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Preoperative opioid use has been reported to be associated with higher
preoperative opioid demand, worse postoperative outcomes, and increased
postoperative healthcare utilization and expenditures. Understanding the risk
of preoperative opioid use helps establish patient-centered pain management.
In the field of machine learning, deep neural network (DNN) has emerged as
a powerful means for risk assessment because of its superb prediction power;
however, the blackbox algorithms may make the results less interpretable
than statistical models. Bridging the gap between the statistical and machine
learning fields, we propose a novel Interpretable Neural Network Regression
(INNER), which combines the strengths of statistical and DNN models. We
use the proposed INNER to conduct individualized risk assessment of pre-
operative opioid use. Intensive simulations and an analysis of 34,186 patients
expecting surgery in the Analgesic Outcomes Study (AOS) show that the pro-
posed INNER not only can accurately predict the preoperative opioid use
using preoperative characteristics as DNN, but also can estimate the patient-
specific odds of opioid use without pain and the odds ratio of opioid use for
a unit increase in the reported overall body pain, leading to more straight-
forward interpretations of the tendency to use opioids than DNN. Our results
identify the patient characteristics that are strongly associated with opioid
use and is largely consistent with the previous findings, providing evidence
that INNER is a useful tool for individualized risk assessment of preoperative
opioid use.

1. Introduction. The drastic increase in the use of opioids has led to an epidemic in the
U.S., with more than 46,000 estimated overdose deaths in 2018 [Brown et al. (2021)]. As an
effort to combat this crisis, researchers have begun to study preoperative opioid use because
it is a major factor associated with opioid misuse [Saha et al. (2016)], higher postoperative
opioid demand [Armaghani et al. (2014); Schoenfeld et al. (2018)], worse postoperative out-
comes [Lee et al. (2014); Smith et al. (2017); Morris et al. (2016); Jain et al. (2018)], and in-
creased postoperative healthcare utilization and expenditures [Cron et al. (2017); Waljee et al.
(2017); Jain et al. (2018)]. Understanding preoperative opioid use among patients expecting
surgical services can help surgeons establish effective pain management for patients [Hilliard
et al. (2018)], including postoperative opioid management [Roeckel et al. (2016)].

What has often been overlooked is that a sizeable portion of patients consumed opioids
preoperatively even with no reported pains [Roeckel et al. (2016)], which might hint at
possible opioid misuse. As part of the Analgesic Outcomes Study (AOS) [Brummett et al.
(2013)], a large observational cohort study investigating associations between preoperative
pain and opioid use, individualized risk of preoperative opioid use is assessed to identify
patients who tend to use preoperative opioids even when there is little pain as well as those
who tend to take preoperative opoids even when the pain increases only slightly [Brummett
et al. (2015)]. With opioid use (yes or no) as the outcome and pain level as the covariate, a
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logistic regression model with an intercept and a slope that depend on patients’ other charac-
teristics may help delineate the subgroups of patients who are at high risks of opioids misuse;
see model (1). However, because of the curse of dimensionality, traditional nonparametric
methods of fitting varying coefficient logistic models may not fare well [Park et al. (2015);
Hastie and Tibshirani (1993); Cai, Fan and Li (2000)], even when the number of patient
characteristics is only moderately large.

On the other hand, deep neural network (DNN), a machine learning algorithm inspired
by the structure of brains, has achieved much success in nonparametric approximation with
high dimensional predictors [Bauer and Kohler (2019); Schmidt-Hieber (2020)]. It has found
applications in computational phenotyping [Che et al. (2015); Lipton et al. (2015)], medical
imaging analysis [Kleesiek et al. (2016); Tran (2016)] and predictive modeling [Choi et al.
(2016)], among many others. It is challenging to explain the decision rules of DNN with the
input variables, due to the black-box nature; directly applying DNN to the aforementioned
AOS data cannot pinpoint the subgroup of patients who may be at high risks of opioid misuse.

For example, Dong et al. (2019) use the Gini importance index from the random forest
model to rank features, while Lo-Ciganic et al. (2019) use the boosting decision tree. How-
ever, neither of these methods can give the direction of the association between features and
opioid dependence. On the other hand, Che et al. (2017) use a weight matrix of each layer
in the DNN model to generate “importance scores” to detect important features. The scores
not only rank different features in terms of opioid overdose prediction but also inform the
direction of the association. However, the method may not directly decipher the relationship
between opioid use and pain, or, in particular, identify subpopulations who are likely to be
sensitive to pain or be opioid dependent even without reported pains.

Bridging the gap between the statistical and machine learning fields, we propose an in-
terpretable neural network regression (INNER) that combines the strengths of logistic re-
gression and DNN models. We propose a logistic regression model with individualized co-
efficients, wherein the regression coefficients are functions of individual characteristics. We
utilize DNN to estimate these individualized coefficients and construct two metrics, Baseline
Opioid Tendency (BOT) and Pain-induced Opioid Tendency (POT), which are useful for the
individualized assessment of opioid use for each patient. In particular, BOT refers to the odds
of using preoperative opioids when the patient does not report pain and POT is the odds ratio
of using preoperative opioids for a unit increase in the reported overall body pain. These two
metrics can be used to identify subgroups of patients, whose characteristics are associated
with preoperative opioid use: patients with high POT are more likely to get preoperative opi-
oids when pain increases, and patients with high BOT have a high risk of preoperative opioid
use even with no reported pain. To demonstrate the utility of our proposal, we conduct simu-
lations and apply the INNER model to analyze the AOS study. Our analysis identifies patient
characteristics that are associated with opioid tendency, as quantified by BOT and POT, and is
largely consistent with the literature, evidencing the usefulness of INNER for individualized
risk assessment of preoperative opioid use.

2. Review of a Deep Neural Network. A DNN has multiple layers with neurons being
the basic processing units [LeCun, Bengio and Hinton (2015)]. For example, in the com-
monly used feedforward neural network [Shrestha and Mahmood (2019)], starting from the
first layer (input layer), neurons in one layer are connected to and may “activate” those in
the adjacent and higher layers. Specifically, the inputs of each neuron are multiplied by some
weights, added with respective bias terms and summed up [Shrestha and Mahmood (2019);
Fan, Ma and Zhong (2021)]. The sums are passed onto some transformation functions, called
“activation” functions, such as linear, Sigmoid, hyperbolic tangent or rectified linear unit
(ReLU) activation functions [Karlik and Olgac (2011); Li and Yuan (2017)]. The outputs re-
turned by these activation functions are fed to neurons in the next layer as inputs. Passing all
of the layers, the outputs of the final layer (output layer) will be used for prediction.
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3. Interpretable Neural Network Regression. Our proposed INNER model is a lo-
gistic regression model with covariate-dependent coefficient functions constructed by DNN.
The general formulation is similar to that of a DNN. Specifically, let Rd be a d-dimensional
Euclidean vector space. To construct a prediction based on input x ∈Rkl via a neural network
with L layers, where the lth (l = 1, . . . ,L) layer consists of kl neurons, we adopt an L-fold
composite function FL : Rk1→RkL+1 with the parameter θ, i.e.,

FL(·;θ) = fL ◦ fL−1 ◦ · · · ◦ f1(·),

where fl(x) = σl(Wlx + bl) ∈ Rkl+1 and “◦” indicates the composition of two functions.
The function σl : Rkl+1 → Rkl+1 is a (non)linear activation function for the lth layer. The
parameter θ = {Wl,bl}Ll=1, where Wl is the weight matrix of dimension kl+1 × kl and
bl ∈Rkl+1 is the bias vector. Typical choices of σl(x) include a linear function of x, a ReLU
function, i.e., max(0,x), and a softmax function, i.e., exp(x)/‖ exp(x)‖1, where max and
exp operate componentwise.

Let D = {(Xi,Zi, Yi), i = 1, . . . ,N} be a dataset consisting of N independent patients.
For patient i ∈ {1, . . . ,N}, let Yi ∈ {0,1} be a binary variable indicating whether the patient
uses opioids preoperatively. Let Xi ∈ [0,10] represent the overall body pain score and Zi ∈
Rp represent a vector of p preoperative characteristics. We model the conditional probability
of preoperative opioid use given the preoperative characteristics and the overall body pain
score via

logit{P(Yi = 1 |Xi,Zi)}= FL(Zi;α) + FL(Zi;β) ·Xi,(1)

where logit(p) = log{p/(1−p)}, with p ∈ (0,1), is the logit link function. The two covariate-
dependent coefficient functions are constructed by two neural networks with the same net-
work architecture but different parameters: α and β. Model (1) is termed an INNER model,
wherein the number of neurons in the input layer is k1 = p and the output layer has only one
neuron, i.e., KL+1 = 1. Figure 1 shows an example of three layers (L = 3), where the first
two layers have 250 and 125 hidden neurons, respectively, with a ReLU activation function,
and the third layer has one hidden neuron with a linear activation function. During training,
we may randomly select a certain number of neurons in a layer and ignore them in order to
overcome overfitting [Srivastava et al. (2014)]. The proportion of such ignored neurons in a
layer is called the dropout rate with that layer. During testing, dropout is set to be inactive
with no neurons ignored.

We use the Sigmoid activation function, i.e., Sigmoid(x) = {1 + exp(−x)}−1, for the
output layer of the INNER model. Here, x comes from the affine combination of the two
sub-networks whose final layers have a linear activation function, and the Sigmoid function
returns a value between 0 and 1, ensuring numerical stability. The number of hidden layers,
along with the number of hidden neurons and the dropout rate in each layer, are hyperparam-
eters to be selected based on the prediction performance.
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Fig 1: Example of INNER. Input: overall pain score (X) and other characteristics (Z). Two
neural networks for FL(Z;α) and FL(Z;β): the same network architecture with different
parameters, α and β; three hidden layers in each network, with the first layer having 250
neurons with a ReLu activation function, the second layer having 125 neurons with a ReLu
activation function, and the last layer having one neuron with a linear activation function.
Ouput: estimated probability of preoperative opioid use.

Our proposed INNER is interpretable within the traditional logistic regression framework,
and can assess the individualized risk of preoperative opioid use via two derived metrics:
Baseline Opioid Tendency (BOT), the odds of taking opioid with no reported pain, and Pain-
induced Opioid Tendency (POT), the odds ratio of taking opioid for a unit increase in overall
body pain. In particular, BOT and POT can be represented by the output of the two neural
networks with the input Z respectively:

Baseline Opioid Tendency (BOT) := exp{FL(Z;α)},

Pain-induced Opioid Tendency (POT) := exp{FL(Z;β)}.

Therefore, a high Baseline Opioid Tendency (BOT) or a high Pain-induced Opioid Tendency
(POT) indicates a potential high risk of taking preoperative opioids.

The estimates of parameters, denoted by α̂ and β̂, are obtained by minimizing the negative
log likelihood or the cross entropy loss function

L(α,β;D) =−
N∑
i=1

Yi log{P(Yi = 1 |Xi,Zi)}+ (1− Yi) log{1−P(Yi = 1 |Xi,Zi)},

(2)

where P(Yi = 1 |Xi,Zi) is as defined in (1). We use stochastic gradient descent (SGD) [Bot-
tou (2010)] for optimization. In our later data analysis and out of a total of 34,186 patients,
we randomly assign 23,931 (70%) patients to be training samples (T ) and the rest 10,256
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(30%) patients to be validation samples (V) when computing the training and validation loss.

Algorithm 1: Stochastic Gradient Descent
Input: learning rate (η), maximum difference (∆), batch size (M )
Output: α̂, β̂
Data: Partition full data D to training (T ) and validation (V) samples
Initialization α0, β0, training loss = validation loss
while validation loss - training loss ≤ ∆ do

for mini-batch m← 1 to M do
Draw random samples without replacement (Xi,Zi, Yi) ∈ T

end
Compute gradients ∇αL and ∇βL of mini-batch
Update parameters α=α− η∇αL and β = β− η∇βL
Compute training loss: L(α,β;T )
Compute validation loss: L(α,β;V)

end

In general, classical stochastic gradient descent is sensitive to the choice of learning rates;
a large learning rate gives fast convergence but may induce numerical instability [Liu et al.
(2020); Darken, Chang and Moody (1992)], while a small learning rate may ensure stability,
though at the price of more iterative steps. In our implementation, we use grid search to
tune the learning rates. For the real data analysis, we tune the learning rate over the range
between 0.005 to 0.1 with 20 equally spaced grid points, and set the batch size to be 64
and the maximum difference between the training and validation loss to be 10−2. We obtain
the estimates, α̂ and β̂, after 200 iterations. We also conduct sensitivity analysis to assess
the robustness of SGD towards the choices of these hyperparameters, and find the model’s
predictiveness performance is fairly robust to them; see Section B of the Supplementary
Material [Sun et al. (2022)].

With α̂ and β̂, BOT and POT can be estimated by plugging in these estimates: for a patient
with Zi, the estimated BOT and POT are exp{FL(Zi; α̂)} and exp{FL(Zi; β̂)}, respectively.

4. Simulation Study. We compare the prediction power and robustness of the proposed
INNER with the existing methods, including decision trees, random forests, Bayesian addi-
tive regression trees regression (BART), support vector machine (SVM), logistic regression
and DNN. Under various scenarios examined, we find that INNER outperform these com-
peting methods. The prediction power of INNER is similar to or even better than DNN when
the model assumptions of INNER hold, whereas INNER achieves a performance comparable
to DNN even when the model assumptions are violated. Codes for the simulation study are
provided in the Supplementary Material.

4.1. Prediction Power. We simulate data from a logistic regression model with non-
linear varying-coefficient functions:

logit{P(Y = 1 |X,Z)}= sin(Z>α) + cos(Z>β) ·X.
The simulation study is designed with varying signal strengths, noise variances, number of
covariates and sample sizes. The signal strength is measured by a signal-to-noise ratio, i.e.,

Var{P(Y = 1 |X,Z)}
Var(Y )−Var{P(Y = 1 |X,Z)}

.

We assess the prediction power of INNER by varying the signal-to-noise ratio to be 0.2, 0.8
or 3.2, and setting the sample size and the number of signal covariates to be 40,000 and 16,
respectively.
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We next increase the noise variance by adding various numbers of noise covariates (8, 12
and 16) into the data, while fixing the signal-to-noise ratio, the number of samples and the
number of covariates at 3.2, 40,000 and 16 respectively. We finally consider several combi-
nations of the numbers of covariates (9, 16, 32) and samples (5,000; 10,000; 20,000), with a
signal-to-noise ratio of 3.2 and in the absence of noise covariates.

For each simulation configuration, we conduct a total of 500 experiments. In each ex-
periment, we randomly allocate 80% of the samples to the training data and the rest to the
testing data, and compare seven methods: the INNER model [equation (1)], DNN, decision
trees, random forests, BART and SVM models with combined Z and X as the input, and the
logistic regression model with a two-way interaction between Z and X . For the logistic re-
gression, we present it as a special case of INNER with only one layer and a linear activation
function, that is,

logit{P(Y = 1 |X,Z)}= Z>Wα + bα + (Z>Wβ + bβ) ·X,(3)

where Wα and Wβ are the weight parameters, and bα and bβ are the bias terms.
For INNER, the number of hidden layers in the neural network for FL(Zi;α) is set to be

3. The first two layers have 200 and 10 hidden neurons with a dropout rate of 0.5 and 0.3,
respectively. These two layers are equipped with a ReLu activation function. The final layer
has only one neuron with a linear activation function. The neural network for FL(Zi;β) is
similar and has 3 layers, each with 100, 90 and 1 hidden neurons but with no dropouts. The
learning rate for both networks is 0.0014. For DNN, we use a network architecture with
4 layers: the first 3 layers have 160, 120 and 160 hidden neurons, respectively, and ReLu
activation functions; the first and the third layers are with a dropout rate of 0.1 and 0.3,
respectively; the last layer has one hidden neuron and a Sigmoid activation function. The loss
function and the optimizer are the same as in the INNER model, but with a learning rate of
0.0007. These network hyperparameters are chosen to yield good prediction performances
under the specified simulation configurations.

For decision trees, the maximum depth of a tree is 10 and the minimum number of samples
required to split an internal node is 2. The minimum number of samples required to be at a leaf
node for the decision is 4. For random forests, the number of features considered for the best
split is the square root of the number of features, the minimum number of samples required
to be at a leaf node is 2, the minimum number of samples required to split an internal node is
2 and the number of trees in a forest is 1,000. For SVM, we use a radial basis function kernel
and set the regularization parameter to be 10. For BART, the number of trees to be grown in
a sum-of-trees model is 80.

Summarizing the results of 500 simulations for each setting, Table 1 shows that most
of the models achieve better model performances as the signal-to-noise ratio increases. For
example, the C-statistics of decision trees and BART increase from 0.5 to more than 0.6 when
the signal-to-noise ratio increases from 0.2 to 3.2, while the C-statistic increases to more than
0.8 for random forests and SVM. The performance of INNER and DNN is comparable across
different signal strengths and is better than that of the other models. The C-statistics of DNN
and INNER are 0.96 when the signal-to-noise ratio is 3.2.

Moreover, the performances of all the models deteriorate with more noise covariates added
(Table 1). For instance, the C-statistic of BART decreases to around 0.6 with 16 added noise
covariates, while the C-statistics for random forests and SVM, though slightly better, decrease
to around 0.7 when we add 16 noise covariates. In contrast, the performances of INNER and
DNN are consistently better than those of the other models. Moreover, INNER slightly out-
performs DNN with noise covariates added; with 16 added noise covariates, INNER achieves
a C-statistic of 0.95, slightly better than 0.93 achieved by DNN.
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With various combinations of the number of covariates and sample size, the performance
of each model improves when we use more samples to train the model or decrease the number
of covariates (Table 1). DNN, INNER, random forests, BART and SVM achieve a C-statistic
of more than 0.9 when the number of covariates is 8. Moreover, the C-statistics of DNN
and INNER are 0.97 with 20,000 samples. However, when the number of covariates is 18,
only random forests, SVM, DNN and INNER can achieve a C-statistic of more than 0.6 with
20,000 samples. Also, INNER performs much better than DNN with smaller sample sizes
and larger numbers of covariates. The C-statistic of INNER is 0.92, larger than 0.84 for DNN
when the number of covariates is 18 and the sample size is 20,000.

TABLE 1
Average (SE) C-statistics for different methods under the correctly specified model

Specifications
Model Decision

Trees
Random
Forests BART SVM Logistic

Regression DNN INNER

Signal-to-noise Ratioa

0.2 0.51 (0.0003) 0.52 (0.0003) 0.51 (0.0003) 0.61 (0.0002) 0.50 (0.0003) 0.62 (0.0020) 0.64 (0.0003)
0.8 0.62 (0.0003) 0.73 (0.0002) 0.61 (0.0004) 0.75 (0.0002) 0.50 (0.0009) 0.84 (0.0002) 0.85 (0.0002)
3.2 0.65 (0.0003) 0.81 (0.0002) 0.69 (0.0003) 0.85 (0.0002) 0.50 (0.0002) 0.96 (0.0013) 0.96 (0.0002)

Noise Covariatesb

8 0.64 (0.0003) 0.76 (0.0003) 0.68 (0.0003) 0.73 (0.0002) 0.50 (0.0002) 0.93 (0.0040) 0.96 (0.0003)
12 0.64 (0.0003) 0.74 (0.0003) 0.67 (0.0003) 0.73 (0.0002) 0.50 (0.0002) 0.93 (0.0036) 0.96 (0.0003)
16 0.64 (0.0003) 0.73 (0.0003) 0.66 (0.0003) 0.70 (0.0002) 0.50 (0.0002) 0.93 (0.0032) 0.95 (0.0019)

Number of Covariatesc

8
Number of Samples

5,000 0.60 (0.0008) 0.93 (0.0003) 0.90 (0.0004) 0.91 (0.0003) 0.67 (0.0054) 0.96 (0.0002) 0.96 (0.0003)
10,000 0.62 (0.0006) 0.94 (0.0002) 0.92 (0.0003) 0.93 (0.0002) 0.67 (0.0052) 0.97 (0.0002) 0.97 (0.0002)
20,000 0.63 (0.0004) 0.95 (0.0001) 0.94 (0.0002) 0.95 (0.0001) 0.68 (0.0052) 0.97 (0.0001) 0.97 (0.0001)

16
Number of Samples

5,000 0.60 (0.0008) 0.68 (0.0008) 0.59 (0.0007) 0.74 (0.0006) 0.50 (0.0005) 0.89 (0.0005) 0.88 (0.0010)
10,000 0.62 (0.0006) 0.72 (0.0005) 0.62 (0.0005) 0.78 (0.0004) 0.50 (0.0004) 0.92 (0.0004) 0.93 (0.0005)
20,000 0.63 (0.0004) 0.77 (0.0004) 0.66 (0.0004) 0.82 (0.0003) 0.50 (0.0003) 0.95 (0.0009) 0.96 (0.0003)

18
Number of Samples

5,000 0.60 (0.0008) 0.51 (0.0007) 0.50 (0.0007) 0.60 (0.0007) 0.50 (0.0005) 0.63 (0.0036) 0.70 (0.0048)
10,000 0.62 (0.0006) 0.54 (0.0008) 0.51 (0.0006) 0.62 (0.0004) 0.50 (0.0003) 0.78 (0.0046) 0.86 (0.0036)
20,000 0.63 (0.0004) 0.60 (0.0008) 0.51 (0.0006) 0.66 (0.0003) 0.50 (0.0002) 0.84 (0.0057) 0.92 (0.0049)

a. the numbers of samples and covariates are fixed at 40,000 and 16, with varying signal-to-noise ratios and no noise covariates
b. the signal-to-noise ratio, the numbers of samples and covariates are fixed at 3.2, 40,000 and 16, with varying numbers of noise covariates
c. the signal-to-noise ratio is fixed at 3.2, with varying numbers of covariates and samples and no noise variables

4.2. Robustness. We assess the robustness of INNER when the INNER model (1) devi-
ates from the true data-generating model, which is

logit{P(Y = 1 |X,Z)}=−X · sin(Z>α) +
√
| cos(Z>β) ·X|.

The model structures of DNN and INNER used here differ from those in the prediction power
study. DNN has four layers: the first two layers each have 100 hidden neurons with a ReLu
activation function; the third layer has 160 neurons with a ReLu activation function and a
dropout rate of 0.3; the last layer has one neuron with a Sigmoid function and a learning rate
of 0.00046. For INNER, there are 3 hidden layers in the neural networks of FL(Zi;α) and
FL(Zi;β). There are 200, 10 and 1 neurons in each layer of FL(Zi;α), and 180, 90 and 1
neurons in each layer of FL(Zi;β). The learning rate is set to be 0.004. Decision trees used
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here have a similar structure as those in the prediction power study, except that the minimum
number of samples required to split an internal node is 10. For random forests, the maximum
depth of a tree is 50, the minimum number of samples required to split an internal node is 2
and the number of trees in a forest is 2,500. For SVM, we use a radial basis function kernel
and set the kernel coefficient to be 0.1. For BART, the number of trees to be grown in a
sum-of-trees model is 90.

Based on 500 simulations for each setting, Table 2 reveals that, even under a misspecified
model, INNER is able to achieve a performance as good as DNN and continues to outperform
the other models. For example, when the signal-to-noise ratio is 3.2, both DNN and INNER
achieve a C-statistic of 0.97, while the C-statistics of all the other models are less than 0.9.
With 16 noise covariates added, DNN and INNER still achieve a C-statistic of 0.96, but the
C-statistics for the other models are less than 0.8. When we increase the number covariates
and decrease the number of samples, the C-statistics of DNN and INNER are still comparable
and are higher than those of the other models.

TABLE 2
Average (SE) C-statistics for different methods under the misspecified model

Specifications
Model Decision

Trees
Random
Forests BART SVM Logistic

Regression DNN INNER

Signal-to-noise Ratioa

0.2 0.55 (0.0003) 0.60 (0.0003) 0.55 (0.0003) 0.61 (0.0002) 0.50 (0.0004) 0.70 (0.0003) 0.71 (0.0020)
0.8 0.58 (0.0004) 0.69 (0.0003) 0.57 (0.0004) 0.76 (0.0002) 0.51 (0.0007) 0.86 (0.0002) 0.87 (0.0003)
3.2 0.62 (0.0003) 0.78 (0.0003) 0.62 (0.0005) 0.82 (0.0002) 0.51 (0.0006) 0.97 (0.0002) 0.97 (0.0003)

Noise Covariatesb

8 0.61 (0.0003) 0.76 (0.0003) 0.61 (0.0005) 0.71 (0.0002) 0.51 (0.0005) 0.96 (0.0002) 0.96 (0.0003)
12 0.61 (0.0003) 0.74 (0.0003) 0.60 (0.0005) 0.71 (0.0002) 0.51 (0.0005) 0.96 (0.0002) 0.96 (0.0003)
16 0.61 (0.0003) 0.73 (0.0003) 0.59 (0.0005) 0.68 (0.0002) 0.51 (0.0005) 0.96 (0.0002) 0.96 (0.0010)

Number of Covariatesc

8
Number of Samples

5,000 0.55 (0.0009) 0.93 (0.0003) 0.91 (0.0004) 0.91 (0.0004) 0.57 (0.0054) 0.94 (0.0004) 0.94 (0.0006)
10,000 0.58 (0.0007) 0.94 (0.0002) 0.93 (0.0003) 0.93 (0.0002) 0.57 (0.0056) 0.96 (0.0002) 0.96 (0.0004)
20,000 0.61 (0.0005) 0.95 (0.0001) 0.94 (0.0002) 0.94 (0.0001) 0.57 (0.0062) 0.97 (0.0002) 0.97 (0.0003)

16
Number of Samples

5,000 0.55 (0.0009) 0.61 (0.0007) 0.53 (0.0008) 0.69 (0.0007) 0.51 (0.0008) 0.90 (0.0005) 0.92 (0.0007)
10,000 0.58 (0.0007) 0.68 (0.0005) 0.56 (0.0007) 0.75 (0.0004) 0.51 (0.0007) 0.94 (0.0003) 0.95 (0.0004)
20,000 0.61 (0.0005) 0.74 (0.0003) 0.59 (0.0005) 0.79 (0.0003) 0.51 (0.0006) 0.96 (0.0002) 0.96 (0.0004)

18
Number of Samples

5,000 0.55 (0.0009) 0.54 (0.0007) 0.54 (0.0007) 0.65 (0.0006) 0.51 (0.0007) 0.86 (0.0021) 0.90 (0.0012)
10,000 0.58 (0.0007) 0.53 (0.0005) 0.54 (0.0005) 0.68 (0.0004) 0.51 (0.0005) 0.92 (0.0005) 0.94 (0.0014)
20,000 0.61 (0.0005) 0.53 (0.0004) 0.54 (0.0003) 0.73 (0.0003) 0.51 (0.0004) 0.95 (0.0002) 0.95 (0.0013)

a. the numbers of samples and covariates are fixed at 40,000 and 16, with varying signal-to-noise ratios and no noise covariates
b. the signal-to-noise ratio, the numbers of samples and covariates are fixed at 3.2, 40,000 and 16, with varying numbers of noise covariates
c. the signal-to-noise ratio is 3.2, with varying numbers of covariates and samples and no noise variables

5. Analgesic Outcomes Study. We use the proposed INNER model to study the associ-
ations between patient characteristics and preoperative opioid use.

5.1. Data Preparation and Descriptive Analysis. The data are collected from the Anal-
gesic Outcomes Study, an observational cohort study of acute and chronic pain [Brummett
et al. (2017, 2013); Janda et al. (2015); Brummett et al. (2015); Janda et al. (2015); Goes-
ling et al. (2016)], with patients recruited from the preoperative assessment clinic before the
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surgery or in the preoperative waiting area on the surgery day during daytime hours (approx-
imately 5:30 AM to 5 PM). Patients are excluded if they do not speak English, are unable
to provide written informed consent, or are incarcerated. The institutional review board of
the University of Michigan, Ann Arbor, approved this study, and all participants provided
written informed consent. A total of 34,186 patients have been recruited and included in
this analysis, and 7,894 (23.09%) of them are identified to have used opioids at least once.
Preoperative opioid use is dichotomized and used as the response variable in this study. Pre-
operative characteristics are collected using self-report measures of pain, function and mood.
A total of 6,819 (19.95%) patients have missing values of preoperative characteristics, and we
impute the missing data with the mean (for continuous variables) or the mode (for categorical
variables).

Sixteen preoperative characteristics are used to predict preoperative opioid use. Pain sever-
ity is measured with the Brief Pain Inventory [Tan et al. (2004)], which assesses overall, av-
erage and worst body pain (11-point Likert-type scale, with higher scores indicating greater
pain severity). Briefly, among all the patients in the analysis, 54.2% of them are female, most
of them are white (89.06%), the mean age is 53.2 with a standard deviation (SD) of 16.2, and
7,984 (23.09%) of these patients have taken opioids preoperatively (Table 3).

It appears that some preoperative characteristics are associated with preoperative opioid
use. Patients with more severe overall body pain (mean: 5.39, SD: 2.64) are more likely to
use preoperative opioids. Smokers (4,341 [55.13%]) are more likely to use preoperative opi-
oids than non-smokers (10,142 [39.02%]) (P < 0.0001). Patients with illicit drug use history
(614 [7.80%]) and no alcohol consumption (4,677 [59.42%]) are at higher risks of preop-
erative opioid use (P < 0.0001). Patients with anxiety (3,324 [47.98%]), depression (2,409
[34.79%]) or less satisfied with life (mean: 6.02, SD: 2.63) tend to use preoperative opioids
(P < 0.0001 for all). Patients who have poor physical conditions, e.g., those with American
Society of Anaesthesiologists (ASA) score of 3 or 4 (3,755 [47.57%]) or high Fibromyalgia
Survey Score (mean: 8.34, SD: 5.25), are more likely to use preoperative opioids (P < 0.001
for all). Preoperative opioid use is also associated with high BMI (mean: 30.74, SD: 7.74),
sleep apnea (2,250 [29.15%]), race (Asian: 39[0.49%]) and surgical type (P < 0.0001 for
all).

5.2. Prediction Performance Evaluation. We compare the prediction performance of IN-
NER with that of DNN and the logistic regression. We randomly split the data into the train-
ing and testing parts. Data imputation is then performed for the training and testing data
separately. After training the INNER model using the training data, we test the prediction
performance on the testing data. We conduct 100 independent trials by repeating the same
procedure. We compare INNER with DNN and the logistic regression in accuracy, C-statistic,
sensitivity, specificity and balance accuracy (the average of sensitivity and specificity).

Since the outcome data are unbalanced, we further propose a balanced subsampling strat-
egy to avoid overfitting. That is, we split each training dataset into the opioid user and non-
user groups. Among the non-user group, we randomly select the same number of patients as
in the user group, append them to the user group and form a “balanced” dataset. We repeat
the same procedure five times, generating five datasets and training five models on them. We
then apply these five models to the testing data and compute the probability of taking opioids
by averaging the probabilities estimated by these models. We also use different thresholds to
predict whether a patient takes opioids. For example, the threshold can be 50.00% or 23.09%,
the prevalence of taking opioids in the original data; patients with estimated probabilities of
taking opioids higher than the threshold are predicted as using opioids.

The architecture of INNER is the same as the example shown in Figure 1. There are
multiple hidden layers in each of the neural network, FL(Zi;α) and FL(Zi;β). The last
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TABLE 3
Comparisons of Baseline Characteristicsa,b,c

Overall
(N=34,186)

Opioid Use
(N=7,894)

No Opioid Use
(N=26,292) P Value

BMI 29.90 (7.18) 30.74 (7.74) 29.64 (6.98) <0.0001
Age 53.19 (16.15) 53.37 (14.97) 53.14 (16.49) 0.2441
Fibromyalgia Survey Score 5.47 (4.63) 8.34 (5.25) 4.61 (4.05) <0.0001
Satisfaction with Life 7.03 (2.57) 6.02 (2.63) 7.33 (2.47) <0.0001
Charlson Comorbidity Index 1.68 (3.30) 1.65 (3.32) 1.69 (3.29) 0.3037
Overall BPI Score 3.21 (2.86) 5.39 (2.64) 2.55 (2.58) <0.0001
Gender 0.2605

Female 18,530 (54.20) 4,323 (54.76) 14,207 (54.04)
Male 15,656 (45.80) 3,571 (45.24) 12,085 (45.96)

Race <0.0001
White 30,445 (89.06) 6,979 (88.41) 23,466 (89.25)
African American 1,780 (5.21) 529 (6.70) 1,251 (4.76)
Asian 467 (1.37) 39 (0.49) 428 (1.63)
Other 1,494 (4.37) 347 (4.40) 1,147 (4.36)

Tobacco use <0.0001
No 19,384 (57.24) 3,533 (44.87) 15,851 (60.98)
Yes 14,483 (42.76) 4,341 (55.13) 10,142 (39.02)

Alcohol consumption <0.0001
No 18,755 (55.39) 4,677 (59.42) 14,078 (54.17)
Yes 15,105 (44.61) 3,194 (40.58) 11,911 (45.83)

Illicit drug use <0.0001
No 32,382 (95.61) 7,260 (92.20) 25,122 (96.65)
Yes 1,486 (4.39) 614 (7.80) 872 (3.35)

Sleep apnea <0.0001
No 25,210 (75.96) 5,468 (70.85) 19,742 (77.51)
Yes 7,977 (24.04) 2,250 (29.15) 5,727 (22.49)

Depression <0.0001
No 24,278 (80.40) 4,515 (65.21) 19,763 (84.91)
Yes 5,920 (19.60) 2,409 (34.79) 3,511 (15.09)

Anxiety <0.0001
No 19,368 (64.15) 3,604 (52.02) 15,764 (67.77)
Yes 10,822 (35.85) 3,324 (47.98) 7,498 (32.23)

ASA Score <0.0001
1-2 21,898 (64.06) 4,139 (52.43) 17,759 (67.55)
3-4 12,288 (35.94) 3,755 (47.57) 8,533 (32.45)

Body Group <0.0001
Head 3,714 (11.06) 745 (9.52) 2,969 (11.53)
Neck 4,150 (12.36) 806 (10.30) 3,344 (12.99)
Thorax 2,167 (6.45) 363 (4.64) 1,804 (7.01)
Intrathoracic 15,53 (4.62) 244 (3.12) 1,309 (5.08)
Shoulder/Axilla 1854 (5.52) 321 (4.10) 1,533 (5.95)
Upper Arm & Elbow 245 (0.73) 88 (1.12) 157 (0.61)
Forearm, Wrist, Hand 1359 (4.05) 348 (4.45) 1,011 (3.93)
Upper Abdomen 3,298 (9.82) 765 (9.77) 2,533 (9.84)
Lower Abdomen 4,963 (14.78) 962 (12.29) 4,001 (15.54)
Spine/Spinal Cord 1,472 (4.38) 841 (10.74) 631 (2.45)
Perineum 3497 (10.41) 728 (9.30) 2,769 (10.75)
Pelvis (Except Hip) 125 (0.37) 53 (0.68) 72 (0.28)
Upper Leg (Except Knee) 1,582 (4.71) 567 (7.24) 1,015 (3.94)
Knee/Popliteal 1,933 (5.76) 401 (5.12) 1,532 (5.95)
Lower Leg 772 (2.30) 309 (3.95) 463 (1.80)
Other 896 (2.67) 287 (3.67) 609 (2.36)

a. mean (SD) for each continuous characteristic is reported
b. frequency (percentage) for each categorical characteristic is reported
c. χ2 test or unpaired 2-tailed t test is used to assess the univariate differences between non-users and
opioid users as appropriate
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hidden layer has a linear activation function while the other layers have a ReLu activation
function. We tune the number of layers and the number of hidden neurons in each layer based
on the metrics we mentioned above. The best architecture has three hidden layers, each with
250, 125 and 1 hidden neuron, respectively.

When tuning the architecture of INNER, we vary the number of hidden layers and the
number of neurons in each layer for FL(Zi;α) and FL(Zi;β) and compare the different
architectures based on accuracy, C-statistic, sensitivity, specificity and balance accuracy. We
vary the number of hidden layers from 2 to 5, and the number of neurons in the first layer to
be 125, 250 or 500. We set the number of neurons in the last layer to be 1. Each of the rest
hidden layers has half of the previous layer’s neurons. In Section B of the Supplementary
Material, we show the performance of the best architecture and two other more complicated
architectures.

For DNN, we define multiple inputs based on the nature of preoperative characteristics.
We classify the characteristics into three categories, un-modifiable such as gender and race,
modifiable such as BMI, alcohol and smoking status, and directly pain-related such as pain
severity and Fibromyalgia Survey Score. As shown in Section A of the Supplementary Mate-
rial [Sun et al. (2022)], each input is passed to the same structure of hidden layers by a ReLu
activation function with different parameters, and is concatenated and passed to the output
layer. We tune the number of hidden layers and the number of neurons in each layer before
concatenation. The best architecture before concatenation has two layers and the number of
hidden neurons in each of the corresponding layers is 500 and 250. After concatenation, there
is one hidden layer with 15 neurons. The loss function and optimizer of DNN is the same as
that of INNER. In Section B of the Supplementary Material, we shows the performance of
the best architecture and two other more complicated architectures.

The INNER model achieves similar prediction power as DNN and is better than the logistic
regression. We assess the performance of the three models with the best architectures using
different sampling strategies and different; see Section B of the Supplementary Material.
All the three models achieve the best balance accuracy with balance sampling and 0.5 as the
threshold. Table 4 report the best performance of three models. The INNER and DNN achieve
better performance in all four metrics (accuracy, sensitivity, specificity and balance accuracy)
compared to the logistic regression. Moreover, there is no significant difference between the
performance of INNER (accuracy: 0.72, SE: 0.0029; sensitivity: 0.69, SE: 0.0052; specificity:
0.73, SE: 0.0052; and balance accuracy: 0.71, SE: 0.0008) and DNN (accuracy: 0.72, SE:
0.0017; sensitivity: 0.694, SE: 0.0043; specificity: 0.73, SE: 0.0034; and balance accuracy:
0.71, SE: 0.0007).

TABLE 4
Comparisons of Model Goodness-of-fit with the AOS dataa,b

Deep Neural Network Logistic Regression INNER
C-statistic 0.78 (0.0006) 0.76 (0.0027) 0.78 (0.0006)
Accuracy 0.76 (0.0017) 0.63 (0.0129) 0.72 (0.0029)
Sensitivity 0.69 (0.0043) 0.67 (0.0261) 0.69 (0.0052)
Specificity 0.73 (0.0034) 0.62 (0.0238) 0.73 (0.0052)
Balance Accuracy 0.71 (0.0007) 0.64 (0.0049) 0.71 (0.0008)

a. the results are obtained under the best architecture (for DNN and INNER) with the bal-
anced subsampling strategy and a threshold of 0.5. For the performance of different sam-
pling strategies, thresholds or structures, refer to Supplementary Material Section B [Sun
et al. (2022)]
b. based on 100 random splits.
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5.3. Subgroup Analysis. We identify different subgroups based on the local false dis-
covery rates [Efron (2004, 2007a,b)] by looking at the distributions of the estimated POT
and BOT. We then perform descriptive analysis on each of the subgroups and report the
means (standard deviations) for continuous preoperative characteristics, and the frequencies
(percentages) for categorical preoperative characteristics. We also estimate the probability of
taking preoperative opioids for each patient with different pain scores and plot the average
probability of taking preoperative opioids for each subgroup.

Our results lead to six subgroups (Fig 2) by controlling the local false discovery rate at 0.2.
These subgroups include normal BOT & low POT (4,889 patients), normal BOT & normal
POT (25,581 patients), normal BOT & high POT (3,579 patients), high BOT & low POT (67
patients), high BOT & normal POT (47 patients) and high BOT & high POT (6 patients). We
estimate the probability of taking preoperative opioids with different pain scores stratified by
subgroups in Fig 2. For the high BOT & high POT subgroup and the high BOT & normal POT
subgroup, the probability of taking opioids exceeds 0.5 when the pain score is relatively low
(high BOT & high POT: 0.2; high BOT & normal POT: 1.1), indicating these two subgroups
have a high risk of taking preoperative opioids. The probability of taking opioids only exceeds
0.5 at the pain score of 6.0 for the high BOT & low POT subgroup and 6.3 for the normal
BOT & high POT subgroup, and these two subgroups are considered as a moderate risk
group. Finally, the normal BOT & normal POT subgroup has probability of taking opioids
higher than 0.5 only when the pain score is larger than 8.6, and the probability for normal
BOT & low POT is lower than 0.5 even when the pain score is 10. Thus, the normal BOT &
normal POT subgroup and normal BOT & low POT subgroup are considered as a low risk
group.

Fig 2: Estimated Probability of Taking Preoperative Opioids Against Pain Score Strati-
fied by Risk Groups

Tables 5 and 6 show the characteristics for each subgroup. Patients in the high risk group
(high BOT & normal and high BOT & high POT) and the moderate risk group (normal BOT
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& high POT and high BOT & low POT) tend to be more obese, younger, and have higher
Fibromyalgia Survey Scores and higher Charlson Comorbidity Indices than those in the low
risk group. African Americans constitute about 17% of patients in the high risk group, while
there are only 5% African Americans in the low risk group. Most of patients (100% for high
BOT & normal POT group and 83% for high BOT & high POT group) in the high risk group
have tobacco consumption. Patients are more likely to have illicit drug use history and sleep
apnea in the high and moderate risk groups than in the low risk group. A large portion of
patients in the high risk group (high BOT & normal POT: 97.83%, high BOT & high POT:
66.67%) have an ASA score of 3 or above, indicating a very poor overall physical condition.

We also perform an ANCOVA-type analysis to understand the importance of each covari-
ate’s contributions to the developed risk scores (Table 5, Table 6). Specifically, we use the
log-transformed POT and BOT as response variables to fit separate linear models and cal-
culate R2 for each preoperative characteristic. Based on the R2, Fibromyalgia Survey Score
and ASA Score explain the most variations of BOT, while Fibromyalgia Survey Score, age
and Charlson Comorbidity Index explain the most variations of POT.
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TABLE 5
Subgroup Analysisa

Normal BOT
Low POT
(N=4,889)

Normal BOT
Normal POT
(N=25,581)

Normal BOT
High POT
(N=3,597)

High BOT
Low POT

(N=67)

High BOT
Normal POT

(N=46)

High BOT
High POT

(N=6)

R2

(BOT,%)
R2

(POT,%)

POT 1.13 (0.07) 1.31 (0.05) 1.54 (0.12) 1.05 (0.13) 1.27 (0.06) 1.79 (0.49)
BOT 0.14 (0.10) 0.12 (0.08) 0.09 (0.07) 0.77 (0.14) 0.78 (0.13) 0.94 (0.38)
BMI 29.63 (7.28) 29.62 (6.41) 32.18 (10.31) 33.99 (9.27) 28.95 (8.80) 36.44 (23.02) 0.91 1.29
Age 52.27 (19.17) 55.02 (14.74) 41.68 (16.48) 47.58 (10.61) 50.2 (12.97) 28.5 (6.98) 1.86 2.87
Fibromyalgia Survey Score 1.16 (3.20) 5.45 (4.62) 5.38 (4.43) 2.1 (7.47) 4.2 (9.55) 8.83 (13.72) 9.47 8.22
Satisfaction with Life 9.27 (1.45) 6.99 (2.58) 7.29 (2.75) 9.6 (1.59) 8.7 (2.84) 8.5 (2.51) 2.89 1.18
Charlson Comorbidity Index 1.13 (3.07) 1.63 (3.07) 2.77 (4.55) 3 (4.86) 2 (4.08) 6.67 (5.39) 0.06 2.75
Gender 0.60 0.08

Female 2,557 (52.30) 13,854 (54.16) 2,056 (57.16) 38 (56.72) 21 (45.65) 4 (66.67)
Male 23,32 (47.70) 11,727 (45.84) 1,541 (42.84) 29 (43.28) 25 (54.35) 2 (33.33)

Race 0.22 0.03
White 4,266 (87.26) 22,915 (89.58) 3,171 (88.16) 52 (77.61) 36 (78.26) 5 (83.33)
African American 288 (5.89) 1,263 (4.94) 208 (5.78) 12 (17.91) 8 (17.39) 1 (16.67)
Asian 95 (1.94) 327 (1.28) 44 (1.22) 1 (1.49) 0 (0.00) 0 (0.00)
Other 240 (4.91) 1,076 (4.21) 174 (4.84) 2 (2.99) 2 (4.35) 0 (0.00)

Tobacco use 16.96 0.69
No 3,217 (65.80) 14,417 (56.36) 2,064 (57.38) 4 (5.97) 0 (0.00) 1 (16.67)
Yes 1,672 (34.20) 11,164 (43.64) 1,533 (42.62) 63 (94.03) 46 (100) 5 (83.33)

Alcohol consumption 1.36 < 0.01
No 2,807 (57.41) 14,026 (54.83) 2,150 (59.77) 56 (83.58) 38 (82.61) 4 (66.67)
Yes 2,082 (42.59) 11,555 (45.17) 1,447 (40.23) 11 (16.42) 8 (17.39) 2 (33.33)

Illicit drug use 0.97 < 0.01
No 4,718 (96.50) 24,506 (95.80) 3,380 (93.97) 60 (89.55) 32 (69.57) 4 (66.67)
Yes 171 (3.50) 1,075 (4.20) 217 (6.03) 7 (10.45) 14 (30.43) 2 (33.33)

Sleep apnea 1.48 0.02
No 3,948 (80.75) 19,352 (75.65) 2,843 (79.04) 36 (53.73) 25 (54.35) 5 (83.33)
Yes 941 (19.25) 6,229 (24.35) 754 (20.96) 31 (46.27) 21 (45.65) 1 (16.67)

a. mean (SD) for each continuous characteristic and frequency (percentage) for each cate-
gorical characteristic are reported.
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TABLE 6
Subgroup Analysisa (Continued)

Normal BOT
Low POT
(N=4,889)

Normal BOT
Normal POT
(N=25,581)

Normal BOT
High POT
(N=3,597)

High BOT
Low POT

(N=67)

High BOT
Normal POT

(N=46)

High BOT
High POT

(N=6)

R2

(BOT,%)
R2

(POT,%)

Depression 1.50 0.29
No 4,692 (95.97) 20,444 (79.92) 3,022 (84.01) 63 (94.03) 40 (86.96) 5 (83.33)
Yes 197 (4.03) 5,137 (20.08) 575 (15.99) 4 (5.97) 6 (13.04) 1 (16.67)

Anxiety 0.79 0.20
No 4,383 (89.65) 16,567 (64.76) 2,308 (64.16) 62 (92.54) 40 (86.96) 4 (66.67)
Yes 506 (10.35) 9,014 (35.24) 1,289 (35.84) 5 (7.46) 6 (13.04) 2 (33.33)

ASA score 8.26 < 0.01
0-2 3,389 (69.32) 16,102 (62.95) 2402 (66.78) 2 (2.99) 1 (2.17) 2 (33.33)
3-4 1,500 (30.68) 9,479 (37.05) 1,195 (33.22) 65 (97.01) 45 (97.83) 4 (66.67)

Body area 2.05 2.29
Head 835 (17.08) 2,507 (9.80) 361 (10.04) 9 (13.43) 1 (2.17) 1 (16.67)
Neck 480 (9.82) 3,198 (12.5) 460 (12.79) 5 (7.46) 6 (13.04) 1 (16.67)
Thorax 286 (5.85) 1,660 (6.49) 214 (5.95) 4 (5.97) 3 (6.52) 0 (0.00)
Intrathoracic 332 (6.79) 1,095 (4.28) 120 (3.34) 5 (7.46) 1 (2.17) 0 (0.00)
Shoulder/Axilla 279 (5.71) 1,399 (5.47) 170 (4.73) 5 (7.46) 1 (2.17) 0 (0.00)
Upper Arm & Elbow 18 (0.37) 189 (0.74) 36 (1.00) 0 (0.00) 2 (4.35) 0 (0.00)
Forearm, Wrist, Hand 414 (8.47) 848 (3.31) 94 (2.61) 3 (4.48) 0 (0.00) 0 (0.00)
Upper Abdomen 325 (6.65) 2,443 (9.55) 506 (14.07) 16 (23.88) 8 (17.39) 0 (0.00)
Lower Abdomen 716 (14.65) 4,176 (16.32) 666 (18.52) 6 (8.96) 3 (6.52) 2 (33.33)
Spine/Spinal Cord 66 (1.35) 1,296 (5.07) 102 (2.84) 4 (5.97) 4 (8.70) 0 (0.00)
Perineum 416 (8.51) 2,707 (10.58) 359 (9.98) 7 (10.45) 8 (17.39) 0 (0.00)
Pelvis (Except Hip) 12 (0.25) 92 (0.36) 20 (0.56) 0 (0.00) 1 (2.17) 0 (0.00)
Upper Leg (Except Knee) 107 (2.19) 1352 (5.29) 120 (3.34) 0 (0.00) 2 (4.35) 1 (16.67)
Knee/Popliteal 424 (8.67) 1,384 (5.41) 124 (3.45) 0 (0.00) 1 (2.17) 0 (0.00)
Lower Leg 89 (1.82) 540 (2.11) 140 (3.89) 1 (1.49) 1 (2.17) 1 (16.67)
Other 90 (1.84) 695 (2.72) 105 (2.92) 2 (2.99) 4 (8.7) 0 (0.00)

a. mean (SD) for each continuous characteristic and frequency (percentage) for each cate-
gorical characteristic are reported.
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5.4. Discussion. The proposed INNER model achieves predictability comparable to
DNN, but with more interpretability. The model leads to two metrics, BOT and POT, that may
decipher the patterns of preoperative opioid use and explain the association between preoper-
ative characteristics and preoperative opioid use. Patients with higher BMI and worse physi-
cal conditions (higher Charlson Comorbidity Indices, higher Fibromyalgia Survey Scores and
higher ASA Scores) are more likely to consume preoperative opioids, and African American
patients are more likely to be in the high and moderate risk groups. Patients with illicit drug
use history and tobacco consumption are more likely to take preoperative opioids, while pa-
tients with alcohol consumption are less likely to have preoperative opioids. Patients with
sleep apnea have a higher risk of taking preoperative opioids, as do patients expecting upper
abdomen surgery. Detailed discussions of these subgroups can be found in the Appendix.

Our results are largely consistent with the literature, which shows, for example, that pa-
tients with worse physical conditions are more likely to use preoperative opioids [Sullivan
et al. (2005); Westermann et al. (2018); Goesling et al. (2015); Meredith et al. (2019)]. Pren-
tice et al. (2019) find that high BMI and Black race are preoperative risk factors for opioid
use. Younger patients are reported to have a higher risk of preoperative opioid use controlling
for sociodemographics and clinical variables [Sullivan et al. (2006)]. Similarly, Lo-Ciganic
et al. (2019) find that age is the among the most important features for opioid overdose pre-
diction. Hah et al. (2015) report that patients with poor sleep quality are more likely to have
preoperative opioid use. Tobacco use is reported to be a risk factor of preoperative opioid use
by many studies [Westermann et al. (2018); Meredith et al. (2019)]. As for substance abuse,
many studies find that subjects with drug use have higher risks of opioid use [Sullivan et al.
(2006, 2005)]. Both Dong et al. (2019) and Che et al. (2017) find that substance abuse his-
tory is among the most important features for opioid dependence prediction. Sullivan et al.
(2006) find that there is no significant association between problem alcohol use and opioid
prescription (OR: 0.63; 95% CI: 0.35-1.15). The direction of OR in their study is consistent
with our results. Sullivan et al. (2005) report a non-significant association between alcohol
use and opioid prescription, though the direction is opposite from our study (OR: 1.32, P =
0.479). More studies are warranted to identify the association between alcohol consumption
and preoperative opioid use.

Finally, our proposed model can be extended to accommodate generalized linear models
(GLMs) as discussed in Tran et al. (2020). Specifically, let g(·) be a link function to link the
conditional mean E(y | x) = g−1{η(x)} to covariates of interest (e.g., treatment or exposure),
say, x, where η(x) = β0 +β>x. In order to model the nonlinear effects of additional features
z (e.g., demographics, biomarkers) on η and achieve model flexibility, we can extend deep
neural network to model the individualized intercepts and coefficients, namely, β0(z) and
β(z). As such, the predictor can be written as η(x, z) = β0(z)+β(z)>x, which is to be linked
to the conditional mean E(y | x, z) via E(y | x, z) = g−1{η(x, z)}= g−1{β0(z) +β(z)>x}.

6. Conclusion. We have developed a new learning framework for robust predictions of
outcomes in a more interpretable way. Beyond preoperative outcomes, we could use this
approach to better predict and understand important postoperative outcomes such as opi-
oid refill [Sekhri et al. (2018)], new chronic opioid use [Brummett et al. (2017)], hospital
readmission, and opioid overdose. However, the best way to quantify the uncertainty of the
estimates is still unknown. We will pursue this later.

APPENDIX: SUBPOPULATIONS WITH HIGH RISKS

We have made scatter plots of log(POT) and log(BOT) (Fig A1) for the three groups
mentioned in Section 5.4. The population means (standard deviation (std)) of log(POT) and
log(BOT) are 0.26 (0.09) and -2.32 (0.63) respectively. In Fig A1(a), we focus on a group of
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patients identified by demographic risk factors, i.e., African American male patients younger
than 20 years old; these patients on average have a higher log(POT) (mean: 0.29, std: 0.14)
but a lower log(BOT) (mean: -2.64, std: 0.46), indicating their sensitivity to pain but lower
tendency to take opioids without pains. Fig A1(b) depicts BOT and POT for patients who
have worsened physical conditions, i.e., with BMI greater than or equal to 32, ASA scores
between three and four, Fibromyalgia survey scores greater than 13, Charlson comorbidity
index greater than or equal to one, and sleep apnea; these patients have a higher log(BOT)
(mean: -1.33, std: 0.46) and higher log(POT) (mean: 0.29, std: 0.07) compared to the entire
population, indicating they are both sensitive to pain and likely to take preoperative opioids
even with no pains reported. Finally, Fig A1(c) focuses on patients who have substance use
and co-occurring mental disorders, such as illicit drug use history, tobacco consumption,
anxiety and depression. These patients have a smaller log(BOT) (mean: -1.51, std: 0.46) on
average compared to those in Fig A1(b) and the highest log(POT) (mean: 0.30, std: 0.07)
among the three groups.

(a) (b) (c)

Fig A1: Distributions of BOT and POT for three groups. (a): Patients are chosen based
on demographics, including gender, race and age;(b): Patients are chosen based on physi-
cal condition risk factors, including BMI, ASA scores, Fibromyalgia survey scores, Charl-
son comorbidity index and sleep apnea;(c): Patients are chosen based on substance use and
co-occurring mental disorders, including illicit drug use history, tobacco consumption, de-
pression and anxiety. The horizontal and vertical lines represent the population means of
log(POT) and log(BOT), respectively; the numbers in each plot refer to the means and stan-
dard deviations.
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SUPPLEMENTARY MATERIAL

Supplement to ‘Individualized Risk Assessment of Preoperative Opioid Use by Inter-
pretable Neural Network Regression’
The architecture of DNN for the AOS Data and the results of the sensitivity analysis are
presented.

Codes for ‘Individualized Risk Assessment of Preoperative Opioid Use by Inter-
pretable Neural Network Regression’
Codes for the simulation study. They are also available at https://github.com/
YumingSun/INNER.

https://github.com/YumingSun/INNER
https://github.com/YumingSun/INNER
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