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1 Introduction

The World Drug Report UNDOC (2014) reveals that opioid use for pain treatment has risen

sharply, but without much improvement in reducing the severity of chronic pain (CDCP,

2007). Patients with preoperative opioid use have worse surgical outcomes, greater postop-

erative pain, more pronounced morbidity, higher rates of use of health care services (Zywiel

et al., 2011; Chapman et al., 2011; Pivec et al., 2014), and are less likely to stop opioid-

based therapy after surgery (Goesling et al., 2016; Cron et al., 2017). To avoid unnecessary

opioid use and prevent possible opioid addiction, effective strategies for opioid prescription

management are needed for both patients and physicians. For obese patients, effective pre-

scription management is especially important because of complex co-comorbidities associated

with obesity (Schug and Raymann, 2011). It is critical to understand whether and how the

association between preoperative opioid use and pain is modified by the level of body mass

index (BMI) (Schug and Raymann, 2011).

This work was motivated by a study on the association of preoperative opioid use and the

characteristics of patients in a broadly representative surgical cohort (Hilliard et al., 2018).

Our preliminary analysis, based on a varying coefficient model (Hastie and Tibshirani, 1993),

shows that the dose-relationship between opioid use and pain level changes from negative

to positive with BMI increasing from 15.5 to 20.0, and the non-significant and significant

regions are not well separated. A practical explanation is that there may exist zero-effect

regions in terms of BMI for pain on opioid use. The zero-effect regions of BMI, that is,

the regions where opioid use is not related to pain, may hint at possible opioid addictions.

However, most existing methods ignore the existence of zero-effect regions. There is a need

to develop a varying coefficient model that enables us to estimate zero-effect regions and

quantify the associated uncertainty.

Varying coefficient models (Hastie and Tibshirani, 1993) are commonly used to characterize
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the dynamic changes of regression effects. Framing the model in the context of opioid use, we

denote by Y the total amount of preoperative opioids, and by X1, . . . , Xp the p covariates,

consisting of demographic information and clinical symptoms, such as preoperative pain.

The following model detects how the covariate effects on opioid use are modified by BMI

(denoted by W ):

Y =

p∑
j=1

Xjβj(W ) + ε, (1)

where βj(W ) is the varying coefficient function representing the effect of Xj, and ε is a

random variable with mean zero and variance σ2. We set X1 to be 1, corresponding to the

intercept function. The challenge lies in how to detect zero-effect regions and draw inference

on varying coefficient functions simultaneously, and is aggravated when p is large.

Local log-likelihood approaches have been proposed to estimate βj(W ). Hoover et al.

(1998) used the smoothing spline and local polynomial methods; Fan and Zhang (1999)

proposed a two-step procedure to allow more flexibility of coefficient functions; Wu et al.

(2000) and Chiang et al. (2001) proposed component-based kernel and smoothing spline

estimators for varying coefficient models with repeated measurements. In high-dimensional

settings, variable selection and screening with varying coefficient models were studied (Liu

et al., 2014; Li et al., 2015; Lee et al., 2016). The local polynomial estimators may not

provide adequate smoothing for all the coefficients simultaneously and the computational

burden of smoothing splines can be heavy. Also proposed were other alternative methods,

including global estimation and variable selection for varying coefficient models based on

basis approximations (Huang et al., 2002, 2004) and penalized spline-based models (Eubank

et al., 2004; Wang et al., 2011; Wei et al., 2011; Huang et al., 2012; Xue and Qu, 2012; Cheng

et al., 2014; Fan et al., 2014; Song et al., 2014; Cheng et al., 2016; He et al., 2018). However,

none of them can detect zero-effect regions.

Model (1) differs from functional linear models (Ramsay and Dalzell, 1991; Ramsay and
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Silverman, 2007; James et al., 2009; Zhou et al., 2013) and scalar-on-image regression

models (Kang et al., 2018), of which both coefficients and covariates are functional. The roles

and interpretations of functional coefficients deviate from those in model (1), as the latter

is designed to characterize the varying effects of scalar covariates. Moreover, the methods of

drawing statistical inference on zero-effect regions for functional linear models (James et al.,

2009; Zhou et al., 2013; Kang et al., 2018) are not applicable to model (1).

We propose a soft-thresholded varying coefficient model, where coefficients in model (1)

are constructed by applying soft-thresholding operators to smooth functions. The soft-

thresholded varying coefficients are continuous, piecewise smooth, and with zero-effect re-

gions. The smooth functions before soft-thresholding can be approximated using B-splines (Sil-

verman, 1985; Stone, 1986; Eilers and Marx, 1996), or some other basis functions, such

as smoothing splines or reproducing kernel Hilbert space splines (Wahba, 1990; Berlinet

and Thomas-Agnan, 2011). The soft-thresholded function, originally introduced to construct

estimators for the wavelet coefficients (Donoho and Johnstone, 1994; Donoho, 1995), has been

used for effect shrinkage. For example, Chiang et al. (2001) proposed an adaptive, data-driven

threshold for image denoising in a Bayesian framework; Tibshirani (1996) pointed out that

the lasso estimator is a soft-thresholded estimator when the covariate matrix is orthonormal.

As all of these estimators were designed for finite dimensional parameters, their usage for

functional coefficients, including varying coefficients, remains elusive.

Our approach distinguishes from the existing methods as follows. First, our method involves

a novel application of a soft-thresholding operator in a functional space, which enables

us to uncover zero-effect regions of varying coefficients. The soft-thresholded estimates are

continuous, piecewise smooth and with zero-effect regions, and possess an easy interpretation

for a range of applications. Second, our new modeling framework enables us to estimate

varying coefficients and draw the statistical inference. We particularly develop a new type
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of confidence interval, termed sparse confidence intervals, which can be degenerated to a

singleton with a non-zero probability. Finally, we have established theoretical properties,

which inform valid statistical inference for high-dimensional varying coefficient models.

2 Method

2.1 Varying coefficient models with zero-effect regions

We write β(w) = {β1(w), . . . , βp(w)}> in model (1) as a vector of varying coefficients, where

p may grow with the sample size. In the following, we use β0(w) = {β01(w), . . . , β0p(w)}>

to denote the truth of β(w); when there is no ambiguity, we use the simplified form of

β0 = (β01, . . . , β0p)
> for the true functions as well. Without loss of generality, we assume

W ∈ D = [0, 1]. To detect zero-effect regions of β(w), we assume that each βj is continuous

everywhere, with zero-effect regions (if existing) consisting of at least one interval, and is

smooth over regions where its effect is non-zero. Specifically, let R0(β) = {w : β(w) = 0, w ∈

D}, R−(β) = {w : β(w) < 0, w ∈ D}, R+(β) = {w : β(w) > 0, w ∈ D}, and R be the closure

of any set R ⊆ D. The functional space H containing βj is defined below.

Definition 1: H contains β(w) with: (continuity) limw→w0 β(w) = β(w0), for any w0 ∈ D;

(zero-effect regions) R0(β) either is empty or contains at least one interval with a non-zero

Lebesgue measure; (piecewise smoothness) R+(β)
⋃
R−(β) can be partitioned as a union of

disjoint intervals, each with a non-zero Lebesgue measure. The dth derivative of β(w) exists

and satisfies the Lipschitz condition on each interval: |β(d)(s)− β(d)(w)| 6 C|s− w|t, where

d is a non-negative integer, and t ∈ (0, 1] such that m ≡ d+ t > 0.5.

The smoothness requirement for β in our definition is weaker than that in Kang et al.

(2018). The full-zero coefficients are those with R0 = D, and partial-zero coefficients are those

with R0 ( D. Definition 1 implies a “buffer zone” when an effect switches signs, reflecting

gradual degradation in real life. We assume that the each component of the true parameter
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β0 = (β01, . . . , β0p)
>, say, β0j ∈ H. Let p0 =

∑p
j=1 I{β0j(w) ≡ 0} be the number of full-zero

coefficients, and p̃ = p − p0 be the number of partial-zero and non-zero coefficients, where

I{·} is the indicator function. Without loss of generality, we assume the first p̃ coefficients

are either partial-zero or non-zero. Sparsity conditions need to be imposed on p̃ to ensure

the estimability of these partial- or non-zero coefficients; see Condition (C6) in the Web

Appendix. .

2.2 Soft-thresholding operator

Representing zero-effect regions for varying coefficients, we propose a soft-thresholding op-

erator ζ:

ζ{θ,α}(w) = {θ(w)− α} I{θ(w) > α}+ {θ(w) + α} I{θ(w) < −α}, (1)

where α > 0 is the thresholding parameter and θ(w) is a real-valued function. Though

resembling Donoho and Johnstone (1994), designed for denoising wavelet coefficients, our

proposal (1) is a functional operator which transforms a function to a function (Figure 1(a)).

Let F0 be a class of functions θ defined on D, with the dth derivative θ(d) satisfying the

Lipschitz condition in Definition 1. According to Lemma 1 in the Web Appendix, we have

that for any function β(w) ∈ H and any α > 0, there exists at least one θ(w) ∈ F0 such that

β(w) = ζ{θ,α}(w).

As illustrated by Figure 1(a), the soft-thresholding operator maps different smooth θ(w)’s

with different thresholding parameter α’s to the same β(w). Even for a fixed α, θ(w) may not

be uniquely defined and, hence, is not estimable without further constraints. Our strategy

is to consider a sieve space that approximates F0 and shows that, within the sieve space,

a penalized loss function can uniquely determine a θ(w), which after soft thresholding will

approximate the desired β(w). In theory, we may set α to be any positive number, but our

numerical experience suggests that choosing an appropriate α, which is comparable to the
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scale of β(w), lead to more stable and efficient estimates. Thus, in a regression setting, we

specify covariate-specific α’s.

2.3 Spline approximation and differentiable approximation

We specify a B-spline function sieve space, denoted by F, to approximate F0. Let K = O(nν)

be an integer with 0 < ν < 0·5. Following Schumaker (2007), we let Bk(w)(1 6 k 6 q)

with q = K + d be the B-spline basis functions of degree d + 1 associated with the knots

0 = w0 < w1 < · · · < wK−1 < wK = 1, satisfying max16k6K(wk − wk−1) = O(n−ν).

Definition 2: Let B(w) = {B1(w), . . . , Bq(w)}T be a functional vector of the B-spline

bases. We define F = {
∑q

k=1 γkBk(w), w ∈ D, γk ∈ R, k = 1, . . . , q} .

Let X = (X1, . . . , Xp)
T . With the observed data {(Yi,Wi,Xi)}ni=1 being independent

samples of {(Y,W,X)}, we specify

Yi =

p∑
j=1

Xijζ{∑q
k=1 γjkBk,αj}(Wi) + εi. (2)

Compared to model (1), model (2) should be viewed as a “working” model, wherein γjk

may not be unique or estimable. But with a penalized loss function specified below, the soft

thresholded estimate based on a working sieve model can approximate the truth, β0.

We define a penalized least-squares loss function:

l(γ;X, Y,W ) =

[
Y −

p∑
j=1

Xjζ{BTγj ,αj}(W )

]2
+ ρ

p∑
j=1

{
B(W )Tγj

}2
,

where ρ > 0 and γ = (γT1 , . . . ,γ
T
p )T are the coefficients of bases. The penalty term aims to

shrink the varying-coefficients, which can prevent over-fitting in model fitting and identify

the unique inner functions in F. Although we use the same q for all coefficient functions,

different q can be chosen for different covariates.

Let f be a non-random function, and ξ1, . . . , ξn be i.i.d. copies of random vector ξ. We

denote by Ef(ξ) the theoretical mean of f(ξ) and by Enf(ξ) = n−1
∑n

i=1 f(ξi) the empirical
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mean of f(ξ). Define γ̃ = arg minγ El(γ;X, Y,W ) as the true sieve parameters to estimate.

Let θ̃j = BT γ̃j and β̃(w) = (β̃1, . . . , β̃p)
T with β̃j = ζ{θ̃j ,αj}(w).

For given α and q, we define the thresholded sieve space

Sq,α =

{
β(w) = ζ{θ,α}(w) : θ(w) =

q∑
k=1

γkBk(w), w ∈ D, γk ∈ R, k = 1, . . . , q

}
.

By Lemma 3 in the Web Appendix, if β0j ∈ Sq,αj
for j = 1, . . . , p̃ with q and αj the same as

in the penalized likelihood, ||β̃ − β0||∞ = O((p̃ρ)1/2); if β0j /∈ Sq,αj
for j = 1, . . . , p̃, we have

||β̃ − β0||∞ = O((p̃ρ+ p̃q−2m)1/2), where m is the smoothness parameter as in Definition 1.

As ζ in (1) is not differentiable everywhere, we consider a smooth approximation of it.

Definition 3: A smooth approximation of ζ(θ,α), denoted by Hη(θ, α) (η > 0), is contin-

uous and twice differentiable with respect to θ everywhere and supw∈D |Hη(θ, α) − ζ(θ,α)| =

∇(η), where ∇(η) > 0 and limη→0+∇(η) = 0.

For example, a smooth approximation of ζ(θ,α) is defined as

Hη{θ(w), α} =
1

2

([
1 +

2

π
arctan{θ−(w)

η
}
]
θ−(w) +

[
1− 2

π
arctan{θ+(w)

η
}
]
θ+(w)

)
, (3)

where α > 0, η > 0 and θ±(w) = θ(w) ± α. The approximation error between Hη{θ(w), α}

and ζ(θ,α) is bounded by η+O(η3) and H is continuous and differentiable. The proof can be

found in the Web Appendix.

For simplicity, we drop α and η and write h(w, γ) = {h1(w, γ1), . . . , hp(w, γp)}T with

hj(w,γj) = Hη{B(w)Tγj, αj}. Then, we define a smoothed loss function:

ls(γ;X, Y,W ) = {Y −XTh(W, γ)}2 + ρ

p∑
j=1

{B(W )Tγj}2. (4)

2.4 Estimation

We minimize the empirical mean of (4) to obtain an estimate of γ̃: γ̂ = arg minγ Enl
s(γ;X, Y,W ).

Then the estimate for β is β̂ = (β̂1, . . . , β̂p)
T , where β̂j = ζ(BT γ̂j ,αj)(w).

Computation of γ̂ can be implemented by gradient-based methods and a coordinate descent
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algorithm. In simulations, we employ a gradient-based algorithm for low dimensional cases,

while for high dimensional cases, we combine the gradient-based algorithm with coordinate

descent to ensure convergence. The gradient-based optimizer theoretically exhibits linear or

sublinear convergence (Mason et al., 1999). With appropriate initial values, global optimizers

can be reached. For each j = 1, . . . , p, we set the initial γ
(0)
j to be the sample correlation

between Y and XjB(W ), i.e. n−1
∑n

i=1(Yi − Ȳ )XijB(Wi), where Ȳ = n−1
∑n

i=1 Yi. In our

experience, convergence can be achieved within a few iterations with this initial value.

2.5 Hyperparameter specifications

We choose the pre-specified parameters as follows. As a value of threshold parameter in the

order of the scale of true coefficients works well, we set αj to be half of the absolute value of

the corresponding coefficient estimate from a parametric model. The parameter η controls

how well the H function in (3) approximates the soft-thresholding operator. A smaller θ

gives a closer but less smooth approximation. The parameter ρ controls shrinkage effects on

the varying-coefficient. To ensure the theoretical properties of the estimation, the choices

of η and ρ can be specified in accordance with Condition (C6) in the Web Appendix. In

practice, we suggest η = 0.001 and ρ = 1/n2 leading to excellent performance in estimation

and inferences. Please refer to results in Sections 4 and 5. From our experiences, the results

are not sensitive to the choice of η, typically a small value of η ranging from 0.0001 to 0.01

can provide a good result. The knots of B-spline are equally spaced over D. The number of

basis functions, q, can be determined through R-fold cross-validation. That is, partition the

full data D into R equal-sized groups, denoted by Dr, for r = 1 . . . , R, and let β̂
(q)
−r(W ) be

the estimate obtained with q bases using all the data except for Dr. We obtain the optimal

q by minimizing the cross-validation error

CV(q) =
R∑
r=1

∑
i∈Dr

{
Yi −XT

i β̂
(q)
−r(Wi)

}2

. (5)
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3 Inference

3.1 Asymptotic properties

Let ln = Enl
s(γ;X, Y,W ), and denote by l′n(γ) and l′′n(γ) the first and second derivatives of

ln with respect to γ respectively. It follows that l′n(γ) = 2En{−(Y −XTh)U⊗B(W )+ρθ⊗

B(W )} and l′′n(γ) = 2En

[{
UUT +ρIp−(Y −XTh)Λ

}
⊗(BBT )

]
, where U = U(γ;X,W ) =

{X1h
′
1(γ;W ), . . . , Xph

′
p(γ;W )}T , and Λ = diag(X1h

′′
1, . . . , Xph

′′
p) is a diagonal matrix. Let

Vn(γ) = {v1(γ), . . . ,vn(γ)}T , an n × pq matrix with vi(γ) = U(γ;Xi,Wi) ⊗ B(Wi). Let

θ̂j = B(w)T γ̂j and θ̃j = B(w)T γ̃j. To establish the theoretical properties, we enumerate the

needed technical conditions and discuss their implications and reasonableness in Section S1

in the Web Appendix.

Theorem 1 (Convergence Rate): Under Conditions (C1), (C4), (C6) and (C7) in the

Web Appendix, given fixed αj (j = 1, . . . , p), if β0j(w) ∈ Sq,αj
for j = 1, . . . , p̃ with q and αj

being the same as in l(γ;X, Y,W ), then ||β̂ − β0||2 = Op

(
(p̃q/n)1/2

)
; if β0j(w) /∈ Sq,αj

for

j = 1, . . . , p̃, ||β̂ − β0||2 = Op

(
(p̃q/n)1/2 + p̃1/2q−m

)
.

Of note, this convergence rate holds for any threshold parameter αj > 0, due to the strong

result of Lemma 1. By Condition (C6) in the Web Appendix and m > 0.5, Theorem 1

implies convergence of β̂.

Let σ2
nj(w) = σ2/n2{ej ⊗B(w)}T{l′′n(γ̃)}−1

{
V T
n (γ̃)Vn(γ̃)

}
{l′′n(γ̃)}−1{ej ⊗B(w)}, where

ej is p-dimensional vector with j-th entry being one and others being zero. We obtain the

limiting distributions of the estimators.

Theorem 2: Under Conditions (C1)–(C7) in the Web Appendix, then for any w ∈ D,

the limiting distribution of β̂j(w) = ζ{θ̂j ,αj}(w) ( j = 1, . . . , p) satisfies

lim
n→∞

∣∣∣∣∣Pr(β̂j(w) 6 x)−Gnj(w, x)

∣∣∣∣∣ = 0,
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where Gnj(w, x) = Φ
{
x+αj−θ̃j(w)
σnj(w)

}
I(x > 0) + Φ

{
x−αj−θ̃j(w)
σnj(w)

}
I(x < 0), and Φ(·) is the

cumulative distribution function for N(0, 1). Here, αj’s are considered as fixed numbers.

The limiting distribution in Theorem 2 reveals that the probability of β̂j(w) = 0 is greater

than 0, which enables us to detect zero-effect regions even with finite sample size.

3.2 Sparse confidence intervals

To draw valid statistical inference, we develop a new type of confidence intervals for the

varying coefficients with zero-effect regions. Classical confidence intervals are not applicable

as the limiting distributions of the estimators involve zero point-masses.

Definition 4 (Sparse confidence interval): For any w ∈ D, let un(w) and vn(w) be the

lower and upper bound estimates of β(w), and let ξ ∈ (0, 1).

i) when β(w) 6= 0, [un(w), vn(w)] is a (1 − ξ) level sparse confidence interval if, for any

w ∈ D, limn→∞ Pr {un(w) 6 β(w) 6 vn(w)} = 1− ξ;

ii) when β(w) = 0, [un(w), vn(w)] is a (1 − ξ) level sparse confidence interval if there

exists an integer N > 0, such that Pr{un(w) = 0 or vn(w) = 0} > 0 for any n > N , and

limn→∞ Pr {un(w) 6 β(w) 6 vn(w)} > 1− ξ.

When β(w) = 0, a sparse confidence interval allows the upper bound or the lower bound

or both to be zero with a non-zero probability; see Figure 1(b). This unique property

distinguishes the sparse confidence interval from its classical counterpart and provides a

useful means to draw inference on estimated zero-effect regions, which also differs from the

post-selection inference (Lee et al., 2016; Tibshirani et al., 2016; Taylor and Tibshirani,

2018).

The derivation of sparse confidence intervals utilizes Lemma 6 and can be found in the Web

Appendix. Under Conditions (C1)–(C7) and given αj, for any w ∈ D we construct a point-

wise (1−ξ) level asymptotic sparse confidence interval for β0j(w), denoted by [unj(w), vnj(w)].
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Let zξ/2 and Φ be the (1− ξ/2) quantile and the cumulative distribution function of N(0, 1),

respectively, and σ̂nj be σnj with γ̃ replaced by γ̂. Let P+ = Pr{β̂j(w) > 0} and P− =

Pr{β̂j(w) < 0}, which can be estimated by P̂+ = 1−Φ{(αj − θ̂j)/σ̂nj} and P̂− = Φ{−(αj +

θ̂j)/σ̂nj} using Theorem 2. We construct [unj(w), vnj(w)] as follows:

• If P̂+ + P̂− 6 ξ, unj(w) = vnj(w) = 0;

• else if P̂+ < ξ/2 and P̂− < 1 − ξ/2, [unj(w), vnj(w)] =
[
β̂j(w) − σ̂njB̂, 0

]
with B̂ =

Φ−1
{

1− ξ + Φ(−σ̂−1nj αj + σ̂−1nj θ̂j)
}

and σ̂nj(w) as defined in Lemma 6;

• else if P̂− < ξ/2 and P̂+ < 1−ξ/2, [unj(w), vnj(w)] =
[
0, β̂j(w)+ σ̂njÂ

]
with Â = −Φ−1

{
ξ−

1 + Φ(σ̂−1nj αj + σ̂−1nj θ̂j)
}

;

• else [unj(w), vnj(w)] =
[
β̂j(w)− σ̂njzξ/2, β̂j(w) + σ̂njzξ/2

]
.

Theorem 3: Under Conditions (C1)-(C7) in the Web Appendix, [unj(w), vnj(w)] is a

(1− ξ) level sparse confidence interval of β0j(w) for j = 1, . . . , p and any w ∈ D.

4 Simulation Studies

4.1 Low dimensional covariates

With p = 3, we compare the accuracy in estimation and inference between our method

and two competing methods, the regular B-spline method (Eilers and Marx, 1996) and the

local polynomial method (Fan and Zhang, 1999). We simulate data from (1), where Wi

are generated from a uniform distribution on [0, 3], the covariates are generated from a

multivariate normal distribution with mean zero and cov(Xij, Xij∗) = 2I(j = j∗) + 0.5I(j 6=

j∗), and εi are generated from a standard normal distribution such that the noise to effect

ratio is 0.1. The coefficient functions are β1(w) = (−w2 + 3)I(w 6
√

3), β2(w) = 2 log(w +

0.01)I(w > 1), and β3(w) = {−6/(w + 1) + 2} I(w 6 2). In simulation studies, the degree

of B-spline is chosen to be 3.

We choose n = 200, 500 and 1,000 and generate 200 datasets for each setting. We set
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η = 0.001 and ρ = 1/n2. In theory, the choice of αj should not impact the fitting of the

soft-thresholded varying coefficient model. However, our numerical experience suggests that

it achieve a good performance by setting αj to be half of the absolute value of the least-

squares estimate. We have opted to do so in the later simulations and data analysis. The

number of knots, q, is selected through cross-validation. For evaluation criteria, we use the

integrated squared errors and the averaged integrated squared errors, defined as ISE(βj) =

n−1g
∑ng

g=1{β̂j(wg) − βj(wg)}2 and AISE = p−1
∑p

j=1 ISE(βj), respectively, where wg (g =

1, . . . , ng) are the grid points on D. Table 1(a) shows that the soft-thresholded varying

coefficient model has smaller integrated squared errors and averaged integrated squared

errors than the other two methods. Figure 2 compares the true coefficients and the medians

of the estimates obtained by the competing methods. Only the medians of the estimates

obtained by the soft-thresholded varying coefficient model overlap with the truth, indicating

the usefulness of our proposed method when estimating the zero-effect regions.

We also conduct a simulation to study the robustness of the proposed model when the

true varying coefficients are zero-crossing. The results, which are detailed in Section S6 in

the Web Appendix, suggest a good performance of the soft-thresholded varying coefficient

model even under this misspecified model.

4.2 High dimensional covariates

With p > n, we compare variable selection and the prediction accuracy between our method

and the penalized spline procedures with the group SCAD penalty and the group lasso

penalty presented in Wei et al. (2011). We simulate data from (1), where Wi are generated

from a uniform distribution on [0, 3], the covariates are generated from a multivariate normal

distribution with mean zero and covariance cov(Xij, Xij∗) = I(j = j∗) (independent) or

0.5|j−j
∗| (autoregressive) or I(j = j∗)+0.5I(j 6= j∗) (compound symmetry), and the random

errors εi are generated from a standard normal distribution such that the noise to effect
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ratio is 0.1. The coefficient functions are β1(w) = −β4(w) = 1.2(−w2 + 3)I(w 6
√

3),

β2(w) = −β5(w) = 0.8(−w2+2)I(w >
√

2), and β3(w) = −β6(w) = 2.5 sin(w) and βj(w) = 0

for j = 7, . . . , p. We consider various (n, p): (200, 250), (500, 750) and (1000, 1500). For

each setting, a testing dataset with the same n is also generated, and for each parameter

configuration, a total of 100 datasets are generated.

We use the R package grpreg (Breheny and Zeng, 2019) to implement the group SCAD

penalized B-spline model, and the group lasso penalized B-spline model. The penalty tuning

parameters are chosen through 10-fold cross-validation with a default option in the grpreg

package. The number of knots q for B-spline is selected to be 12 and is fixed across all the

methods for computational convenience. Table 1(b) summarizes selection and estimation

accuracy, including the total integrated squared errors between β̂ and β0, which is defined

as TISE =
∑p

j=1 ISE(βj), the predictive mean squared errors between y and ŷ on the testing

data, the number of false positives and false negatives, and the percentages of correct-fitting,

over-fitting and under-fitting. Following Xue and Qu (2012), correct-fitting is called if the

selected set equals the true signal set, over-fitting if the selected set includes but is not equal

to the true signal set, and under-fitting otherwise.

The results indicate that the soft-thresholded varying coefficient model outperforms the

group SCAD penalized B-spline model and the group lasso penalized B-spline model with

higher percentages of correct-fitting and fewer false positives; when comparing the total in-

tegrated squared errors and the predictive mean squared errors, the soft-thresholded varying

coefficient model is always better than the group lasso penalized model, and outperforms the

group SCAD penalized model for the independent case, and has similar results as the group

SCAD penalized method for the autoregressive and compound symmetry cases.

We finally compare the computing time when implementing the competing methods with

a CPU of 2.7 GHz and a memory of 8 GB. Our method is more computationally efficient. For
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example, with independent covariates and n = 500, the soft-thresholded varying coefficient

model, the group SCAD penalized model and the group lasso penalized model respectively

take 14.98, 25.03, and 23.24 seconds per dataset on average.

4.3 Confidence Intervals for Turning Points

We draw inference on the turning points and construct the confidence intervals. Specifically,

we compare the coverage probability, bias, and mean squared error in estimation and infer-

ence under various settings when p = 3. To do so, we simulate data from (1), where Wi is

drawn from a uniform distribution on [0, 3], the covariates are generated from a multivariate

normal distribution with mean zero and covariance cov(Xij, Xij∗) = I(j = j∗) (independent)

or 0.5|j−j
∗| (autoregressive) or I(j = j∗) + 0.5I(j 6= j∗) (compound symmetry), and the

random error εi are generated from a standard normal distribution such that the noise to

effect ratio is 0.1. We set the coefficient functions to be β1(w) = {4w2 − 12w + 8} I(w 6

1 or w > 2), β2(w) = 2 log(w + 0.01)I(w > 1), and β3(w) = {−6/(w + 1) + 2} I(w 6 2).

We vary n to be 200, 500 and 1,000, and generate 1,000 datasets for each setting. We

concentrate on estimation of both the left and the right turning points for β1, which have

the true values of 1 and 2, respectively. We construct bootstrap-based confidence intervals

and compute the coverage probability based on 200 bootstrap samples. The bootstrapping

procedure here quantifies the uncertainty associated with estimating the endpoints of coef-

ficient regions, which differs from the purpose of sparse confidence intervals as discussed in

Section 3.2. More specifically, we adopt a percentile-t method (Hall, 1992), in conjunction

with a local false discovery rate (FDR) control method (Efron et al., 2015), for constructing

the confidence intervals by eliminating the influence of outliers. Detailed implementation can

be found in Section S4 of the Web Appendix.

Table 2 presents the bias, mean squared error, and coverage probability for each setting.

Our findings indicate that as n increases, the coverage probability approaches 0.95 and
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the estimated value approaches its true value. We have further examined using a threshold

of 0.1 for local FDR control. Our numerical experience suggests that deviating from this

threshold slightly affects the coverage probability, and a threshold of 0.1 provides CIs with

the closest coverage probability to the nominal level, particularly as the sample size increases.

Furthermore, this threshold shows robustness to variations in the shape of true coefficient

functions or the domain of zero regions.

5 Analysis of the Preoperative Opioid Use Data

We apply the proposed method to analyze the data of preoperative patients, collected

from 2010 to 2016 as part of the Michigan Genomics Initiative and Analgesic Outcome

Study (Hilliard et al., 2018). The analyzable data contain 27,367 patients, along with the

records of preoperative opioid use and pre-surgical characteristics (see Table 4 in the Supple-

mentary Material). Risk factors associated with preoperative opioid use include pain severity,

Fibromyalgia survey score (on a scale of 0 to 30 measuring centralized pain) and American

Society of Anesthesiology score [ASA; on a scale of 0 (perfect) to 4 (worst) measuring

health conditions] (Hilliard et al., 2018). Body mass index, which may reflect an individual’s

socioeconomic status (Sundquist and Johansson, 1998) as well as overall fitness (Aires et al.,

2008), can be a major effect modifier for these risk factors. With the daily dose level of

preoperative opioid use, measured in morphine milligram equivalents (MME), as the outcome

Y , we study if and how BMI modifies the associations of these risk factors with Y .

We initially fitted a varying coefficient model, with BMI as the index variable, by expanding

the coefficient functions as linear combinations of cubic B-spline basis functions, a commonly

used approximation approach (Eilers and Marx, 2010). The preliminary analysis showed

that the effects of these factors tend to vary by BMI, as seen from Figure 3(a). We suspect

that zero-effect regions might exist around the transition points, where the effects switch

directions or where the estimates were near 0. To more properly characterize the possible
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BMI-dependent effects and identify the corresponding zero-effect regions, we apply the

proposed STV model (1).

Aside from the outcome Y of the daily dose of opioid, the covariates X in the model

include categorical variables, such as sex, race, depression status, anxiety status, alcohol use,

apnea status, illicit drug use, tobacco use, and ASA score (< 3 vs > 3), as well as continuous

variables, such as age, worst pain score, Charlson comorbidity index (a weighted combination

of comorbidity conditions), Fibromyalgia survey scores, average overall body pain score, and

life satisfaction score (higher values meaning more satisfied with life). BMI, ranging from

15.0 to 55.0, is used as W . We set the initial values required by STV to be the estimates

from a linear regression model and set the thresholding parameter αj to be half of the

absolute value of the corresponding coefficient estimate from this model, which works well

in simulations. The knots of B-spline are equally spaced over the range of BMI, while the

number of basis functions, q = 8, is determined by minimizing the 10-fold cross-validation

error in (5) over a candidate set of {6, 8, 12, 16, 20, 24}. We set the penalty parameter ρ to

be 1/n2.

We also apply the regular B-spline method for comparisons. When implementing it, we

use the same spline bases as in STV. However, we do not apply the local polynomial method

to analyze the data as the method cannot handle a dataset with more than 27 thousand

observations. Moreover, the simulation results indicate that the local polynomial method in

general under-performs STV and the B-spline method.

Figures 3(a) and 3(b) reveal that the estimates obtained by the B-spline method have

larger variations near the boundary and cannot detect zero-effect regions, whereas STV can

detect zero-effect regions and produce stable estimates even near the boundary. For example,

both STV and the regular B-spline method detect significant impacts of pain severity over

the entire BMI region, but STV produces much tighter confidence intervals at the two ends



Soft-Thresholded Varying Coefficient Model 17

of the BMI spectrum; when BMI>43, the regular B-spline method estimates that the worse

ASA condition (>3) even has a protective effect, which is not biologically plausible. In

contrast, STV detects a zero-effect region for ASA when BMI>43. However, in Figure 3(b),

the confidence intervals for the turning points, especially the left turning point, are wide.

This is primarily because the number of patients with a BMI > 40 is limited. Therefore,

when the confidence intervals include the other endpoints, we should exercise caution when

determining the existence of the zero region or the sufficiency of information to draw a

conclusion.

For ease of presentation, Table 3 summarizes the effects of risk factors stratified by the

BMI categories, < 30.0 (non-obesity), 30.0 - 45.0 (obesity), and > 45.0 (severe obseity), and

identifies several patterns of impacts on opioid use. The classification in the table is based

on the estimates of the effects and their significance as illustrated in Figure 3(a).

When BMI is less than 30.0, Fibromyalgia survey scores, ASA, tobacco, depression, and

race have significantly positive effects on opioid use and life satisfaction has a significantly

negative effect, indicating that among the patients with BMI less than 30.0, those with more

severe central pain, worse health conditions, smoking history, or depression may tend to take

more opioids than those without, whereas those with higher life satisfaction scores tend to

consume less opioids than those with lower scores.

For patients whose BMI was between 30.0 and 45.0, Fibromyalgia survey scores, tobacco

use, illicit drug use, ASA, depression, and life satisfaction remain to be significantly asso-

ciated with opioid use, suggesting that obese patients with these adverse conditions tend

to take more opioids than the obese patients without these adverse conditions. But race

is no longer associated with opioid use among these patients, whereas sex is significantly

associated with opioid use. That is, among those whose BMI was between 30.0 and 45.0,

male patients tend to consume more opioids than female patients.
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Finally, for patients with BMI larger than 45.0, most of the risk factors remain to be

significantly associated with opioid use, with the notable exception of ASA. Also, in contrast

to patients with a lower BMI, alcohol drinking has become a significant risk factor among

patients with BMI greater than 45.0. The findings are consistent with the previous stud-

ies (Bartels et al., 2018), which have reported that the ASA category is significantly related

to opioid use only among the non-obese patients, and alcohol use may significantly increase

the odds of opioid use only for obese patients, but has no effects among the normal weight

or overweight patients.

In summary, leveraging a large-scale dataset, we have examined the conjectures proposed

from the previous literature (Hooten et al., 2011; Grant et al., 2004; Correa et al., 2015;

Manchikanti et al., 2004; Sun et al., 2016) and, in particular, elucidated the effect changes

over BMI on opioid use. The obtained results can potentially inform pain management, aid

in physicians’ prescription, and eventually relieve the persistent use of opioids.

6 Discussion

To address the challenge of modeling varying coefficients with zero-effect regions, we have

proposed a new soft-thresholded varying coefficient model, where the varying coefficients

are piecewise smooth with zero-effect regions. We have designed an efficient estimation

method and a new class of sparse confidence intervals, which extend the classical confidence

intervals by accommodating the exact zero estimates. Our framework enables us to perform

variable selection and detect the zero-effect regions of selected variables simultaneously, and

to obtain point estimates of the varying coefficients with zero-effect regions and construct

the associated sparse confidence intervals.

Due to the requirement of certain smoothness in the underlying function near the endpoints

of zero regions, the performance of the proposed method may deteriorate when the true
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coefficients become steeper around the zero points. Our future work will investigate possible

remedies to address them.

Moreover, it would be of interest to examine whether the estimated endpoints of zero-

regions follow the standard asymptotic theory, though our simulation study has shown that

the empirical coverage probability by bootstrap-based confidence intervals closely approx-

imated the normal level. Proving the estimates are root-n consistent and asymptotically

normal is technical and may be beyond the scope of our current work. We will pursue it as

our future research.
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Figure 1: Panel (a) demonstrates the soft-thresholding operator, where various smooth
functions (shown as dashed lines) with different thresholding values (α1, α2, and α3) are
mapped to the same curve with a zero-effect region (shown as a solid line). The dashed lines
above the corresponding α values have the same shape in all three scenarios, but the lines
below the corresponding α values differ. Comparison of (i) and (ii) in Figure 1(a) shows that
they use the same smooth function but with different values of α. Therefore, the shapes
of the dashed lines are the same, but their intercepts are different. In comparison, (ii) and
(iii) in Figure 1(a) use the same value of α but for smooth functions with different shape
and intercept. Panel (b) illustrates the concept of sparse confidence intervals (SCI), where
the true varying coefficient is denoted by β(w), its estimation by β̂(w), and the coverage
probability by CP. In the range of w ∈ [0, 0.23], the probability of β̂(w) = 0 is greater than
0.95, causing the 95% SCI to degenerate to [0, 0], while maintaining a coverage probability
between 0.95 and 1.0 for each w ∈ [0, 0.23]. For all w > 0.23, the coverage probability is
exactly 0.95.
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Figure 2: Comparisons of three methods. The red solid line is the true β curve, the
gray solid lines are the estimated β curves, and the black solid line is the median
of the estimated curves.
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Figure 3: 3(a): Estimation results (I) for the preoperative opioid use data using the B-spline method
and the STV method: the black solid lines are the estimated coefficient function curves for each variable;
the dotted lines are the pointwise (sparse) confidence intervals.
3(b): Estimation results of zero region endpoints of ASA (3 or 4).
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Table 1: Simulation results under the low and high dimensional settings

(a) Simulation results for three models with p = 3

n ISE(β1) ISE(β2) ISE(β3) AISE

STV 21 (16) 21 (16) 22 (17) 21 (12)
B-spline 200 30 (19) 28 (18) 24 (16) 28 (13)
local polynomial 31 (15) 23 (13) 29 (16) 28 (10)

STV 7 (5) 7 (6) 8 (5) 8 (4)
B-spline 500 13 (6) 11 (7) 10 (6) 11 (5)
local polynomial 15 (6) 11 (5) 15 (8) 14 (4)

STV 4 (2) 4 (3) 4 (3) 4 (2)
B-spline 1000 8 (2) 6 (3) 4 (3) 6 (2)
local polynomial 9 (3) 7 (3) 9 (4) 8 (2)

ISE: the integrated squared errors; AISE: the averaged integrated squared
errors. Values are means and standard deviations from 200 replications and
multiplied by 103.

(b) Simulation results under the high dimensional settings

cov(X) Method C (%) O (%) U (%) FP FN TISE PMSE

n=200, p=250
STV 7 93 0 2.63 (1.67) 0 (0) 1.64 (0.57) 3.56 (0.63)

Ind grscad 56 44 0 2.27 (5.65) 0 (0) 3.74 (2.19) 6.97 (4.08)
grlasso 0 100 0 31.94 (12.7) 0 (0) 7.59 (1.62) 7.81 (1.41)

STV 1 99 0 5.88 (2.62) 0 (0) 3.61 (1.14) 3.67 (0.73)
AR(1) grscad 24 69 7 5.87 (6.59) 0.07 (0.26) 7.89 (4.87) 6.77 (3.29)

grlasso 0 100 0 34.25 (11.62) 0 (0) 11.73 (1.7) 7.39 (1.24)

STV 4 93 3 3.95 (2.76) 0.03 (0.17) 2.69 (1.59) 2.41 (0.81)
CS grscad 68 28 4 2.25 (5.04) 0.06 (0.31) 5.77 (14.07) 5.48 (12.8)

grlasso 0 100 0 37.95 (12.25) 0 (0) 9.06 (1.77) 4.81 (1.23)

n=500, p=750
STV 99 1 0 0.01 (0.1) 0 (0) 0.3 (0.07) 2.66 (0.25)

Ind grscad 63 37 0 5.3 (11.21) 0 (0) 0.64 (0.39) 2.85 (0.3)
grlasso 0 100 0 48.85 (21.98) 0 (0) 2.88 (0.87) 3.78 (0.43)

STV 88 12 0 0.13 (0.37) 0 (0) 0.87 (0.26) 2.37 (0.25)
AR(1) grscad 65 35 0 5.09 (10.55) 0 (0) 0.71 (0.32) 2.19 (0.22)

grlasso 0 100 0 68.46 (21.49) 0 (0) 5.22 (0.96) 3.49 (0.4)

STV 59 40 1 1.21 (2.12) 0.01 (0.1) 0.81 (0.58) 1.58 (0.31)
CS grscad 58 42 0 6.19 (9.73) 0 (0) 0.58 (0.29) 1.44 (0.16)

grlasso 0 100 0 57.51 (19.2) 0 (0) 3.28 (0.77) 2.03 (0.24)

n=1000, p=1500
STV 100 0 0 0 (0) 0 (0) 0.18 (0.03) 2.53 (0.17)

Ind grscad 56 44 0 8.22 (20.01) 0 (0) 0.36 (0.42) 2.56 (0.17)
grlasso 0 100 0 56.39 (26.67) 0 (0) 1.6 (0.61) 2.95 (0.22)

STV 100 0 0 0 (0) 0 (0) 0.59 (0.14) 2.18 (0.16)
AR(1) grscad 54 46 0 6.18 (12.93) 0 (0) 0.33 (0.21) 1.96 (0.14)

grlasso 0 100 0 87.69 (28.54) 0 (0) 2.85 (0.63) 2.5 (0.2)

STV 100 0 0 0 (0) 0 (0) 0.37 (0.09) 1.38 (0.11)
CS grscad 57 43 0 5.34 (11.28) 0 (0) 0.26 (0.21) 1.28 (0.09)

grlasso 0 100 0 63.36 (25.84) 0 (0) 1.71 (0.56) 1.51 (0.12)

STV: the soft-thresholded varying coefficient model; grscad: B-spline varying coefficient model with
group SCAD penalty; grlasso: B-spline varying coefficient model with group lasso penalty; C: the
percentage of correct-fitting; U: the percentage of under-fitting; O: the percentage of over-fitting; FP: the
number of false positives; FN: the number of false negatives; TISE: the total integrated squared errors

between β̂ and β0; PMSE: the predictive mean squared errors between y and ŷ on testing data; Ind,
AR(1), and CS represent independent, autoregressive and compound symmetry correlation of covariates,
respectively. Results are from 100 replications.
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Table 3: Effects of risk factors by BMI cate-
gories.

BMI category
(<30.0) (30.0 - 45.0) (> 45.0)

Pain severity +∗ +∗ +∗
Fibromyalgia score +∗ +∗ +∗
Tobacco use +∗ +∗ +∗
ASA >= 3 +∗ +∗ 0
Illicit drug use +∗ +∗ +∗
Apnea 0 0 0
Alcohol 0 0 +∗
Anxiety 0 0 0
Depression +∗ +∗ +
Sex (male) + +∗ +∗
Age 0 0 0
Race (black) +∗ 0 0
Life satisfaction −∗ −∗ 0
Charlson comorbidity 0 0 0

Note: 0: no effects; +/−: positive/negative; ∗:
significant
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