ < 1, θj ∈ F, j = 1, . . . p̃

}
.

According to the construction of S, we have that

N[]

(
p̃(C2 − C1)δ1, S,L2(D)

)
'
{
N[]((C2 − C1)δ1, Sj,L2(D))

}p̃ ' {N[](δ1, Gj,L2(D))
}p̃
,

since the bracket numbers are the same over j for Sj as well as Gj.

From the calculation by Shen and Wong (1994), logN[]{δ1, Gj,L2(D)} = c1q log(δ/δ1), we

have logN[] {p̃(C2 − C1)δ1, S,L2(D)} ' c1p̃q log(δ/δ1).

By Condition (C3), the stochastic process
{√

nEn

[
{
∑p̃

j=1Xjhj(θj)−
∑p̃

j=1Xjhj(θ̃j)}ε
]
, θj ∈

F, j = 1, . . . , p̃
}

is sub-Gaussian for the L2(D)-semimetric on S. According to Corollary 2.2.8

of Van Der Vaart et al. (1996), we have

E∗

{
sup

||θ−θ̃||2<δ,θ∈FLnn

√
n|B1|

}
'
∫ δ

0

√
logN[] {p̃δ1, S,L2(D)} d(p̃δ1) ' (p̃q)1/2δ.

With the similar calculation of the bracketing number and Lemma 3.4.2 of Van Der Vaart

and Wellner (1996) Van Der Vaart et al. (1996), we have

E∗

{
sup

||θ−θ̃||2<δ,θ∈FLnn

√
n|B2|

}
' (p̃q)1/2δ.

Since XT (β̃ − h̃) = ρXT{E(ŨXT )}−1θ̃ = Op(ρ||θ̃||) is bounded, we can also have

E∗

{
sup

||θ−θ̃||2<δ,θ∈FLnn

√
n|B3|

}
' E∗

{
sup

||θ−θ̃||2<δ,θ∈FLnn

√
n|B1|

}
' (p̃q)1/2δ.

By Condition (C7), |θj + θ̃j| is bounded, then

E∗

{
sup

||θ−θ̃||2<δ,θ∈FLnn

√
n|B4|

}
' E∗

{
sup

||θ−θ̃||2<δ,θ∈FLnn

√
n|B1|

}
' (p̃q)1/2δ.

According to Theorem 3.4.1 of Van Der Vaart and Wellner (1996) Van Der Vaart et al.

(1996), the key function φ(δ) takes the form of φn(δ) = (p̃q)1/2δ. Therefore, ||θ̂ − θ̃||2 =

Op

(
(p̃q/n)1/2

)
.
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By Lemma 3 and Condition (C6), If βj /∈ Sq,αj for j = 1, . . . , p̃, then

||β̂ − β0||2 = ||ζ(θ̂,α) − β0||2

6 ||ζ(θ̂,α) − h(θ̂)||2 + ||h(θ̂)− h(θ̃)||2 + ||h(θ̃)− β̃||2 + ||β̃ − β0||2

= Op(p̃
1/2∇(η)) +Op(||θ̂ − θ̃||2) +O(p̃1/2∇(η)) +O((p̃ρ+ p̃q−2m)1/2)

= Op

(
p̃1/2∇(η) + (p̃q/n)1/2 + p̃1/2∇(η) + (p̃ρ+ p̃q−2m)1/2

)
= Op

(
(p̃q/n)1/2 + p̃1/2q−m

)
;

if βj ∈ Sq,αj for j = 1, . . . , p̃, ||β̂ − β0||2 = Op

(
p̃1/2∇(η) + (p̃q/n)1/2 + (p̃ρ)1/2

)
= Op

(
p̃1/2r(η) + (p̃q/n)1/2

)
. The proof is completed. �

Lemma 6 (Normality): Under Conditions (C1)–(C7), for j = 1, . . . , p, and any w ∈ D,

{σ2
nj(w)}−1/2

{
θ̂j(w)− θ̃j(w)

}
→d N(0, 1),

where σ2
nj(w) = σ2[n2{ej ⊗B(w)}T{l′′n(γ̃)}−1

{
V T
n (γ̃)Vn(γ̃)

}
{l′′n(γ̃)}−1{ej ⊗B(w)}]−1.

Proof of Lemma 6:

By the Mean Value Theorem, there exists a γ∗ between γ̃ and γ̂, such that

0 = l′n(γ̂) = l′n(γ̃) + l′′n(γ∗)(γ̂ − γ̃). (S3.6)

According to the previous calculation,

l′n(γ) = −2En

{
(Y −XTh) ·U ⊗B(W )− ρθ ⊗B(W )

}
= −2En

{
U ⊗B(W )ε+U ⊗B(W ) ·XT (β − h)− ρθ ⊗B(W )

}
= −2En

{
vε+ v ·XT (β − h)− ρθ ⊗B(W )

}
.

(S3.7)

Since l′′n(γ∗) is invertible, then we have γ̂−γ̃ = −{l′′n(γ∗)}−1l′n(γ̃). To prove the theorem, it

suffices to show that for any cn ∈ Rq∗p whose components are not all zero and cTncn = Op(q),

cTn (γ̂ − γ̃)/SD
{
cTn (γ̂ − γ̃)

}
→d N(0, 1), where

SD
{
cTn (γ̂ − γ̃)

}
=

√
(1/n2)cTn

{
l′′n(γ̃)

}−1{
V T
n (γ̃)Vn(γ̃)

}{
l′′n(γ̃)

}−1
cnσ2.
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By some algebra, we have

cTn (γ̂ − γ̃) =− cTn
{
l′′n(γ∗)

}−1
l′n(γ̃)

=
n∑
i=1

aiε
∗
i + cTn

{
l′′n(γ∗)

}−1
En

{
v(γ̃) ·XT (β̃ − h̃)− ρθ̃ ⊗B(W )

}
=A1 + A2,

where ai = cTn
{
l′′n(γ∗)

}−1
vi(γ̃)σ/n and ε∗i are independent with mean zero and variance one

conditioning on {θi,Wi, i = 1, . . . , n}.

Since En

{
Ũ⊗B(W )XT (β̃− h̃)−ρθ̃⊗B(W )

}
= ρEn

{[
ŨXT

{
E(ŨXT )

}−1
θ̃− θ̃

]
⊗B

}
,

we have A2 = op(ρq
1/2). Moreover,

n∑
i=1

a2i =
σ2

n2

n∑
i=1

cTn
{
l′′n(γ∗)

}−1
vi(γ̃)vTi (γ̃)

{
l′′n(γ∗)

}−1
cn

=
σ2

n
cTn
{
l′′n(γ∗)

}−1 1

n

n∑
i=1

vi(γ̃)vTi (γ̃) ·
{
l′′n(γ∗)

}−1
cn

= Op(c
T
ncn/n) = Op(q/n),

thus we have A2/
√

(
∑
a2i ) = op(nρ/q) = op(1) by Condition (C6).

By Slutsky’s Theorem, we then only need to prove A1/
√

(
∑
a2i ) follows a Normal distribu-

tion. By Condition (C3) and Lemma 4, we only need to verify that maxi a
2
i /
∑n

i=1 a
2
i →p 0.

With some calculations, we have

max
16i6n

a2i =
σ2

n2
max
16i6n

[
cTn {−l′′n(γ∗)}−1

{
V T
n (γ̃)Vn(γ̃)

}1/2 {
V T
n (γ̃)Vn(γ̃)

}−1/2
vi(γ̃)

]2
6
σ2

n2
cTn {l′′n(γ∗)}−1 · V T

n (γ̃)Vn(γ̃) · {l′′n(γ∗)}−1 cn·

max
16i6n

vTi (γ̃)
{
V T
n (γ̃)Vn(γ̃)

}−1
vi(γ̃).

According to Condition (C2), we have

maxi a
2
i∑n

i=1 a
2
i

= max
16i6n

vTi (V T
n Vn)−1vi →p 0,

as n→∞.

Because γ̂ →p γ̃, we have γ∗ →p γ̃. Since for any w ∈ D, θ̂j(w) = (ej ⊗B(w))T γ̂, then
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let cn = ej ⊗B(w), we have

{σ2
nj(w)}−1/2

{
θ̂j(w)− θ̃j(w)

}
→d N(0, 1),

where σ2
nj(w) = σ2/n2

{
ej ⊗B(w)}T{l′′n(γ̃)

}−1 {
V T
n (γ̃)Vn(γ̃)

}
{l′′n(γ̃)}−1 {ej ⊗B(w)}. The

proof is completed. �

Proof of Theorem 2:

It is straightforward to show that if (Z − µ)/σ ∼ N(0, 1), then

Pr
{
ζ(Z,α) < x

}
= Φ

(
x+ α− µ

σ

)
I(x > 0) + Φ

(
x− α− µ

σ

)
I(x < 0).

Under regularity conditions and by Lemma 6, for 1 6 j 6 p and any w ∈ D, we have

limn→∞ Pr
(
σ−1nj θ̂j(w)−σ−1nj θ̃j(w) < x

)
= Φ(x). Note that σ−1nj ζ{θ̂j ,αj}(w) = ζ{σ−1

nj θ̂j ,σ
−1
nj αj}(w),

then we have

lim
n→∞

∣∣∣∣∣Pr
[
ζ{θ̂j ,αj}(w) 6 x

]
− Φ

(
x+ αj − θ̃j(w)

σnj

)
I(x > 0)−

Φ

(
x− αj − θ̃j(w)

σnj

)
I(x < 0)

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣Pr
[
ζ{σ−1

nj θ̂j ,σ
−1
nj αj}(w) 6 σ−1nj x

]
− Φ

{
x+ αj − θ̃j(w)

σnj

}
I(x > 0)−

Φ

{
x− αj − θ̃j(w)

σnj

}
I(x < 0)

∣∣∣∣∣
= 0.

�

Proof of Theorem 3:

Let u∗nj = θ̂j − σ̂njzξ/2 and v∗nj = θ̂j + σ̂njzξ/2.

(a). When P+ > ξ/2 and P− > ξ/2, or P− < ξ/2 and P+ > 1 − ξ/2, or P+ < ξ/2 and

P− > 1− ξ/2, then ζ(u∗nj ,αj) 6= 0 and ζ(v∗nj ,αj) 6= 0. Therefore θ̂j − σ̂njzξ/2 6 θ̃j 6 θ̂j + σ̂njzξ/2
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is equivalent to ζ(θ̂j, αj)− σ̂njzξ/2 6 ζ(θ̃j ,αj) 6 ζ(θ̂j, αj) + σ̂njzξ/2. Therefore,

lim
n→∞

Pr
{
ζ(θ̂j ,αj) − σ̂njzξ/2 6 ζ(θ̃j ,αj) 6 ζ(θ̂j ,αj) + σ̂njzξ/2

}
= lim

n→∞
Pr
(
θ̂j − σ̂njzξ/2 6 θ̃j 6 θ̂j + σ̂njzξ/2

)
= lim

n→∞
Pr
(
θ̃j − σ̂njzξ/2 6 σ̂−1nj θ̂j 6 θ̃j + σ̂njzξ/2

)
=1− ξ.

That is,
[
ζ(θ̂j ,αj) − σ̂njzξ/2, ζ(θ̂j ,αj) + σ̂njzξ/2

]
is the 1− ξ confidence interval for ζ(θ̃j ,αj).

(b). When P+ < ξ/2 and ξ−P+ < P− < 1−ξ/2, then ζ(u∗nj ,αj) 6= 0 and ζ(v∗nj ,αj) = 0. Let A =

σ̂−1nj αj +δ0− σ̂−1nj θ̂j and B satisfy Pr(z < −A)+Pr(z > B) = ξ, where z ∼ N(0, 1) and δ0 > 0

is small enough such that σ̂−1nj θ̂−B < −σ̂−1nj αj. Then, limn→∞ Pr
{
−A 6 σ̂−1nj (θ̂ − θ̃j) 6 B

}
=

1 − ξ, i.e. limn→∞ Pr(θ̂j − σ̂njB 6 θ̃j 6 θ̂j + σ̂njA) = 1 − ξ. By the definitions of A and B,

we have ζ(θ̂j+σ̂njA,αj) > 0 and ζ(θ̂j−σ̂njB) < 0. Therefore, similar to part (a), we have,

lim
n→∞

Pr
{
ζ(θ̂,αj) − σ̂njB 6 ζ(θ̃j ,αj) 6 σ̂njδ0

}
= lim

n→∞
Pr
(
θ̂j − σ̂njB 6 θ̃j 6 θ̂j + σ̂njA

)
=1− ξ.

Then,
[
ζ(θ̂,αj) − σ̂njB, σ̂njδ0

]
is the 1− ξ confidence interval for ζ(θ̃j ,αj), where

B = Φ−1
{

1− ξ + Φ(−σ̂−1nj αj + σ̂−1nj θ̂j + δ0)
}

.

(c). When P− < ξ/2 and ξ − P− < P+ < 1 − ξ/2, then ζ(u∗nj ,αj) = 0 and ζ(v∗nj ,αj) 6= 0. Let

B = σ̂−1nj αj + δ0 + σ̂−1nj θ̂j and A satisfy Pr(z < −A) + Pr(z > B) = ξ, where z ∼ N(0, 1) and

δ0(δ0 > 0) is small enough such that σ̂−1nj θ̂ + A > σ̂−1nj αj. Similar to part (b), we have

lim
n→∞

Pr
{
−σ̂njδ0 6 ζ(θ̃j ,αj) 6 ζ(θ̂,αj) + σ̂njA

}
= lim

n→∞
Pr
(
σ̂−1nj θ̃ − A 6 σ̂−1nj θ̂j 6 σ̂−1nj θ̃ +B

)
=1− ξ.

Then,
[
−σ̂njδ0, ζ(θ̂,αj) + σ̂njA

]
is the 1− ξ confidence interval for ζ(θ̃j),αj , where

A = −Φ−1
{
ξ − 1 + Φ(σ̂−1nj αj + σ̂−1nj θ̂j + δ0)

}
.
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(d). When P++P− < ξ, then ζ(u∗nj ,αj) = 0 and ζ(v∗nj ,αj) = 0. Therefore, σ̂−1nj θ̂j−zξ/2 6 σ̂−1nj θ̃j 6

σ̂−1nj θ̂j+zξ/2 implies that 0 = ζ(σ̂−1
nj θ̂j−zξ/2,σ̂

−1
nj αj)

6 ζ(σ̂−1
nj θ̃j ,σ̂

−1
nj αj)

6 ζ(σ̂−1
nj θ̂j+zξ/2,σ̂

−1
nj αj)

= 0. There-

fore, Pr
{
ζ(θ̃j ,αj) = 0

}
> limn→∞ Pr(σ̂−1nj θ̃j−zξ/2 6 σ̂−1nj θ̂j 6 σ̂−1nj θ̃j+zξ/2) = limn→∞ Pr(σ̂−1nj θ̃j−

zξ/2 6 σ̂−1nj θ̂j 6 σ̂−1nj θ̃j + zξ/2) = 1 − ξ. Then [0, 0] is a confidence interval for ζ(θ̃j ,αj) with at

least 1− ξ coverage probability.

As δ0 in (b) and (c) can be arbitrarily small, the results remain valid when δ0 goes to 0.

Let δ0 → 0, then the confidence interval for ζ(θ̃j ,αj) with at least 1 − ξ coverage probability

is

[unj(w), vnj(w)]

=



[
β̂j(w)− σ̂njzξ/2, β̂j(w) + σ̂njzξ/2

]
, P+ > ξ/2 and P− > ξ/2,

or P− < ξ/2 and P+ > 1− ξ/2,

or P+ < ξ/2 and P− > 1− ξ/2[
β̂j(w)− σ̂njB̂, 0

]
, P+ < ξ/2 and ξ − P+ < P− < 1− ξ/2[

0, β̂j(w) + σ̂njÂ
]
, P− < ξ/2 and ξ − P− < P+ < 1− ξ/2

[0, 0], P+ + P− < ξ

, (S3.8)

where Â = −Φ−1
{
ξ − 1 + Φ(σ̂−1nj αj + σ̂−1nj θ̂j)

}
and B̂ = Φ−1

{
1− ξ + Φ(−σ̂−1nj αj + σ̂−1nj θ̂j)

}
.

Since the bias βj − ζ(θ̃j ,αj) is asymptotically negligible relative to the variance of θ̂j, and

P̂+ → P+ and P̂− → P− as n→∞, the asymptotic 1−ξ confidence interval (S3.8) for ζ(θ̃j ,αj)

is also an asymptotic 1 − ξ confidence interval for βj with P+ and P− replaced by P̂+ and

P̂−.

When βj(w) 6= 0, the boundary points will not be zero as we defined in (a) and the limiting

coverage probability is 1 − ε. When βj(w) = 0, since β̂j(w) → βj(w) as n → ∞. Therefore,

there exists N > 0 such that when n > N , P+ < ε/2 or P− < ε/2 and P+ +P− < 1− ε/2 by
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their definition. Then unj(w) = 0 and (or) vnj(w) = 0. We have

Pr(unj = 0 or vnj = 0) = Pr
{
ζ(u∗nj ,αj) = ζ(v∗nj ,αj) = 0

}
= Pr

{
|θ̂j − σ̂njzξ/2| 6 αj or |θ̂j + σ̂njzξ/2| 6 αj

}
= Pr

{
− αj + σ̂njzξ/2 6 θ̂j 6 αj + σ̂njzξ/2 or

− αj − σ̂njzξ/2 6 θ̂j 6 αj − σ̂njzξ/2
}

> Pr
{
− αj + σ̂njzξ/2 6 θ̂j 6 αj + σ̂njzξ/2

}
> 0.

Therefore, [unj, vnj] is a sparse confidence interval for βj. �

S4. Detailed implementation of a local FDR control-based bootstrap procedure

to infer turning points

We estimate the turning points of varying coefficient functions based on our STV model

and further construct the confidence intervals using a bootstrap method. To ensure the

confidence intervals have proper coverage and eliminate the influence of potential outliers,

we adopt the percentile-t method (Hall, 1992), in conjunction with a local false discovery

rate (FDR) control method (Efron et al., 2015). The detailed steps are as follows.

(1) We fit the STV model to each original dataset and estimate the left turning point (e1)

and right turning point (e2). Specifically, the turning points are identified, respectively, by

finding the value of w where the first change occurs in the sign of β(w), transitioning from

greater than 0 to smaller than or equal to 0, and the value of w where the last change occurs

in the sign of β(w), transitioning from smaller than or equal to 0 to greater than 0.

(2) We generate 200 bootstrap datasets for each original dataset by sampling with replacement.

For each bootstrap dataset, we fit the model and calculate the left and right turning points

(e1 and e2) using the same procedure as in Step (1).

(3) We use the “locfdr” R package (Efron et al., 2015) to remove the potential outlier cases in the
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bootstrap estimates by setting the local FDR to be 0.1, and estimate the null distributions for

e1 and e2 separately. We compute the means and standard deviations of the null distributions.

(4) With the the means and standard deviations computed from Step (3), we standardize the

200 bootstrap estimates of e1 and e2, and then apply the percentile-t method (Hall, 1992)

to compute their 95% confidence intervals.

S5. Additional simulation analysis for low dimensional covariates

Let |A| denote the cardinality of set A. To compare zero-effect region detection, we define

two quantities, estimation-based true positive ratio and estimation-based true negative ratio:

ETPR(β) =
|{w : β̂(w) 6= 0 and β(w) 6= 0}|

|{w : β(w) 6= 0}|
,

ETNR(β) =
|{w : β̂(w) = 0 and β(w) = 0}|

|{w : β(w) = 0}|
.

Since the B-spline and local polynomial methods do not yield exactly zero estimates, the

above definitions are not applicable. Instead, we introduce inference-based true positive ratio

and true negative ratio:

ITPR(β) =
|{w : 0 /∈ CI{β̂(w)} and β(w) 6= 0}|

|{w : β(w) 6= 0}|
,

ITNR(β) =
|{w : 0 ∈ CI{β̂(w)} and β(w) = 0}|

|{w : β(w) = 0}|
,

where CI{β̂(w)} is the 95% confidence interval of β(w).

We choose 100 grid points on [0, 3] and count the number of W in each set as its cardinality.

The Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) is adopted to control

the false discovery rate in the calculation of the inference-based true positive ratio and

the inference-based true negative ratio. Table 1 shows that the soft-thresholded varying

coefficient model has higher inference-based true negative ratios than the B-spline varying

coefficient model and the local polynomial varying coefficient model, and the performance

of our method is improving as n becomes larger. We also compare the non-zero-effect region

selection accuracy between our estimation-based method and our inference-based method in
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Table 2. The estimation-based true positive ratio is slightly higher than the inference-based

true positive ratio, but both of them quickly approach to 1 as n increases. Of note, the

estimation-based method is much faster than the inference-based method.

Figure 1 shows the coverage probability of β1 at each grid point for all of the three methods

when n = 500. The soft-thresholded varying coefficient model makes more accurate inference

on zero-effect regions and non-zero-effect regions, as the coverage probabilities are closer to

95% on average compared to the others. At the transitions between zero- and nonzero-effect

regions, all the methods draw less accurate inference, but our method still outperforms

the competing methods. Specifically, the B-spline varying coefficient model and the local

polynomial varying coefficient model have considerably small coverage probabilities around

50% to 60%, while our method can still achieve a coverage probability of at least 80%.

S6. Comparison of performance with misspecified models, i.e., with

zero-crossing varying coefficients

We have conducted a simulation study to compare the performance of our proposed method

with the regular B-spline varying coefficient model when the varying coefficients are zero-

crossing. The simulation settings are the same as in Section 4.1 in the main text, except that

the true coefficient functions are

β1(w) = −w2/2 + 3, β2(w) = 2 log(w + 0.1), and β3(w) = −6/(w + 1) + 2, which are all

zero-crossing smooth functions. The following Table 3 shows the comparison of estimation

accuracy between regular varying coefficient model and STV model when we choose n =

200, 500, and 1000. Using the integrated squared errors and the average integrated squared

errors as the criteria, STV performs as well as the regular B-spline varying coefficient model

in most cases, possibly because any smooth varying coefficients that cross zero can be well

approximated by functions in our specified H functional space as shown by Lemma 2.
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S7. Additional results for preoperative opioid study

Additional plots for real data application are provided in this section.
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Figure 1: Empirical coverage probabilities (black curves) of the soft-thresholding
varying coefficient model (STV), the regular B-spline varying coefficient model (B-
spline) and the local polynomial varying coefficient model (local polynomial) in low
dimensional covariates simulations. The grey curves are the true values of varying
coefficients. The horizontal lines indicate the target coverage probability of 0·95.
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Figure 2: Estimation results (II) for the preoperative opioid use data using the B-spline method and
the STV method: the black solid lines are the estimated coefficient function curves for each variable; the
dotted lines are the pointwise (sparse) confidence intervals.
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Figure 3: Estimation results (III) for the preoperative opioid use data using the B-spline method and
the STV method: the black solid lines are the estimated coefficient function curves for each variable; the
dotted lines are the pointwise (sparse) confidence intervals.
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Figure 4: Estimation results (IV) for the preoperative opioid use data using the B-spline method and
the STV method: the black solid lines are the estimated coefficient function curves for each variable; the
dotted lines are the pointwise (sparse) confidence intervals.
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Figure 5: Estimation results (V) for the preoperative opioid use data using the B-spline method and
the STV method: the black solid lines are the estimated coefficient function curves for each variable; the
dotted lines are the pointwise (sparse) confidence intervals.
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Figure 6: Estimation results (VI) for the preoperative opioid use data using the B-spline method and
the STV method: the black solid lines are the estimated coefficient function curves for each variable; the
dotted lines are the pointwise (sparse) confidence intervals.
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Table 1: Comparisons of true positive ratios and true negative ratios among three
methods for non-zero-effect region detection

n Method ITPR(β1) ITPR(β2) ITPR(β3) ITNR(β1) ITNR(β2) ITNR(β3)

200 STV 936 (44) 919 (54) 816 (83) 987 (44) 967 (104) 976 (76)
B-spline 977 (30) 930 (49) 833 (71) 928 (105) 952 (118) 969 (100)
local polynomial 992 (23) 974 (38) 891 (78) 854 (141) 870 (161) 930 (127)

500 STV 962 (26) 949 (37) 883 (62) 990 (37) 980 (75) 985 (53)
B-spline 993 (17) 970 (35) 897 (57) 876 (124) 954 (95) 967 (103)
local polynomial 996 (12) 984 (24) 933 (54) 858 (112) 863 (123) 926 (133)

1000 STV 974 (18) 963 (25) 911 (48) 992 (24) 985 (45) 981 (69)
B-spline 997 (9) 991 (15) 929 (43) 772 (152) 907 (129) 961 (90)
local polynomial 996 (11) 989 (19) 951 (45) 857 (122) 836 (139) 921 (102)

ITPR: the inference-based true positive ratio; ITNR: the inference-based true negative ratio. Values
are generated from 200 replications and multiplied by 103.
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Table 2: Comparisons of true positive ratios and true negative ratios
between the estimation-based method and the inference-based method
using the soft-thresholded varying coefficient model for non-zero-effect
region detection

200 500 1000 2000 5000 10000

ETPR 997 (7) 998 (5) 997 (7) 997 (7) 999 (4) 1000 (2)
β1 ITPR 977 (14) 980 (12) 977 (14) 977 (14) 985 (10) 989 (9)

ETNR 853 (125) 880 (104) 853 (125) 853 (125) 892 (100) 915 (84)
ITNR 992 (30) 996 (18) 992 (30) 992 (30) 992 (27) 992 (28)

ETPR 989 (15) 989 (16) 989 (15) 989 (15) 992 (11) 993 (10)
β2 ITPR 962 (20) 963 (23) 962 (20) 962 (21) 972 (14) 975 (11)

ETNR 900 (149) 872 (157) 900 (149) 900 (149) 955 (91) 981 (57)
ITNR 991 (41) 990 (29) 991 (41) 991 (41) 994 (29) 999 (12)

ETPR 981 (30) 978 (33) 981 (30) 981 (30) 989 (20) 991 (16)
β3 ITPR 933 (42) 920 (40) 933 (42) 933 (42) 958 (31) 970 (24)

ETNR 713 (282) 694 (267) 713 (282) 713 (282) 777 (266) 829 (265)
ITNR 984 (51) 980 (64) 984 (51) 984 (51) 980 (55) 980 (60)

ETPR: the estimation-based true positive ratio; ITPR: the inference-based true posi-
tive ratio; ETNR: the estimation-based true negative ratio; ETPR: the inference-based
true negative ratio. Values are multiplied by 103.
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Table 3: Simulation for Misspecified Model

Regular B-spline Model STV
n cov(X) ISE1 ISE2 ISE3 AISE ISE1 ISE2 ISE3 AISE

InD 55 (37) 41 (26) 41 (30) 46 (22) 31 (24) 35 (22) 31 (24) 32 (16)
200 CS 66 (44) 51 (37) 52 (38) 56 (30) 36 (28) 40 (26) 36 (28) 37 (20)

AR1 65 (42) 64 (45) 50 (34) 59 (30) 37 (29) 51 (34) 38 (29) 42 (23)

InD 23 (14) 18 (8) 17 (10) 19 (7) 11 (8) 16 (7) 11 (7) 13 (5)
500 CS 27 (17) 22 (11) 22 (12) 23 (9) 14 (10) 18 (8) 14 (9) 15 (7)

AR1 27 (18) 27 (14) 21 (12) 25 (11) 14 (10) 22 (11) 14 (9) 17 (8)

InD 12 (8) 10 (5) 9 (5) 11 (4) 6 (4) 10 (4) 6 (4) 7 (2)
1000 CS 12 (6) 11 (5) 12 (6) 12 (4) 7 (5) 10 (5) 7 (5) 8 (3)

AR1 13 (6) 15 (7) 12 (6) 13 (5) 7 (5) 12 (6) 8 (5) 9 (4)

ISE: the integrated squared errors; AISE: the average integrated squared errors. Values are means and standard
deviations from 200 replications and multiplied by 103.
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Table 4: Patient Characteristics by Preoperative Opioid Use

Characteristics No Preoperative Opioid Use Preoperative Opioid Use
(n = 21, 005) (n = 6, 362)

Age 52.72 (16.45) 52.74 (15.00)
BMI 29.69 (7.00 ) 30.77 (7.79)
Pain severity 2.53 (2.56) 5.39 (2.62)
Fibromyalgia survey score 4.61 (4.02) 8.32 (5.24)
Life satisfaction 7.34 (2.46) 6.03 (2.62)
Charlson comorbidity index 1.74 (3.31) 1.64 (3.30)
Male 9,804(46.7%) 2,876 (45.2%)
Depression 3,138 (14.9%) 2,223 (34.9%)
Race White 19,418 (92.4%) 5,745 (90.3%)

Black 381 (0.6%) 315 (6.0%)
Asian 315 (1.5%) 30 (0.5%)
Other 891 (4.2%) 272 (4.3%)

Anxiety 3,746 (34.7%) 1,523 (51.1%)
Alcohol 9,754 (46.4%) 2,611 (41.0%)
Apnea 4,720 (22.5%) 1,843 (29.0%)
Illicit drug use 674 (3.2%) 478 (7.5%)
Tobacco use 8,093 (38.5%) 3,435 (54.0%)
ASA score < 3 7,225 (66.9%) 1,535 (51.5%)

> 3 6,821 (32.5%) 2,963 (46.6%)

Continuous variables are presented in mean (standard deviation), and categorical variables in count
(percentage).
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