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Section A: Architecture of DNN

Fig 1: Architecture of DNN for the AOS Data. Input: preoperative characteristics are clas-
sified into three inputs: Z1 are un-modifiable characteristics, such as gender and race; Z2

are modifiable characteristics, such as BMI and smoking; Z3 are pain-related characteris-
tics, such as Fibromyalgia Survey Score and pain severity. Layers: each category of inputs
goes through the same structure: two hidden layers with a ReLu activation function. The
first hidden layer has 500 neurons and the the second hidden layer has 125 neurons. The
three structures are concatenated and passed onto a layer with 15 hidden neurons and a ReLu
activation function. Output: estimated probability of preoperative opioid use.

Section B: Sensitivity Analysis

Because stochastic gradient descent is sensitive to the choice of learning rates (LR), we use
grid search to tune the learning rate. For the real data analysis, we tune the learning rate over
a range from 0.005 to 0.1 with 20 equally spaced grid points, and find that LR= 0.01 seems
to strike a balance between stability and computational readiness. We also implement the
adaptive SGD to analyze our data. Specifically, we have implemented three popular adaptive
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SGD algorithms, namely, “Adagrad”, “Adadelta” and “Adam.” Adagrad adapts the learning
rate based on a sequence of subgradients [Duchi, Hazan and Singer (2011)] to improve the
robustness of SGD and avoid tuning the learning rate manually [Dean et al. (2012)], while
Adadelta [Zeiler (2012)] and Adam [Kingma and Ba (2014)] only store an exponentially
decaying average of subgradients [Zeiler (2012)]. We conduct 100 experiments to compare
the prediction performance using different optimizers. In each experiment, we randomly split
data into the training and testing parts, and use the balanced subsampling strategy described
in Section 5.2 to assess the performance on the testing data. The means and standard errors
(se) of different metrics are summarized in Table 1. We find that all four methods give similar
performances, though SGD with a fixed LR= 0.01 and Adam give the same C-statistic and
sensitivity, slightly better than those obtained by Adagrad and Adadelta; all of these methods
give the same balance accuracy.

TABLE 1
Prediction Performance of INNER Using different Optimizersa,b

SGD (LR=0.01) Adagrad Adadelta Adam
C-statistic 0.78 (0.0006) 0.77 (0.0005) 0.76 (0.0006) 0.78 (0.0006)
Accuracy 0.72 (0.0029) 0.73 (0.0011) 0.73 (0.0006) 0.72 (0.0009)
Sensitivity 0.69 (0.0052) 0.66 (0.0022) 0.66 (0.0012) 0.69 (0.0020)
Specificity 0.73 (0.0052) 0.76 (0.0019) 0.76 (0.0010) 0.73 (0.0017)
Balance Accuracy 0.71 (0.0008) 0.71 (0.0006) 0.71 (0.0005) 0.71 (0.0006)

a. used the balanced subsampling strategy and a threshold of 0.5
b. based on 100 random splits

The number of iterations is chosen to ensure the convergence of the algorithm (as shown in
Fig 2). We have also varied the batch sizes and number of iterations to examine the stability
of the results and find a batch size of 64 and an epoch of 200 give a reasonable performance.
We have conducted sensitivity analysis to assess the robustness of SGD towards the choices
of these hyperparameters, and we find that the model’s C-statistic is fairly robust to them.
Specifically, by varying the learning rate from 0.0075 to 0.0125, the batch size from 32 to
128 and the number of iterations from 200 to 250, the C-statistic of the obtained INNER
model is around 0.78.

TABLE 2
Average C-statistics (se) of INNER with Various Learning Rates, Batch Sizes

and Epochsa,b,c

LR =0.0075 LR = 0.01 LR = 0.0125

BS = 32
Epoch = 150 0.78 (0.0005) 0.78 (0.0006) 0.78 (0.0006)
Epoch = 200 0.78 (0.0005) 0.78 (0.0007) 0.78 (0.0006)
Epoch = 250 0.78 (0.0005) 0.78 (0.0007) 0.78 (0.0006)

BS = 64
Epoch = 150 0.78 (0.0006) 0.78 (0.0007) 0.78 (0.0007)
Epoch = 200 0.78 (0.0005) 0.78 (0.0006) 0.78 (0.0006)
Epoch = 250 0.78 (0.0005) 0.78 (0.0006) 0.78 (0.0005)

BS =128
Epoch = 150 0.78 (0.0006) 0.78 (0.0006) 0.78 (0.0006)
Epoch = 200 0.78 (0.0006) 0.78 (0.0006) 0.78 (0.0006)
Epoch = 250 0.78 (0.0006) 0.78 (0.0005) 0.78 (0.0006)

a. used the balanced subsampling strategy and a threshold of 0.5
b. used SGD for optimization
c. based on 100 experiments

We have conducted additional sensitivity analyses to examine the performance of the
model under various initialization schemes for the weights W and the biases b in the neural
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Fig 2: Learning Curve of INNER: Cross Entropy Loss Against Iteration For Training
and Validation Data

networks. We have explored using different weights, such as uniform and normal weights,
for the initial weights [Glorot and Bengio (2010); He et al. (2015)]. In particular, we have
studied two versions of uniform weights: for a weight matrix Wl ∈ Rkl+1×kl , where kl
and kl+1 are the numbers of input and output units of the lth layer, we initialize it with
Uniform{−

√
6/(kl + kl+1),

√
6/(kl + kl+1)} following Glorot and Bengio (2010) (labeled

as “Glorot uniform” in Table 3, which reports the sensitivity analysis results); we also ini-
tialize the weight matrix with Uniform(−

√
6/kl,

√
6/kl) following He et al. (2015) (labeled

as “He uniform” in Table 3). For the normal weights, we use Normal(0,2/(kl + kl+1)) as
the initial weights following Glorot and Bengio (2010) (labeled as “Glorot normal” in Table
3). Finally, for the bias vector b, we initialize it to be either all 0’s or 1’s for its components
(labeled as “Zeros” or “Ones” in the column of bias initialization in Table 3). For each set-up,
we find that the C-statistic of the model is fairly constant, which is 0.78 with varied initialized
values of weights and biases.
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TABLE 3
Average (se) C-statistics with different Initializations of

Weights and Biasesa,b,c

Weight Initialization Bias Initialization C-statistic

Glorot uniform
Zeros 0.78 (0.0006)
Ones 0.78 (0.0006)

Glorot normal
Zeros 0.78 (0.0005)
Ones 0.78 (0.0005)

He uniform
Zeros 0.78 (0.0008)
Ones 0.78 (0.0006)

a. used the balanced subsampling strategy and a threshold of
0.5
b. used SGD for optimization
c. based on 100 experiments



5

TABLE 4
Comparisons of the Prediction Performance using the AOS Dataa,b,c

Deep Neural
Network

Logistic
Regression

Interpretable Neural
Network Regression

Preoperative Opioid Prevalence: 0.23
C-statistic 0.78 (0.0006) 0.62 (0.0094) 0.78 (0.0006)
Threshold = 0.50

Accuracy 0.80 (0.0004) 0.70 (0.0116) 0.80 (0.0004)
Sensitivity 0.33 (0.0049) 0.43 (0.0331) 0.31 (0.0057)
Specificity 0.94 (0.0016) 0.78 (0.0238) 0.94 (0.0018)
Balance Accuracy 0.63 (0.0017) 0.61 (0.0071) 0.63 (0.002)

Threshold = 0.23
Accuracy 0.72 (0.0021) 0.69 (0.0123) 0.73 (0.0030)
Sensitivity 0.69 (0.0039) 0.44 (0.0336) 0.68 (0.0055)
Specificity 0.73 (0.0038) 0.77 (0.025) 0.74 (0.0054)
Balance Accuracy 0.71 (0.0006) 0.61 (0.007) 0.71 (0.0007)

Preoperative Opioid Prevalence: 0.50
C-statistic 0.78 (0.0006) 0.73 (0.0027) 0.78 (0.0006)
Threshold = 0.50

Accuracy 0.73 (0.0017) 0.63 (0.0129) 0.72 (0.0029)
Sensitivity 0.69 (0.0043) 0.67 (0.0261) 0.69 (0.0052)
Specificity 0.73 (0.0034) 0.62 (0.0238) 0.73 (0.0052)
Balance Accuracy 0.71 (0.0007) 0.64 (0.0049) 0.71 (0.0008)

Threshold = 0.23
Accuracy 0.46 (0.0044) 0.50 (0.0130) 0.41 (0.0056)
Sensitivity 0.93 (0.0024) 0.84 (0.0154) 0.95 (0.0022)
Specificity 0.31 (0.0064) 0.39 (0.0211) 0.24 (0.0080)
Balance Accuracy 0.62 (0.0021) 0.61 (0.0047) 0.60 (0.0030)

a. prediction power of each model with the best architectures (DNN and INNER) under
different sampling strategies and threshold; for the comparison of different architec-
tures, refer to Appendix Table 5 and Appendix Table 6
b. based on 100 experiments for each metric
c. in the AOS data, the prevalence of preoperative opioid is 0.23, and the prevalence is
around 0.23 for the training data; we use the balanced subsampling strategy to adjust
the prevalence of preoperative opioid to be 0.50 in the training data
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TABLE 5
Tuning the Architecture of INNER with the AOS Dataa,b,c,d

Three Layers
250 Neurons

Four Layers
500 Neurons

Five Layers
500 Neurons

Preoperative Opioid Prevalence: 0.23
C-statistic 0.78 (0.0006) 0.78 (0.0007) 0.77 (0.0005)
Threshold = 0.50

Accuracy 0.80 (0.0004) 0.79 (0.0005) 0.79 (0.0004)
Sensitivity 0.31 (0.0057) 0.32 (0.0063) 0.32 (0.0061)
Specificity 0.94 (0.0018) 0.94 (0.0021) 0.93 (0.0019)
Balance Accuracy 0.63 (0.0020) 0.63 (0.0021) 0.63 (0.0021)

Threshold = 0.23
Accuracy 0.73 (0.0030) 0.72 (0.0031) 0.72 (0.0022)
Sensitivity 0.68 (0.0055) 0.68 (0.0054) 0.68 (0.0043)
Specificity 0.74 (0.0054) 0.73 (0.0055) 0.74 (0.0041)
Balance Accuracy 0.71 (0.0007) 0.71 (0.0008) 0.71 (0.0005)

Preoperative Opioid Prevalence: 0.50
C-statistic 0.78 (0.0006) 0.78 (0.0006) 0.78 (0.0006)

Threshold = 0.50
Accuracy 0.72 (0.0029) 0.73 (0.0026) 0.72 (0.0020)
Sensitivity 0.69 (0.0052) 0.69 (0.0048) 0.69 (0.0037)
Specificity 0.73 (0.0052) 0.75 (0.0047) 0.73 (0.0036)
Balance Accuracy 0.71 (0.0008) 0.71 (0.0008) 0.71 (0.0005)

Threshold = 0.23
Accuracy 0.41 (0.0056) 0.42 (0.0057) 0.43 (0.0050)
Sensitivity 0.95 (0.0022) 0.95 (0.0023) 0.94 (0.0021)
Specificity 0.24 (0.0080) 0.26 (0.0081) 0.28 (0.0071)
Balance Accuracy 0.60 (0.0030) 0.60 (0.0030) 0.61 (0.0026)

a. the first column is for the best INNER architecture as reported in Table 4 in
the main text and Table 4
b. the other columns refer to the other more complicated INNERs, with more
hidden layers or more neurons in each hidden layers
c. the column names are the number of hidden layers and the number of neurons
in the first hidden layers for FL(Zi;α) and FL(Zi;α)
d. in the AOS data, the prevalence of preoperative opioid use is 0.23; uses a
balanced subsampling strategy by over-sampling cases; adjusts the prevalence
of preoperative opioid use to be 0.50 in the training data
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TABLE 6
Tuning the Architecture of DNN for AOS Dataa,b,c,d

Two Layers
500 Neurons

Three Layer
250 Neurons

Three Layer
500 Neurons

Preoperative Opioid Prevalence: 0.23
C-statistic 0.78 (0.0006) 0.79 (0.0006) 0.79 (0.0005)
Threshold = 0.50

Accuracy 0.80 (0.0004) 0.79 (0.0004) 0.79 (0.0004)
Sensitivity 0.33 (0.0049) 0.34 (0.0054) 0.32 (0.0068)
Specificity 0.94 (0.0016) 0.93 (0.0018) 0.94 (0.0020)
Balance Accuracy 0.63 (0.0017) 0.63 (0.0018) 0.63 (0.0024)

Threshold = 0.23
Accuracy 0.72 (0.0021) 0.72 (0.0022) 0.72 (0.0024)
Sensitivity 0.69 (0.0039) 0.70 (0.0038) 0.69 (0.0049)
Specificity 0.73 (0.0038) 0.72 (0.0040) 0.73 (0.0046)
Balance Accuracy 0.71 (0.0006) 0.71 (0.0006) 0.71 (0.0005)

Preoperative Opioid Prevalence: 0.50
C-statistic 0.78 (0.0006) 0.78 (0.0006) 0.78 (0.0005)

Threshold = 0.50
Accuracy 0.73 (0.0017) 0.72 (0.0025) 0.72 (0.0023)
Sensitivity 0.69 (0.0043) 0.70 (0.0039) 0.70 (0.0043)
Specificity 0.73 (0.0034) 0.72 (0.0043) 0.73 (0.0042)
Balance Accuracy 0.71 (0.0007) 0.71 (0.0007) 0.71 (0.0005)

Threshold = 0.23
Accuracy 0.46 (0.0044) 0.45 (0.0044) 0.45 (0.0052)
Sensitivity 0.93 (0.0024) 0.94 (0.0020) 0.93 (0.0023)
Specificity 0.31 (0.0064) 0.30 (0.0062) 0.31 (0.0074)
Balance Accuracy 0.62 (0.0021) 0.62 (0.0022) 0.62 (0.0026)

a. the first column is for the best DNN architecture as reported in Table 4 in
the main text and Appendix Table 4
b. the other columns refer to the other more complicated DNNs, with more
hidden layers or more neurons
c. the column names are the number of hidden layers and the number of neu-
rons in the first hidden layers before concatenation
d. in the AOS data, the prevalence of preoperative opioid use is 0.23; uses a
balanced subsampling strategy by over-sampling cases; adjusts the prevalence
of preoperative opioid use to be 0.50 in the training data
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