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Summary
Background A reliable risk prediction model is critically important for identifying individuals with high risk of
developing lung cancer as candidates for low-dose chest computed tomography (LDCT) screening. Leveraging a
cutting-edge machine learning technique that accommodates a wide list of questionnaire-based predictors, we
sought to optimize and validate a lung cancer prediction model.

MethodsWe developed an Optimized early Warning model for Lung cancer risk (OWL) using the XGBoost algorithm
with 323,344 participants from the England area in UK Biobank (training set), and independently validated it with
93,227 participants from UKB Scotland and Wales area (validation set 1), as well as 70,605 and 66,231 participants in
the Prostate, Lung, Colorectal, and Ovarian cancer screening trial (PLCO) control and intervention subpopulations,
respectively (validation sets 2 & 3) and 23,138 and 18,669 participants in the United States National Lung Screening
Trial (NLST) control and intervention subpopulations, respectively (validation sets 4 & 5). By comparing with three
competitive prediction models, i.e., PLCO modified 2012 (PLCOm2012), PLCO modified 2014 (PLCOall2014), and the
Liverpool Lung cancer Project risk model version 3 (LLPv3), we assessed the discrimination of OWL by the area under
receiver operating characteristic curve (AUC) at the designed time point. We further evaluated the calibration using
relative improvement in the ratio of expected to observed lung cancer cases (RIEO), and illustrated the clinical utility
by the decision curve analysis.

Findings For general population, with validation set 1, OWL (AUC = 0.855, 95% CI: 0.829–0.880) presented a better
discriminative capability than PLCOall2014 (AUC = 0.821, 95% CI: 0.794–0.848) (p < 0.001); with validation sets 2 & 3,
AUC of OWL was comparable to PLCOall2014 (AUCPLCOall2014-AUCOWL < 1%). For ever-smokers, OWL outperformed
PLCOm2012 and PLCOall2014 among ever-smokers in validation set 1 (AUCOWL = 0.842, 95% CI: 0.814–0.871;
AUCPLCOm2012 = 0.792, 95% CI: 0.760–0.823; AUCPLCOall2014 = 0.791, 95% CI: 0.760–0.822, all p < 0.001). OWL
remained comparable to PLCOm2012 and PLCOall2014 in discrimination (AUC difference from −0.014 to 0.008)
among the ever-smokers in validation sets 2 to 5. In all the validation sets, OWL outperformed LLPv3 among the
general population and the ever-smokers. Of note, OWL showed significantly better calibration than PLCOm2012,
PLCOall2014 (RIEO from 43.1% to 92.3%, all p < 0.001), and LLPv3 (RIEO from 41.4% to 98.7%, all p < 0.001) in
most cases. For clinical utility, OWL exhibited significant improvement in average net benefits (NB) over
PLCOall2014 in validation set 1 (NB improvement: 32, p < 0.001); among ever smokers of validation set 1, OWL
(average NB = 289) retained significant improvement over PLCOm2012 (average NB = 213) (p < 0.001). OWL had
equivalent NBs with PLCOm2012 and PLCOall2014 in PLCO and NLST populations, while outperforming LLPv3 in
the three populations.

Interpretation OWL, with a high degree of predictive accuracy and robustness, is a general framework with scientific
justifications and clinical utility that can aid in screening individuals with high risks of lung cancer.
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Research in context

Evidence before this study
We systematically searched PubMed and Web of Science for
research articles published in English before Dec 31, 2021,
with the search terms “lung cancer”, “risk”, “prediction” and
“model”. Among 8,257 preliminarily retrieved studies, 20
studies were eligible for this study and were included; in
which, 20 lung cancer risk prediction models were identified
that have been developed and some of them achieved
acceptable performance, suggesting the usefulness of
model-based screening strategies as an alternative of or
supplement to criteria-based screening strategies. Besides,
an expert panel recommended combination of criteria- and
qualified risk prediction model-based strategies, to maximize
the opportunity of identifying high risk individuals for low-
dose chest computed tomography (LDCT). To better identify
target populations for LDCT screening, we address the
urgent need of developing a lung cancer risk prediction
model that presents a high degree of accuracy and
robustness.

Added value of this study
Through a systematic review, 15 well-established
questionnaire-based risk factors were included in the model.
We constructed an Optimized early Warning model for Lung
cancer risk (OWL) using the eXtreme Gradient Boosting

(XGBoost) method based on the participants from the
England area in UKB, and independently validated it with the
participants from the Scotland and Wales areas of UKB, the
Prostate, Lung, Colorectal and Ovarian cancer screening trial
(PLCO), and the United States National Lung Screening Trial
(NLST). The OWL model exhibited equivalent accuracy and
robustness in lung cancer risk prediction to the PLCO
modified 2012 model (PLCOm2012) among the ever-smokers
in the PLCO and NLST populations, while presenting better
discrimination than PLCOm2012, PLCO modified 2014 model
(PLCOall2014), and Liverpool lung project risk score version 3
model (LLPv3) among the Scotland and Wales populations in
UKB (UKB external validation set). Notably, OWL showed
slightly better calibration and improved the absolute lung
cancer risk prediction than all competitive models. Moreover,
OWL had higher clinical utility than all competitive models
among validation set 1, meanwhile showing comparable
clinical utility to PLCOm2012 among the ever-smokers in PLCO
and NLST populations.

Implications of all the available evidence
OWL is a reliable lung cancer risk prediction model with
sufficient accuracy and robustness, which provides a feasible
mean of identifying individuals at high risk of lung cancer as
candidates for further LDCT screening.
Introduction
Lung cancer is the leading cause of cancer-related
mortality, with an estimated over 2.2 million newly
diagnosed cases and 1.8 million deaths in 2020 alone
worldwide.1 Its age-standardized five-year net survival is
low, ranging from 10% to 20% in most countries.2

Screening individuals with high risks of lung cancer
has emerged as an effective means to reduce cancer
morbidity and mortality by way of detecting early-stage
cases or those predisposed to lung cancer, leading to
more effective treatment and intervention strategies
and, therefore, increased overall survival.

The United States (US) National Lung Screening
Trial (NLST) showed that low-dose chest computed to-
mography (LDCT) screening reduced lung cancer-
related mortality by 20%, and all-cause mortality by
6.7%.3 Hence, LDCT screening for lung cancer has
become a standard of care in the US,4 with its benefits
verified by various randomized trials.5,6 Identifying
suitable subpopulation at high risk of lung cancer for
LDCT screening has become essential to maximize the
cost-effectiveness of screening programs.7,8 The Centers
for Medicare and Medicaid Services (CMS) and the US
Preventive Services Task Force (USPSTF) have recom-
mended offering annual LDCT screening to asymp-
tomatic individuals meeting these criteria based on age
and smoking (Supplementary Fig. S1A and B).9 These
criteria, though simple and useful, may miss opportu-
nities to capture more individuals with high risk.10,11

Substantial efforts have been devoted to developing
and validating lung cancer risk prediction models
(Supplementary Table S1).12 In particular, the Prostate,
Lung, Colorectal and Ovarian cancer screening trial
(PLCO) modified 2012 (PLCOm2012), the PLCO modi-
fied 2014 (PLCOall2014), and the Liverpool lung cancer
project risk model version 3 (LLPv3) have exhibited a
considerable discriminative ability,13–16 suggesting the
usefulness of model-based screening strategies as
an alternative of criteria-based strategies. An expert
panel recommended combinations of criteria- and
www.thelancet.com Vol 88 February, 2023
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model-based strategies,17 and further applications of
verified risk prediction models to criteria-negative
(CN) subpopulations (Supplementary Fig. S1C) in
order to maximize the opportunity of identifying
high-risk individuals from population suitable for
LDCT screening.10 This motivated an urgent need of
developing robust and accurate prediction models,
which benefit from incorporating reliable and relevant
risk factors as well as effective modeling techniques,
such as eXtreme Gradient Boosting (XGBoost).
XGBoost has surfaced as a powerful machine learning
algorithm that can capture non-linear and interaction
effects of predictors.18,19

This study was to develop an Optimized early
Warning model for Lung cancer risk (OWL) by using
XGBoost technique. To identity the reliable predictors as
many as possible, we focused on the prior well-
established lung cancer risk prediction models20 and
the lung cancer risk factors recently identified by causal
inference,21 and obtained a broad list of reliable pre-
dictors. We then used XGBoost to develop model using
the participants from the England area in the UK
Biobank (UKB) and externally validated it using the
populations from the UKB Scotland and Wales areas,
PLCO, and NLST.
Methods
Study populations
UKB population for model development and validation
UKB (https://www.ukbiobank.ac.uk/) is a large-scale
prospective cohort of over 500,000 participants aged be-
tween 37 and 73 years at the time of recruitment between
2006 and 2010. Follow up for cancer incidence and death
was conducted via cancer and death registries; partici-
pants were followed up from the date of baseline atten-
dance until the date of diagnosis of an invasive primary
lung cancer, death, or loss of follow up, whichever
occurred first. The data was approved by UKB under the
approval number of 57471, and the data extracted time is
2020-08-04. Inclusion criteria of this study were: (i)
eligible for the original study; (ii) not diagnosed of lung
cancer before participation; (ii) not diagnosed of other
cancers before participation. A total of 416,671 partici-
pants were eligible for the study, of which 323,344 par-
ticipants from England were used to develop the model
(training set), and 93,227 participants from Scotland and
Wales were used to externally validate the model (vali-
dation set 1) (Supplementary Fig. S2A).

PLCO and NLST populations for model validation
PLCO (approval number: PLCO-731) and NLST
(approval number: NLST-755) are two large-scale popu-
lation screening trials. PLCO recruited approximately
155,000 participants aged 55–74 years between 1993 and
2001. NLST recruited 53,452 participants aged 55–74
years with at least 30 pack-years of smoking and no
www.thelancet.com Vol 88 February, 2023
more than 15 years since smoking cessation. Inclusion
criteria of the study were: (i) eligible for the original
study; (ii) not diagnosed of lung cancer before partici-
pation; (ii) not diagnosed of other cancers before
participation; (iv) no lung nodules screened at baseline.
A total of 136,836 and 41,807 participants in PLCO and
NLST, respectively, were eligible for analysis
(Supplementary Fig. S2B and C).

Statistical analysis
We applied a three-steps analytical strategy, i.e., model
optimization and development, model evaluation and
comparison, and model improvement; see the workflow
in Fig. 1.

Step 1: model optimization and development
Inclusion of risk factors. A systematic review, following
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines (Supplementary
Fig. S3), up to December 31st, 2021 revealed a total of
20 lung cancer risk prediction models and 65 risk factors
(Supplementary Tables S1 and S2).22 The Prediction
model Risk Of Bias (ROB) Assessment Tool was used to
assess model quality, or the potential for inflated model
performance estimates due to shortcomings in design/
analysis.23 This tool evaluated the levels of ROB in five
domains: participant selection, definition and measure-
ment of predictors, definition and measurement of
outcome, sample size and participant flow, and statistical
analysis. Each domain was rated as high, low, or unclear
ROB. Overall judgement of risk of bias was derived from
the judgement on all domains: low risk if all domains had
low risk of bias, high risk if any domain had high risk of
bias, otherwise unclear risk. The results of quality
assessment were detailed in Supplementary Table S3. In
addition, genetic predispositions were considered by us-
ing a polygenic risk score (PRS) constructed among Eu-
ropean ancestry population.24,25 Among the 65 risk
factors, 15 questionnaire-based risk factors were available
in UKB, PLCO, and NLST, and were used to develop
OWL (Supplementary Table S2). Missing values are
handled by XGBoost automatically by classifying the
instance into default direction when the feature needed is
missing (Supplementary Method Section).18

Optimization in prediction algorithm and validation. We
applied the XGBoost algorithm by using the R package
xgboost. XGBoost is a fast learning framework that uses
gradient boosted decision trees to optimize the loss func-
tion.26 The optimal tuning parameters needed for OWL
were derived from the training set (UKB England area) by
using a grid-search algorithm with 5-fold cross-validation
(Supplementary Table S4).27 The Shapley Additive expla-
nation (SHAP) value was utilized to explain the XGBoost
model.28 Internal validation of model discrimination was
evaluated by the concordance index (C-index) via 5-fold
cross-validation. Given the possible heterogeneity
3
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Fig. 1: Study design and workflow. UKB = UK Biobank; PLCO = the Prostate, Lung, Colorectal and Ovarian cancer screening trial; NLST = the
National Lung Screening Trial; PLCOm2012 = the PLCO modified 2012; PLCOall2014 = the PLCO modified 2014; OWL = the Optimized early
Warning model for Lung cancer risk; LLPv3 = the Liverpool lung cancer project risk model version 3; C-index = Concordance index; Time-
dependent AUC = Area under receiver operating characteristic curve; Precision-recall AUC = Area under Precision-recall curve; EO
ratio = Expected to observed lung cancer case ratio.

Articles

4

between groups, the PLCO and NLST overall populations
were further divided into control (without lung screening)
and intervention (with lung screening) subpopulations,
respectively.29 In summary, OWL was independently vali-
dated in validation set 1 (UKB Scotland and Wales area),
validation sets 2 & 3 (PLCO control and intervention
subpopulations), and validation sets 4 & 5 (NLST control
and intervention subpopulations).

Estimate absolute risk and threshold for screening. As the
output of XGBoost model have the interpretation of
relative risks, we estimated the baseline hazard of lung
cancer incidence and further calculated absolute risk, i.e.,
the probability of lung cancer (Supplementary Method
Section). Because most participants in the training set
were censored after 8-year of follow-up (Supplementary
Fig. S4), we calculated the absolute risk of lung cancer
for each individual within 8-year follow-up post recruit-
ment and established various thresholds for screening
(Supplementary Method Section).13,30

Step 2: model evaluation and comparison
OWL was developed for the general population, while
PLCOm2012 and PLCOall2014, with similar performance,
www.thelancet.com Vol 88 February, 2023
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were respectively designed to predict 6-year lung cancer
risks for ever-smokers and general population,13,16 and
LLPv3 was designed to predict 5-year lung cancer risks
for the general population.15 As such, among the general
population in validation sets 1 to 3, we first compared
OWL with PLCOall2014 at 6-year risk prediction and
LLPv3 at 5-year risk prediction. Next, we compared OWL
with PLCOm2012 and PLCOall2014 at 6-year risk predic-
tion, and with LLPv3 at 5-year risk prediction among
ever-smokers in validation sets 1 to 5. As both
PLCOm2012 and PLCOall2014 were developed in valida-
tion set 2 and a comparison with them in this dataset
may not be fair, we elected not to compare OWL with
them in this set. Different models were compared in
discrimination, calibration, and clinical utility, as
described below.

Discrimination. Model discriminative ability was
measured by the time-dependent area under receiver
operating characteristic curve (AUC) and area under
precision–recall curve (PRAUC).31–34 The AUCs were
compared using permutation test with 2000
permutations.35–37 Moreover, C-index was also used to
assess the discriminative power of OWL. We further
divided participants based on the quantiles of the OWL
scores and plotted Kaplan–Meier (KM) curves for each
group. The separation of these curves was formally
tested by the log-rank test.

Calibration. Model calibration was assessed by the ra-
tio of the expected to the observed lung cancer cases (EO
ratio),29,38,39 and by plotting the mean predicted absolute
risk against the mean observed lung cancer risk within
each risk group (calibration curve). In addition, we
constructed the relative improvement in EO ratio (RIEO)
to evaluate the relative improvement of calibration
(Supplementary Method Section).

Clinical utility. The clinical utility of prediction models
was evaluated by decision curve analysis (DCA),40–42 and
quantitatively assessed using the average net benefit (NB)
derived from DCA (Supplementary Method Section).

Step 3: model improvement
To evaluate the contribution of physiological [forced expi-
ratory volume in 1 s (FEV1)], laboratory [C-reactive protein
(CRP), total bilirubin], and genetic (PRS) indicators for
lung cancer risk prediction, we constructed a PLG score,
which integrated the Physiological, Laboratory, and Ge-
netic indicators, and assessed the interplay of the PLG
score and OWL score in impacting the risk of lung cancer
(Supplementary Method Section). Further, we improved
the OWL model by adding FEV1, CRP, total bilirubin, and
PRS. The new model is termed the OWL+ model.

All the statistical analyses were performed using R
version 3.6.3 (The R Foundation for Statistical Computing,
www.thelancet.com Vol 88 February, 2023
Vienna, Austria). A two-sided p < 0.05 was considered
statistically significant, unless otherwise stated.

Role of the funding source
The funder of the study had no role in study design, data
collection, data analysis, data interpretation, or writing
of the report. The corresponding author had full access
to all of the data and the final responsibility to submit
for publication.
Results
Participant characteristics
The UKB population had a median of 10.7 years of
follow-up. In the training set (UKB England area), 1,655
of 323,344 were newly diagnosed with lung cancer after
recruitment; in validation set 1 (UKB Scotland and
Wales area), there were 564 out of 93,227 newly diag-
nosed with lung cancer. In PLCO population, 3,042 out
of 136,836 were new lung cancers during follow-up
(median follow-up: 12.1 years), and in NLST, 1,132 out
of 41,807 were new lung cancers during follow-up
(median follow-up: 6.6 years). Demographic and clin-
ical characteristics of these populations were detailed in
Table 1 and Supplementary Table S5; the participants in
UKB were younger than the PLCO and NLST partici-
pants (mean age: 56.11 ± 8.13 in UKB, 62.55 ± 5.35 in
PLCO, 61.22 ± 4.96 in NLST; panova < 0.001); the UKB
population had fewer ever-smokers (44.6% in UKB vs.
53.9% PLCO, p < 0.001) and lower cumulative smoking
intensity (smoking pack-years among ever-smokers:
23.30 ± 18.62 in UKB vs. 35.79 ± 29.23 in PLCO,
p < 0.001) than the PLCO population; all of the partici-
pants in NLST were heavily smokers and had higher
smoking pack-years than those in PLCO (56.06 ± 23.85
in NLST, pNLST vs. PLCO < 0.001).

Development of OWL
As 15 questionnaire-based and well-established predictors
were identified from the previously established prediction
models, we chose them to develop OWL without further
selection; the features and the tuning parameters in OWL
were detailed in Supplementary Table S6. The optimal
hyper-parameters for OWL were: eta = 0.03, gamma = 0.2,
subsample = 0.8, colsample_bytree = 1, min_child_-
weight = 10, nroud = 259. We further estimated pre-
dictors’ contribution to OWL by SHAP value. For
example, the longer the duration of smoking was associ-
ated with higher SHAP, indicating an increased risk of
lung cancer (Supplementary Fig. S5). Moreover, baseline
survival within 8-year follow-up was shown in
Supplementary Table S7. To facilitate further validation
and application, we have launched an interactive web-tool
for implementation of OWL (http://47.97.212.52/
#/OWL), and uploaded model source code of
OWL model to Github (https://github.com/
WeiLab4Research/OWL.git). Year-specific thresholds for
5
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UKB PLCO NLST

England area
(N = 323,344)

Scotland and Wales
area (N = 93,227)

Total
(N = 416,571)

Control
(N = 70,605)

Intervention
(N = 66,231)

Total
(N = 136,836)

Control
(N = 23,138)

Intervention
(N = 18,669)

Total
(N = 41,807)

Age (years)a 56.12 ± 8.15 56.07 ± 8.04 56.11 ± 8.13 62.61 ± 5.36 62.50 ± 5.33 62.55 ± 5.35 61.28 ± 4.98 61.15 ± 4.94 61.22 ± 4.96

Gender (%)

Female 168,750 (52.2) 41,986 (51.3) 216,718 (52.0) 35,266 (49.9) 32,914 (49.7) 68,180 (49.8) 9,221 (39.9) 7,342 (39.3) 16,563 (39.6)

Male 154,594 (47.8) 39,791 (48.7) 199,852 (48.0) 35,339 (50.1) 33,317 (50.3) 68,656 (50.2) 13,917 (60.1) 11,327 (60.7) 25,244 (60.4)

BMI (kg/m2)a 27.34 ± 4.77 27.67 ± 4.74 27.41 ± 4.77 27.28 ± 4.90 27.34 ± 4.91 27.29 ± 4.83 27.97 ± 5.07 28.00 ± 5.07 27.99 ± 5.07

Missing 2,151 (0.7) 429 (0.5) 2,580 (0.6) 1,334 (1.9) 792 (1.2) 1,700 (1.4) 192 (0.8) 119 (0.6) 311 (0.7)

Racea

White 301,767 (93.3) 91,530 (98.2) 393,297 (94.4) 62,333 (88.3) 58,438 (88.2) 120,771 (88.3) 20,988 (90.7) 16,800 (90.0) 37,788 (90.4)

Black 6,458 (2.0) 228 (0.2) 6,686 (1.6) 3,638 (5.2) 3,366 (5.1) 7,004 (5.1) 993 (4.3) 920 (4.9) 1,913 (4.6)

Hispanic 0 (0.0) 0 (0.0) 0 (0.0) 1,343 (1.9) 1,272 (1.9) 2,615 (1.9) 0 (0.0) 0 (0.0) 0 (0.0)

Asian 9,479 (2.9) 807 (0.9) 10,286 (2.5) 2,677 (3.8) 2,574 (3.9) 5,251 (3.8) 483 (2.1) 424 (2.3) 907 (2.2)

American Indian or
Alaskan Native

0 (0.0) 0 (0.0) 0 (0.0) 173 (0.2) 169 (0.3) 342 (0.2) 85 (0.4) 68 (0.4) 153 (0.4)

Native Hawaiian or
Pacific Islander

0 (0.0) 0 (0.0) 0 (0.0) 409 (0.6) 377 (0.6) 786 (0.6) 92 (0.4) 71 (0.4) 163 (0.4)

Missing 5,640 (1.7) 662 (0.7) 6,302 (1.5) 32 (0.0) 35 (0.1) 67 (0.0) 497 (2.1) 386 (2.1) 883 (2.1)

Smoke status (%)a

Never 177,011 (54.7) 52,103 (55.9) 229,114 (55.0) 32,576 (46.1) 30,940 (46.7) 63,516 (46.4) 0 (0.0) 0 (0.0) 0 (0.0)

Former 110,296 (34.1) 30,621 (32.8) 140,917 (33.8) 30,470 (43.2) 28,344 (42.8) 58,814 (43.0) 12,028 (52.0) 9,770 (52.3) 21,798 (52.1)

Current 34,008 (10.5) 10,119 (10.9) 44,127 (10.6) 7,545 (10.7) 6,930 (10.5) 14,475 (10.6) 11,110 (48.0) 8,899 (47.7) 20,009 (47.9)

Missing 2,029 (0.7) 384 (0.4) 2,413 (0.6) 14 (0.0) 17 (0.0) 31 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Age at begin smoking
(years)b

17.43 ± 4.33 17.32 ± 4.25 17.41 ± 4.32 18.59 ± 5.00 18.62 ± 5.11 18.61 ± 5.05 16.71 ± 3.73 16.69 ± 3.73 16.68 ± 3.70

Duration of smoking
(years)a,b

26.88 ± 12.87 27.88 ± 12.74 27.11 ± 12.85 27.70 ± 13.79 27.37 ± 13.80 27.54 ± 13.79 39.67 ± 7.32 39.49 ± 7.29 39.54 ± 7.31

Average number of
cigarettes per daya,b

18.00 ± 10.07 18.85 ± 10.40 18.20 ± 10.15 24.96 ± 14.71 24.60 ± 14.43 24.79 ± 14.58 28.44 ± 11.55 28.49 ± 11.42 28.69 ± 11.50

Pack yearb 22.83 ± 18.38 24.89 ± 19.34 23.30 ± 18.62 36.24 ± 29.55 35.31 ± 28.87 35.79 ± 29.23 55.73 ± 23.79 55.58 ± 23.71 56.06 ± 23.85

Duration since quitting
smoking (years)a,b

19.10 ± 11.82 18.42 ± 11.65 18.95 ± 11.78 20.22 ± 12.03 20.37 ± 11.96 20.29 ± 12.00 7.32 ± 4.76 7.30 ± 4.77 7.31 ± 4.76

Education level (%)a

Less than high-school
graduate

84,142 (26.0) 23,313 (25.0) 107,455 (25.8) 5,187 (7.3) 4,849 (7.3) 10,036 (7.3) 1,352 (5.8) 1,105 (5.9) 2,457 (5.9)

High-school graduate 35,738 (11.1) 9,754 (10.5) 45,492 (10.9) 16,265 (23.0) 15,145 (22.9) 31,410 (23.0) 5,537 (23.9) 4,235 (22.7) 9,772 (23.4)

Some training after
high school

15,673 (4.8) 4,789 (5.2) 20,462 (4.9) 8,968 (12.7) 8,230 (12.4) 17,198 (12.6) 3,193 (13.9) 2,591 (13.9) 5,784 (13.8)

Some college 0 (0.0) 0 (0.0) 0 (0.0) 15,236 (21.7) 14,441 (21.8) 29,677 (21.7) 5,296 (22.9) 4,371 (23.4) 9,667 (23.1)

College graduate 125,359 (38.8) 34,537 (37.0) 159,887 (38.4) 11,879 (16.8) 11,313 (17.1) 23,192 (16.9) 3,907 (16.9) 3,219 (17.2) 7,126 (17.0)

Postgraduate or
professional degree

0 (0.0) 0 (0.0) 0 (0.0) 12,800 (18.1) 12,152 (18.3) 24,952 (18.2) 3,709 (16.0) 3,052 (16.4) 6,761 (16.2)

Missing 62,441 (19.3) 20,834 (22.3) 83,275 (20.0) 270 (0.4) 101 (0.2) 371 (0.3) 144 (0.6) 96 (0.5) 240 (0.6)

Family history of lung
cancer (%)a,c

No 288,671 (89.3) 82,051 (88.0) 370,722 (89.0) 60,912 (86.3) 57,054 (86.1) 117,966 (86.2) 17,739 (76.7) 14,373 (77.0) 32,112 (76.8)

Yes 27,470 (8.5) 9,453 (10.1) 36,923 (8.9) 7,314 (10.4) 6,865 (10.4) 14,179 (10.4) 4,998 (21.6) 4,008 (21.5) 9,006 (21.5)

Missing 7,203 (2.2) 1,723 (1.8) 8,926 (2.1) 2,379 (3.3) 2,312 (3.5) 4,691 (3.4) 401 (1.7) 288 (1.5) 689 (1.6)

Diabetes (%)

No 306,628 (94.8) 88,617 (95.1) 395,245 (94.9) 64,629 (91.6) 60,837 (91.9) 125,466 (91.7) 20,760 (89.7) 16,747 (89.7) 37,507 (89.7)

Yes 16,716 (5.2) 4,610 (4.9) 21,326 (5.1) 5,398 (7.6) 5,127 (7.7) 10,525 (7.7) 2,244 (9.7) 1,844 (9.9) 4,088 (9.8)

Missing 0 (0.0) 0 (0.0) 0 (0.0) 578 (0.8) 267 (0.4) 845 (0.6) 134 (0.6) 78 (0.4) 212 (0.5)

Chronic bronchitis (%)

No 322,475 (99.7) 93,046 (99.8) 415,521 (99.7) 66,674 (94.4) 62,849 (94.9) 129,523 (94.7) 20,816 (90.0) 16,812 (90.1) 37,628 (90.0)

Yes 869 (0.3) 181 (0.2) 1,050 (0.3) 3,311 (4.7) 3,082 (4.6) 6,393 (4.7) 2,151 (9.3) 1,752 (9.4) 3,903 (9.3)

Missing 0 (0.0) 0 (0.0) 0 (0.0) 620 (0.9) 300 (0.5) 920 (0.6) 171 (0.7) 105 (0.6) 276 (0.7)

(Table 1 continues on next page)
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UKB PLCO NLST

England area
(N = 323,344)

Scotland and Wales
area (N = 93,227)

Total
(N = 416,571)

Control
(N = 70,605)

Intervention
(N = 66,231)

Total
(N = 136,836)

Control
(N = 23,138)

Intervention
(N = 18,669)

Total
(N = 41,807)

(Continued from previous page)

Emphysema (%)

No 322,857 (99.8) 93,089 (99.9) 415,946 (99.8) 68,260 (96.7) 64,378 (97.2) 132,638 (96.9) 21,248 (91.8) 17,238 (92.3) 3,8486 (92.1)

Yes 487 (0.2) 138 (0.1) 625 (0.2) 1,763 (2.5) 1,586 (2.4) 3,349 (2.5) 1,712 (7.4) 1,323 (7.1) 3,035 (7.3)

Missing 0 (0.0) 0 (0.0) 0 (0.0) 582 (0.8) 267 (0.4) 849 (0.6) 178 (0.8) 108 (0.6) 286 (0.7)

COPD (%)a

No 317,658 (98.2) 91,544 (98.2) 409,202 (98.2) 65,420 (92.7) 61,723 (93.2) 127,143 (92.9) 19,034 (82.3) 1,5432 (82.7) 34,466 (82.4)

Yes 5,686 (1.8) 1,683 (1.8) 7,369 (1.8) 4,556 (6.5) 4,190 (6.3) 8,746 (6.4) 3,907 (16.9) 3,108 (16.6) 7,015 (16.8)

Missing 0 (0.0) 0 (0.0) 0 (0.0) 629 (0.8) 318 (0.5) 947 (0.7) 197 (0.9) 129 (0.7) 326 (0.8)

UKB = UK Biobank; PLCO = the Prostate, Lung, Colorectal and Ovarian cancer screening trial; NLST = the National Lung Screening Trial. COPD = chronic bronchitis, emphysema, or chronic obstructive
pulmonary disease. Continuous variables were expressed in mean ± standard deviation, and categorical variables in number and percentage (%). aAge, BMI, race, smoke status, duration of smoking, number
of cigarettes per day, duration since quitting smoking, education level, family history of lung cancer, and COPD were included in PLCOm2012.

bAge at begin smoking, duration of smoking, average number of
cigarettes per day, and pack year were summarized among ever-smokers. Duration since quitting smoking were summarized among former smokers. cEither parents, siblings, or children were diagnosed of
lung cancer before baseline survey.

Table 1: Distribution of predictors of OWL in the UKB, PLCO, and NLST populations.

Articles
risk discrimination were estimated (Supplementary
Table S8) for different levels of prespecified sensitivities.
Taking 8-years prediction as an example, to include 80%
of lung cancers, a threshold of 0.303% would yield a
specificity of 74% and a positive predictive value of 1.5%.

Comparison of models’ discrimination
For general population
In the training set, the OWL model yielded a C-index of
0.86 (95% CI: 0.85–0.87). Internal 5-fold cross-validation
resulted in a C-index of 0.84. External validation of OWL
yielded similar results, i.e., a C-index of 0.86 (95% CI:
0.84–0.87), 0.84 (95% CI: 0.83–0.85) and 0.84 (95% CI:
0.83–0.85) in validation sets 1–3, respectively. The time-
dependent AUCs of OWL remained around 0.85 within
8 years follow-up across validation sets 1–3 (Fig. 2A),
and the OWL score could differentiate individuals’ risk
significantly (Supplementary Fig. S6).

In validation set 1, OWL exhibited the best discrim-
ination ability compared to PLCOall2014 (6-year predic-
tion, AUCOWL = 0.855, 95% CI: 0.829–0.880 vs.
AUCPLCOall2014 = 0.821, 95% CI: 0.794–0.848; p < 0.001)
and LLPv3 (5-year prediction, AUCOWL = 0.850, 95% CI:
0.822–0.878 vs. AUCLLPv3 = 0.832, 95% CI: 0.803–0.861;
p = 0.001). In validation sets 2 & 3, OWL showed
discriminative ability comparable to PLCOall2014 (6-year
prediction, AUCOWL = 0.861, 95% CI: 0.841–0.881 vs.
AUCPLCOall2014 = 0.869, 95% CI: 0.850–0.889, AUCPL-

COall2014-AUCOWL < 1%), and better discrimination than
LLPv3 (Fig. 2A, Supplementary Table S9). The results of
comparison of PRAUC were consistent with those of
AUC (Supplementary Table S10).

For ever-smokers
In validation set 1, OWL achieved the highest discri-
mination (AUC5-year = 0.838, 95% CI: 0.806–0.870;
www.thelancet.com Vol 88 February, 2023
AUC6-year = 0.842, 95% CI: 0.814–0.871), followed by
PLCOm2012 (AUC6-year = 0.792, 95% CI: 0.760–0.823),
PLCOall2014 (AUC6-year = 0.791, 95% CI: 0.760–0.823),
and LLPv3 (AUC5-year = 0.804, 95% CI: 0.770–0.838)
(Fig. 2B, Supplementary Table S11). In validation sets 2
to 5 (PLCO and NLST populations), OWL was compa-
rable to PLCOm2012 and PLCOall2014 (6-years AUC dif-
ference from −0.014 to 0.008) and outperformed LLPv3
(Fig. 2B). The comparison of PRAUC yielded similar
results with those of AUC (Supplementary Table S12).

Comparison of models’ calibration
For general population
OWL had a better calibration within 8-year follow-up
compared to the comparative models (Fig. 3A,
Supplementary Table S13, Supplementary Fig. S7). In
validation set 1, OWL reached the best calibration (5-year
prediction, EO ratio = 1.002, 95% CI: 0.899–1.133; 6-year
prediction, EO ratio = 1.037, 95% CI: 0.939–1.159), fol-
lowed by LLPv3 (EO ratio = 0.846, 95% CI: 0.759–0.957;
RIEO of OWL vs. LLPv3 = 98.7%, p < 0.001), while
PLCOall2014 had the moderate bias in general population
(EO ratio = 1.303, 95% CI: 1.179–1.455; RIEO of OWL vs.
PLCOall2014 = 87.8%, p < 0.001). In validation sets 2 & 3,
OWL was better calibrated than PLCOall2014 (RIEO = 48.5%
in validation set 3) and LLPv3 (RIEO = 41.4% and 69.2% in
validation sets 2 & 3, respectively).

For ever-smokers
Among the ever-smokers in all validation sets, OWL ach-
ieved a better calibration compared to PLCOm2012,
PLCOall2014 (RIEO from 43.1% to 92.3%, all p < 0.001), and
LLPv3 (RIEO from 44.9% to 90.4%, all p < 0.001) (Fig. 3B,
Supplementary Fig. S8, Table S14), with exception of the
comparison with PLCOm2012 and PLCOall2014 in validation
set 3 and LLPv3 in validation set 5.
7
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Absolute improvement
OWL vs. PLCOm2012 = -0.015 ( - )
OWL vs. PLCOall2014 = -0.016 ( - )
OWL vs. LLPv3       = 0.033  (p < 0.001)

Absolute improvement
OWL vs. PLCOm2012 = 0.051 (p < 0.001)
OWL vs. PLCOall2014 = 0.051 (p < 0.001)
OWL vs. LLPv3       = 0.038 (p < 0.001)

Absolute improvement
OWL vs. PLCOm2012 = -0.015 (p = 0.011)
OWL vs. PLCOall2014 = -0.014 (p = 0.006)
OWL vs. LLPv3       = 0.032  (p < 0.001)

b In ever-smokers

Absolute improvement 
OWL vs. PLCOall2014 = -0.009 (-)
OWL vs. LLPv3        = 0.021 (p < 0.001)

Absolute improvement 
OWL vs. PLCOall2014 = 0.033 (p < 0.001)
OWL vs. LLPv3        = 0.018 (p = 0.001)

Absolute improvement 
OWL vs. PLCOall2014 = -0.008 (p = 0.012)
OWL vs. LLPv3        = 0.019 (p < 0.001)

a In general population

Absolute improvement 
OWL vs. PLCOall2014 = 0.053 ( - )
OWL vs. LLPv3        = 0.033 ( - )

Absolute improvement
OWL vs. PLCOm2012 = 0.079 ( - )
OWL vs. PLCOall2014 = 0.079 ( - )
OWL vs. LLPv3       = 0.050 ( - )

Absolute improvement
OWL vs. PLCOm2012 = -0.004 (p = 0.529)
OWL vs. PLCOall2014 = -0.003 (p = 0.578)
OWL vs. LLPv3       = 0.033  (p = 0.001)

Absolute improvement
OWL vs. PLCOm2012 = 0.005 (p = 0.527)
OWL vs. PLCOall2014 = 0.008 (p = 0.309)
OWL vs. LLPv3       = 0.057 (p < 0.001)

LLPv3 OWLPLCOall2014PLCOm2012

Fig. 2: Comparisons of model discrimination. (a) Comparisons of OWL, PLCOall2014, and LLPv3 in general population. (b) Comparison of OWL,
PLCOm2012, PLCOall2014, and LLPv3 in ever-smokers. Because OWL was developed in training set, no comparison with OWL was performed in this
set. Because PLCOm2012 and PLCOall2014 were developed in PLCO control subpopulation, OWL was not compared with PLCOm2012 and PLCOall2014

in this set. UKB = UK Biobank; PLCO = the Prostate, Lung, Colorectal and Ovarian cancer screening trial; NLST = the National Lung Screening
Trial; PLCOm2012 = the PLCO modified 2012; PLCOall2014 = the PLCO modified 2014; LLPv3 = the Liverpool lung cancer project risk model version
3; OWL = the Optimized early Warning model for Lung cancer risk; AUC = Area under receiver operating characteristic curve. - = p value for the
model comparison is not applicable due to the current set is the training set of either one of the comparing models.
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Comparison of models’ clinical utility
For general population
OWL presented better clinical utility than the competing
models (Fig. 4). With 6 years of follow-up, for example,
OWL yielded an average NB of 126 (per 100,000 people),
significantly higher than PLCOall2014 (average NB = 94) in
validation set 1 (improvement in average NB = 32,
p < 0.001). In validation set 3, OWL exhibited a slightly
lower, but non-significant, NB than PLCOall2014 (average
NBPLCOall2014 = 419 vs. NBOWL = 402, p = 0.108). In vali-
dation sets 1–3, OWL outperformed LLPv3 in NB (Fig. 4).

For ever-smokers
Similar results hold for the comparisons among the
ever-smokers (Supplementary Fig. S9). In validation set
1, compared to PLCOm2012 and PLCOall2014, OWL
showed a considerable improvement of NB (average
NBPLCOm2012 = 213 and NBPLCOall2014 = 212 vs.
NBOWL = 284, both p values < 0.001). In validation sets
3–5, OWL exhibited clinical utility equivalent to
PLCOm2012 and PLCOall2014 (average NB difference
from −34 to 47, all p > 0.05). Among all the validation
sets, OWL showed significantly improved average NB
values (average NB difference from 45 to 139, all
p < 0.001) compared to LLPv3.

Performance of models in the USPSTF2021
criteria-negative subpopulation
By applying PLCOall2014, LLPv3, and OWL to the
USPSTF2021 criteria-negative (CN) subpopulation
(including never-smokers), all could identify a part of
lung cancer cases among those who were failed to be
detected by USPSTF2021 criteria (Supplementary
Table S15). Among CN subpopulations, OWL exhibi-
ted adequate prediction accuracy and yielded a C-index
of 0.79 (95% CI 0.75–0.82), 0.76 (95% CI: 0.73–0.79),
and 0.77 (95% CI: 0.74–0.79) in validation sets 1–3,
respectively. OWL outperformed PLCOall2014 and LLPv3
in validation set 1 in both discrimination, calibration
and clinical utility, while presented discrimination,
calibration and clinical utility comparable to PLCOall2014

and LLPv3 among the CN subpopulations in validation
sets 2–3 (Supplementary Tables S15 and S16, Fig. S10).

Contribution of physiological, laboratory, and
genetic indicators
We further assessed the contribution of physiological,
laboratory, and genetic indicators for lung cancer risk
prediction. We observed the PLG score could further
significantly distinguish the risk of lung cancer within
each stratum categorized by OWL (Supplementary
Fig. S11). For example, among the individuals with
high-risks graded by OWL, individuals in the highest
tertile group defined by the PLG score (with an 8-year
cumulative incidence of 1.8%) had 2.6 times of risk of
lung cancer as those in the lowest tertile group defined
by the PLG score (with an 8-year cumulative incidence
of 0.7%) (RR = 2.6, 95% CI: 2.2–2.9). Further, the OWL+

model, by adding physiological, laboratory and genetic
indicators to the OWL model, showed a significantly
improved risk discrimination in lung cancer
(Supplementary Table S17).
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Relative improvement
OWL vs. PLCOm2012 = -367.5% ( - )
OWL vs. PLCOall2014 = -315.6% ( - )
OWL vs. LLPv3       = 44.9%    (p < 0.001)

Relative improvement
OWL vs. PLCOm2012 = 80.5% (p < 0.001)
OWL vs. PLCOall2014 = 80.4% (p < 0.001)
OWL vs. LLPv3       = 71.3% (p < 0.001)

Relative improvement
OWL vs. PLCOm2012 = -6.2% (p = 0.414)
OWL vs. PLCOall2014 = -16.2% (p = 0.807)
OWL vs. LLPv3       = 66.1% (p < 0.001)

b In ever-smokers

Relative improvement 
OWL vs. PLCOall2014 = -409.1% ( - )
OWL vs. LLPv3        = 41.4% (p < 0.001)

Relative improvement 
OWL vs. PLCOall2014 = 87.8% (p< 0.001)
OWL vs. LLPv3        = 98.7% (p < 0.001)

Relative improvement 
OWL vs. PLCOall2014 = 48.5% (p < 0.001)
OWL vs. LLPv3        = 69.2% (p < 0.001)

a In general population

Relative improvement 
OWL vs. PLCOall2014 = 95.9% ( - )
OWL vs. LLPv3        = 90.4% ( - )

Relative improvement
OWL vs. PLCOm2012 = 89.9% ( - )
OWL vs. PLCOall2014 = 89.9% ( - )
OWL vs. LLPv3       = 74.6% ( - )

Relative improvement
OWL vs. PLCOm2012 = 92.3% (p < 0.001)
OWL vs. PLCOall2014 = 91.7% (p < 0.001)
OWL vs. LLPv3       = 90.4% (p < 0.001)

Relative improvement
OWL vs. PLCOm2012 = 44.8%    (p < 0.001)
OWL vs. PLCOall2014 = 43.1%    (p < 0.001)
OWL vs. LLPv3       = -366.7% (p < 0.001)

LLPv3 OWLPLCOall2014PLCOm2012

Fig. 3: Comparison of model calibration. (a) Comparisons of OWL, PLCO
all2014

, and LLPv3 in general population. (b) Comparison of OWL,
PLCO

m2012
, PLCO

all2014
, and LLPv3 in ever-smokers. Because OWL was developed in training set, no comparison with OWL was performed in this

set. Because PLCOm2012 and PLCOall2014 were developed in PLCO control subpopulation, OWL was not compared with PLCOm2012 and PLCOall2014

in this set. UKB = UK Biobank; PLCO = the Prostate, Lung, Colorectal and Ovarian cancer screening trial; PLCOm2012 = the PLCO modified 2012;
PLCOall2014 = the PLCO modified 2014; LLPv3 = the Liverpool lung cancer project risk model version 3; OWL = the Optimized early Warning
model for Lung cancer risk; EO ratio = Expected to observed lung cancer case ratio. - = p value for the model comparison is not applicable due to
the current set is the training set of either one of the comparing models.

Fig. 4: Decision curve analysis of models in general population. (a-d) Comparison OWL and PLCOall2014 in training set, and validation set 1 to
3. (e-h) Comparison OWL and LLPv3 in training set, and validation set 1 to 3. Because OWL was developed in UKB training set, no comparison
with OWL was performed in this set. Because PLCOall2014 was developed in PLCO control subpopulation, OWL was not compared with
PLCOall2014 in this set. UKB = UK Biobank; PLCO = the Prostate, Lung, Colorectal and Ovarian cancer screening trial; PLCOall2014 = the PLCO
modified 2014; LLPv3 = the Liverpool lung cancer project risk model version 3; OWL = the Optimized early Warning model for Lung cancer risk;
NB = Net benefit.
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Discussion
We have developed a systematic approach for devel-
oping a useful risk prediction model to facilitate iden-
tification of target populations for LDCT screening. That
is, by leveraging prior lung cancer risk studies via a
systematic review, we identified relevant clinical and
genetic predictors; we optimized the prediction model
by utilizing XGBoost, a powerful machine learning al-
gorithm, and extensively validated the model in five
external validation sets from three UKB, PLCO and
NLST populations. The proposed OWL model, with
satisfactory predictive accuracy and robustness, could be
a feasible tool to select subpopulation with high risks of
lung cancer for further LDCT screening.

We focused on comparing OWL with PLCOm2012,
PLCOall2014 and LLPv3, due to their good perfor-
mance.43,44 Recently published interim analysis of a
prospective cohort study indicated that PLCOm2012 was
more efficient than the USPSTF2013 criteria for selecting
individuals to enroll into lung cancer screening pro-
grmmes.10 In our comprehensive comparative analysis,
OWL appears to present better discriminative ability
than PLCOm2012, PLCOall2014, and LLPv3 in the general
population.45 Meanwhile, OWL had a comparable
discriminative power with PLCOm2012 model even
among the PLCO population, and had a efficiency
similar to PLCOm2012 in the NLST population, which is
composed of heavy smokers, indicating plausible
generalizability and scalability of the proposed OWL
model. Notably, OWL showed better calibration than
PLCOm2012 in the ever-smokers of PLCO and NLST, and
should be considered for more round validations. The
UKB, a large-scale prospective cohort for general pop-
ulation, enables OWL to be designed to ‘catch more
cases’ in the longer follow-up and extend the period of
prediction to 8-year, and thus provides a fundamental
advantage of OWL compared with the competing
models that are designed to estimate the risk at either 6-
year or 5-year. On the other hand, OWL is a well-
calibrated survival model with ability to predict the
risk of lung cancer at any time point in the next 8-years,
which may be closer to the needs of practical application
than PLCOm2012 and LLPv3.

OWL provided a general framework for identifying
high-risk individuals among criteria-negative in-
dividuals.46 In the UKB England area, for example, there
were 511 USPSTF2021 criteria-negative individuals that
developed lung cancer within 8 years of follow-up,
which highlighted the fact that lung cancer is a com-
plex disease driven by multiple factors, including envi-
ronment, clinical, and genetic factors.47 As a result,
USPSTF2021 criteria-negative individual could be with
high risks of lung cancer if harboring risk factors
beyond age and smoking information. Identifying these
risk factors and profiling these USPSTF2021 criteria-
negative patients is critically important, and our pro-
posed OWL model address this urgent call.
We have also delved into the quantitative assessment
of the clinical utility of OWL by using decision curve
analysis, i.e., the net benefit. The net benefit reflecting
the number of net true positives per 100,000 persons
assessed for lung cancer risk.41,48 Considering of 33
million people at risk in the US, OWL, with an average
NB of 123, is equivalent to a strategy that led to LDCT
screen in an expected 41 thousand people at risk, with
all screened positive for lung cancer. However, the
PLCOall2014 model is equivalent to a lower benefit
strategy that led to LDCT screen in an expected 27
thousand people at risk, and all were screened positive.

OWL has the same ease of use as the competitive
models. In terms of the number of variables the model
need, OWL requires 15 variables, PLCOm2012 and
PLCOall2014 require 11 variables, and LLPv3 requires 7
variables, while the variables used in the above models
are all easily obtained from questionnaire. In addition,
although the OWL model cannot be expressed by
mathematical formulas, we provide an easy-to-use plat-
form for general users.

Notably, there was a significant difference in cumu-
lative smoking intensity between ever-smokers of UKB,
PLCO, and NLST: the mean pack-year of UKB ever-
smokers was the lowest, followed by PLCO ever-
smokers, and the NLST ever-smokers was the highest,
suggesting higher concentration of high-risk persons in
PLCO and NLST. It was acknowledged that high
discrimination is easier to obtain in population where
people are heterogeneous with regard to risk.13 There-
fore, the discrimination of OWL among ever-smokers of
PLCO and NLST populations was lower than that
observed in the ever-smokers of UKB.

Our study has several strengths. First, OWL was
developed based on a large-scale prospective cohort, and
extensively and externally validated in five large-scale
validation sets. As such, OWL presented much accu-
racy, robustness, and generalizability, and extends the
span of prediction to 8 years than competitive models.
Second, we performed a systematic review of lung
cancer risk prediction models and conducted a
comprehensive comparison analysis with three
competing models. Our results suggested the competi-
tiveness of OWL. Finally, we developed an OWL+ model
by incorporating physiological, laboratory, and genetic
indicators causally associated with the risk of lung
cancer, which exemplifies a prototype of next-generation
precision prevention tools tailored by individuals’
unique genetic and phenotypic information.24

We acknowledge limitations. First, the candidate
predictors in our model were confined to those identi-
fied from prior studies, more predictors need to be
investigated to improve the performance of OWL. Sec-
ond, the FEV1, CRP, total bilirubin, and PRS were un-
available in PLCO (the majority of subjects were with
missing genotypic data) and NLST, the OWL+ warrants
more rounds of external validation. Third, our study
www.thelancet.com Vol 88 February, 2023
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sample largely consists of participants of European
ancestry, so the generalizability to other ethnicities is
unknow. However, OWL is worthy of further trans-
ancestry validation in other large-scale populations.
Finally, the lung cancer development process is dy-
namic, time-dependent predictors are needed to address
the dynamic prediction capability.49

Conclusion
We proposed an optimized early warning model for
lung cancer risk (OWL) by using an advanced machine
learning technique, XGBoost, based on a large-scale
UKB cohort, and independently validated it in five vali-
dation sets from the UKB, PLCO, and NLST pop-
ulations. Our comparative study suggested that OWL
performed well in predictive accuracy and robustness,
exhibiting as a feasible means for sieving individuals
with high risks of lung cancer for further LDCT
screening.
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